配电台区三相负荷不平衡自动调整装置
台区三相负荷不平衡快速调整装置的设计与实现

台区三相负荷不平衡快速调整装置的设计与实现摘要:本文介绍了台区三相负荷不平衡快速调整装置的设计和实现方法。
首先,从硬件方面介绍了传感器和控制器的选型、物理结构的搭建和电气连接的步骤。
其次,从软件方面介绍了调整策略的确定、控制算法的编写和控制界面的开发的步骤。
然后,介绍了装置测试和验证的方法。
最后,讨论了装置的优点和局限性,并提出了可能的改进和扩展方向。
关键词:台区三相;负荷不平衡;快速调整装置;设计与实现一、引言随着电力需求的增长和供电质量要求的提高,台区三相负荷不平衡问题成为影响电网稳定运行和电力设备寿命的重要因素。
近年来通过电网的建设和改造,供电质量得到了大幅提高,但在一些负荷增长较快、农村偏远地区,台区三相不平衡的问题频繁出现,三相不平衡会增加配电变压器的电能损耗,使变压器出力减少,影响变压器绝缘和使用寿命,从而影响用电设备的安全运行,同时也增加了供电所配网运维及客户服务工作的压力。
传统的人工调相方法需登杆对电表下线进行相序的调整,作业过程中存在触电、高坠风险等作业风险,存在效率低下的问题。
因此,设计和实现一种快速调整台区三相负荷不平衡的装置具有重要的研究意义。
本文旨在提出一种自动化、高效且安全的装置,为电力系统提供可靠的解决方案,进一步提升供电质量和用户体验。
二、台区三相负荷不平衡的原因和影响台区三相负荷不平衡是指在一个电力台区中,三相电流的大小不平衡的情况。
它可能由多种因素引起,包括负荷分布不均匀、电力设备故障以及其他不可控的因素。
不同用户的用电需求和负荷水平可能存在差异,导致电流在三相之间的分布不均匀。
例如,一些用户可能在特定时间段集中使用大量电力,而其他用户则相对较少使用,这会导致负荷的不平衡。
电力设备的故障也可能引起台区三相负荷不平衡。
例如,一个电力变压器的某一相可能出现故障,导致该相的负荷减少,从而引起三相负荷的不平衡。
类似地,电缆或开关设备的故障也可能导致负荷不平衡。
台区三相负荷不平衡对电力系统和用户都会产生一系列的影响。
三相不平衡调节及无功补偿装置

三相不平衡调节及无功补偿装置□杨嘉文1概述在中、低压配电网系统中,存在着大量的单相,不对称、非线性,冲击性负荷,三相负荷系统是随机变化的,这些负荷会使配电系统产生三相不平衡,三相负荷不平衡会导致供电系统三相电压、电流的不平衡,引起电网负序电压和负序电流,影响供电质量,进而增加线路损耗,降低供电可靠性。
因此电力变压器运行规程规定,Y/Y0变压器的中线电流不能超过额定电流的25%。
由以上可知对负荷不平衡、无功短缺进行补偿对配电网来说有很大的实用价值,它可以降低线损,提高电能质量,增加配电网的可靠性。
由于负荷分配不均,负荷性质也不一致,造成低压供电系统无功不足,负荷不平衡。
尤其是经济水平较为发达的地区表现更为明显。
无功不足、负荷不平衡这两个问题已成为配电系统的两大难题。
针对无功不足的问题,国内解决的办法是:合理配置低压无功补偿电容器,其补偿的原则多数是共补与分补相结合,并采取可控硅投切、接触器运行的技术模式并附加电压质量监测系统,其采取手段多是通过远红外或GPRS通讯系统去实现。
目前这项技术已基本成熟,但它没有考虑到如何去改善配电低压系统三相不平衡的情况,投切不当时,反而增加不平衡的情况。
因此,三相不平衡的问题已成为当前配电系统亟待解决的问题,也是配电系统的技术空白。
2项目的实施的意义低压配电网是电力系统的末端,低压配电网采用三相四线制方式,配电变压器低压侧采用Yn0接线,电网的不平衡会增加线路及变压器的损耗,降低变压器的出力,影响电网的供电质量,甚至会影响电能表的精度,造成计量系统计费损失,由于三相负荷不平衡造成中线电流增大,会降低供电系统的可靠性,影响配电系统的安全运行。
2.1中线电流带来的变压器损耗2.1.1附加铁损Y/Yn0接线的配电变压器采用三铁心柱结构,其一次侧无零序电流,二次侧有零序电流,因此二次侧的零序电流完全是励磁电流,产生的零序磁通不能在铁心中闭合,需通过油箱壁闭合,从而在铁箱等附件中发热产生铁损。
低压线路三相负荷不平衡的处理

低压线路三相负荷不平衡的处理摘要:三相负荷保持平衡是节约能耗、降低损耗的基础。
一般情况下三相负荷不平衡可引起线损率升高,三相负荷不平衡度若超过10%,则线损显著增加。
关键词:低压线路;三相负荷;不平衡;处理一、选择课题1、问题提出《配电线路运行规程》中第7.5.2条规定:变压器的三相负荷应力求平衡,不平衡度不应大于15%,只带少量单相负荷的变压器,零线电流不应超过额定电流的25%,不符合上述规定时,应将负荷进行调整。
《国网南通供电公司同业对标指标管控办法》中规定:低压线路三相负荷不平衡日超限时间应低于60min。
2016年某供电公司供电所台区三相负荷不平衡超限发生次数进行了统计,1—12月低压线路三相不平衡超台区共有381台,三相不平衡情况较为突出。
2、低压线路三相负荷不平衡超限问题分析2.1问题现状2016年7—9月份迎峰度夏期间低压线路三相负荷不平衡超限现象尤为严重,7—9月3个月发生不平衡台区分别为59、50、47台次,合计达到了156台次,占2016年三相负荷不平衡超限台区总数的41%。
调查发现:气温和低压线路三相负荷不平衡超限台数呈正相关,天气的温度越高,低压线路三相负荷不平衡超限台数越多。
进一步的调查发现,气温高于30℃,用户开始使用空调等降温设备。
气温越高,空调等大功率设备投切越多,而这些负荷天然存在不稳定性(电器使用时间、电器使用的数量随时变化),负荷沿着220V线路以不同容量、在不同地点频繁接入或退出电源,导致三相负荷电流随时处于变化之中,从而引发低压线路三相负荷不平衡出现。
2.2传统方法的局限性传统的针对低压线路三相负荷不平衡采用的处理方法是将线路停电,人工登杆重新分相搭接接户线,使三相负荷基本达到平衡。
但这种人工处理方法存在以下问题:按照《国家电网公司创流对标工作管理办法》中规定:低压线路三相负荷不平衡日超限时间高于60min,即判定为低压线路三相负荷不平衡超限。
用人工停电调整负荷的方法,从接到低压线路三相不平衡负荷信息,到赶到现场,进行三相负荷测试,再到登杆调整结束,耗时较长,此时台片日超限时间已经远大60min,当日低压线路三相负荷不平衡已经超限。
基于精细化无功补偿装置的台区低电压、三相不平衡整治

(2)“先投先切”。 若三相不平衡率、电压值均达到设定值, 则检查已经投入的那些电容器的容量,在投切动作延时过后 选择切除最早投入的电容器。
(3)“均衡使用”。 若某相电压超出设定的最高值,则先投 入分相补偿电容,如果相间补偿电容器和分相补偿电容器条 件都成立,选择投入最久没有使用的那组电容器。
电气工程与自动化◆Dianqi Gongcheng yu Zidonghua
基于精细化无功补偿装置的台区低电压、三相不平衡整治
陈子民 姚 芸
(广西大学电气工程学院,广西 南宁 530007)
摘 要:台区低电压、三相不平衡已逐渐成为配网管理人员工作中经常遇到的难题。 由于采用集中式无功补偿方式对“城中村”台区 进行治理收效甚微,现以电压和三相不平衡率为判据,采用“集中+就地”补偿的方式,开发了一套具有农村支线末端低电压提升和台区 三相不平衡自动调节功能的新型低压电力产品,在实际应用中取得了显著成效。
2 台区无功优化精细化补偿装置的实现
针对上述问题,本文的思路是将补偿设备移到干线末端 安装,以提高补偿效率。 以电压和三相不平衡率为判据确定电 容器的投切动作、投切容量、投切方式,实现既能对线路进行 无功补偿,又能对线路进行三相不平衡自动调节,具有很强的 现实意义和经济效益。
2.1 三相平衡提升电压机理分析 在三相系统中,跨接在相线与相线之间的电容或电感元
图1 矢量图
2.2 电容器投切原则 本文物理量判据为各相电压值和三相不平衡率,可以按
照实际线路状态寻找合适的相间补偿和分相补偿策略,并遵 循“平衡优先”、“先投先切”、“均衡使用”的投切原则,以延长 电容器的使用寿命。
(1)“平衡优先”。 若三相不平衡率低于目标值,则检查各
10KV配电系统三相负荷不平衡自动调整及无功补偿装置研究与运用

10KV配电系统三相负荷不平衡自动调整及无功补偿装置研究与运用摘要:电力系统是国民经济的重要基础,而配电系统就是电力系统的关键设备。
由于供电设备的结构及功能不同,在我国电力系统中配网的类型、结构和功能各异。
但是无论在什么条件下,配网都不可能做到随心所欲,能够做到统一规划指挥。
如果不能实现统一规划、统一指挥和统一管理,就会出现大量的重复建设和投资浪费;又由于配电网中运行管理系统不完善、故障处理效率低;又会造成大量电能消耗;更严重会给供电设备造成不可预估的损害。
配电网系统作为电力系统的重要组成部分,为保证其正常运行发挥着重要作用。
目前有两种技术可用于配电网三相负荷不平衡自动调整及无功补偿装置的研究与应用[1]。
本文根据本地区配电系统特点和故障现象对不平衡自动调整及无功补偿装置进行研究,并提出了相应改进方案和安装调试方案。
关键词:配电系统;三相负荷;无功补偿引言:通过三相负荷不平衡自动补强技术可以及时修正三相负荷不平衡并使三相负荷不平衡值得到控制,保证用电质量。
三相负荷不平衡自动补强技术采用直流电机转子补偿技术在运行中可将其投入正常运行模式,不影响正常运行时间而降低运行成本。
通过对上述技术的研究可以提高系统运行可靠性同时降低运行成本。
1、配用电设备的特性本地区的配电设备为双电源配电系统,一般分为三相配电箱、三相配电箱等。
配电箱是供配电系统中用电设备之间的连接,一般都设有隔离开关。
三相配电箱一般是作为一个配电控制站。
三相负荷为一组单极进行调节,三相间隔由一台电动机进行控制。
当系统受到突发故障时,该单孔或多孔设备可以自动切换单面运行或切换双面运行模式。
三相配电箱作为一个配电控制站可将系统在不同时段的各种不同功率负荷情况传送到不同用电设备处,为其提供电能。
由于用电设备为固定时间工作,所以往往不会出现三相负荷不平衡现象。
2、三相负荷不平衡自动补强技术三相负荷不平衡补强分为补偿和调整两种方式,其中补偿是指通过控制装置将被不平衡负荷中的一相负荷加以自动补偿来达到补强的目的。
低压台区三相负荷不平衡治理与监管优化

低压台区三相负荷不平衡治理与监管优化摘要:当前电器类型多样,使用频繁,人们在享受电器所带来的生活便利的同时,也面临单相负荷激增导致低压配电网三相负荷不平衡,从而影响供电稳定性的现实困扰。
在解决电网三相不平衡问题方面,主要采取在负荷侧或电网侧安装静止无功补偿器、安装有源滤波器等负荷补偿装置,达到三相不平衡治理或抑制的目的,但成本投入较高。
三相不平衡问题改善不明显。
本文针对低压台区三相负荷不平衡治理及监管问题展开详细探讨,以期探明低压台区三相负荷不平衡的有效治理思路和监管举措。
关键词:低压台区;三相负荷不平衡;综合整治低压配网中单相用户负荷特征极为复杂,且用户用电习惯差异较大,带有用电随机、用电同时率低等特征,使得低压台区三相负荷不平衡问题更为突出,一旦出现三相负荷不平衡问题,使得配电变压器处于不平衡运作状态,增加电能损耗。
且因局部温度的提升,影响变压器的正常使用,缩短其寿命,影响用户端用电设备的正常使用。
低压台区三相不平衡问题的治理探讨也更为深入,在三相负荷不平衡治理与监管中应做到技术的持续改良和监管力度的持续加大,以实现对三相负荷不平衡导致的各种问题的综合治理。
1低压台区三相负荷不平衡危害低压台区三相负荷不平衡具有较大危害。
最主要的直接的危害是随着三相电流不平衡度的增加,重负荷相的线路电流模值处于增大状态,引发较大的功率损耗,而轻负荷相的线路电流模局不断变小,功率损耗减小,零线电流处于快速增加状态[1],功率损耗明显加大。
具体来说,低压台区三相负荷不平衡对低压台区配电变压器有影响,严重影响配电网、变压器及低压线路的安全运行。
低压台区三相负荷不平衡对低压台区线损有影响,三相不平衡程度的加剧,导致低压网线损率明显上升,对比三相电流平衡时一般增加 4.5%-5%,严重影响低压台区经济运行。
低压台区三相负荷不平衡对低压台区电能质量有一定影响,若台区首端电流不平衡度在50%以上,线路末端电压偏移度加大,甚至超出电压偏移下限值,导致线路后端用户电压偏低,影响用户正常用电。
三相负荷不平衡治理装置的研制和应用

三相负荷不平衡治理装置的研制和应用文/刘子威0 引言在我国的配电网中,输电线路一般采用三相四线制,而用户多为单相负荷或单、三相负荷混接,这导致了用电负荷接入相别存在不均衡性、随机性、波动性,配电系统参数存在不对称性,使得配网三相负荷不平衡的问题客观普遍存在。
三相负荷不平衡增加了线路和配电变压器的电能损耗,严重时会烧毁电线,造成线路事故;三相负荷不平衡使配电变压器的出力减少,降低了变压器的使用效率;三相负荷不平衡使配电变压器产生了零序电流,影响变压器的使用寿命和供电安全性。
2017年5月,国家电网运维检修部(以下简称国网运检部)发布《关于开展配电台区三相负荷不平衡问题治理工作的通知》(以下简称《通知》),指出要按照“源头预防、常态监测、科学施策、动态治理”的原则治理三相负荷不平衡。
1 三相负荷不平衡治理模式《通知》中提出了三种治理三相负荷不平衡的模式,即换相开关型三相不平衡调节装置、电容型三相不平衡调节装置以及电力电子型三相不平衡调节装置。
1.1 换相开关型三相不平衡调节装置换相开关型三相不平衡调节装置的系统主回路结构如图1所示,系统的每条支路分别由一个主控开关和多个换相开关组成,支路的始端安装一台主控开关,负责监测三相不平衡信息,并下发调节命令;支路沿线在用户前端安装换相开关,可监测自身带载回路的负荷信息,并根据主控开关下发的换相命令自动进行相应换相操作。
这种装置可取代人工换相,减少运维人员的工作量;但换相开关是串联在线路中的,一旦换相开关出现故障或发生误动作,都会直接引起用户负载的断路停电或短路故障,因此对换相开关装置本身的可靠性有着非常高的要求。
另外装置的换相依赖于主控开关和换相开关之间的通信,一旦通信出现故障,将直接影响换相开关的正常动作,影响系统三相负荷平衡的实现。
1.2 电容型三相不平衡调节装置电容型三相不平衡调节装置又称为相间补偿型三相不平衡调节装置,是在相线间跨接电力电容器,实现有功功率转移,平衡相间有功功率,同时利用连接在相线与零线之间的电力电容器对每一相进行不等量无功补偿,平衡相间的无功功率,降低三相不平衡度、提升功率因数(如图2)。
三相负荷不平衡自动调节装置

三相负荷不平衡自动调节装置是一种用于电力系统中的设备,其主要作用是自动调节三相负荷的不平衡情况,以提高电力系统的稳定性和可靠性。
该装置通常由传感器、控制器和执行机构等组成。
传感器用于检测三相负荷的电流和电压等参数,控制器根据传感器检测到的数据进行分析和处理,并发出控制指令,执行机构则根据控制指令对三相负荷进行调节,以实现三相负荷的平衡。
三相负荷不平衡会导致电力系统中的电压波动、电流不平衡等问题,从而影响电力系统的稳定性和可靠性。
使用三相负荷不平衡自动调节装置可以有效地解决这些问题,提高电力系统的运行效率和可靠性。
需要注意的是,不同的三相负荷不平衡自动调节装置可能具有不同的功能和特点,具体选择应根据实际需求进行考虑。
同时,在使用该装置时,需要按照相关的操作规程进行操作,以确保其正常运行和安全可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配电台区三相负荷不平衡自动调整装置
发表时间:2018-05-30T10:18:40.933Z 来源:《电力设备》2018年第1期作者:吴志伟朱晓锋孙俊邦崔巍赵晓天[导读] 摘要:在中、低压配电网系统中,存在大量单相、不对称、非线性、冲击性负荷,由于早期电网设计规划的不周,会出现大量单相负荷集中在一相或两相的情况,这些不均衡负荷会使配电系统产生三相不平衡,导致供电系统三相电压、电流的不平衡。
(国网吉林省电力有限公司辽源供电公司吉林辽源 136200)摘要:在中、低压配电网系统中,存在大量单相、不对称、非线性、冲击性负荷,由于早期电网设计规划的不周,会出现大量单相负荷集中在一相或两相的情况,这些不均衡负荷会使配电系统产生三相不平衡,导致供电系统三相电压、电流的不平衡。
关键词:低压电网;三相负荷不平衡;安全供电;降低线损 1导言
近十多年来,跟着电力电子技术的敏捷发展,电力系统中大功率电力电子设备日益增多,在进步了工业设备的功率和自动化水平的一起,也带来了电力系统的无功问题。
因为理性负载的存在,电网中电流与电压发作相位差,然后发作无功功率,形成功率因数低下。
在电网中,还存在别的一类问题三相不平衡。
在中低压配电网中,三相负荷随机改变,三相负荷不平衡会引起旋转电机的附加发热和振动,危及其安全运转和正常出力,引起以负序重量为起动元件的多种保护发作误动作,这对电网安全运转是有严重威胁的。
在中、低压配电网中,三相负荷因为是随机改变的,因而一般是不平衡的。
三相负荷不平衡会导致供电点三相电压、电流的不平衡,进而添加线路损耗,一起会对接在供电点上的电动机运转发作晦气的影响。
2三相负荷不平衡的原因
(1)低压电网三相负载不平衡应增加损失,但已提出。
但在改造前,由于(1)农村低压电网不属于电力公用部分的管道规划,设备线路差,线路损耗非常高,接近于电价上涨,线路损耗程度高,但没有降低损失压力。
(2)农村照明单相负载很小,只有5 - 20%的总电力负荷、低电压整流的原因,更多的是感动的配电变压器负荷中心,低电压的变换电路,改善室内电路,三相负载不平衡等更不必要的元素,它是不可能的引起人们的关注。
因此,实践是非常罕见的,不可能提出具体的方法来调整三相负载。
(2)农业网络的转型是由于大型规划、繁重的任务和紧迫的时间,无法在各方面完成(如规划、调平三相负荷);此外,重建资金是有限的。
为了降低成本,建立了一定数量的单相线,特别是低压支线。
在火灾焊接施工中,有一些相邻的门线,施工人员质量较低,不具备三相负载平衡的概念,或在施工过程中随机单相负荷,或为了不取380伏,单相负荷中心的两根电线。
这在一定程度上加剧了三相不平衡。
(3)运行过程中,许多农村低压电路三相四线,但许多没有注意到三相负载均衡分布的单相,也不知道如何做到平衡,形成一定的相位或两相负荷过大。
另外,有些地方只有单相变电站的负荷和三相四线线路的值,小的停止使用两相线,只使用单相两线供电,加剧了三相不平衡度。
3三相负荷不平衡的损害
3.1配电变压器的影响。
(1)三相负载不平衡将增加变压器损耗:
变压器的损耗包括无载损耗和负载损耗。
在正常情况下,变压器的工作电压不变,即无载损耗为常数。
负载损耗随变压器工作负荷的变化而变化,与负载电流的平方成正比。
当三相负载不平衡时,变压器的负荷损失可以看作是三个单相变压器负载损耗的总和。
根据数学定理,我们知道a、b和c3的个数大于等于0,所以a+b+c大于33的平方根。
当a=b=c时,代数和a+b+c得到最小值:a+b+c = 33平方根ABC。
因此,我们可以假设变压器的三相损耗是:Qa = Ia2R,Qb=Ib2R,Qc=Ic2R,Ia型,Ib和Ic是变压器的二次负载相电流,R是变压器的相电阻。
变压器的损耗表达式为:
Qa+Qb+Qc大于33平方根[(Ia2R)(Ib2R)(Ic2R)] 由此可以看出,当Ia=Ib=Ic时,当Ia=Ib=Ic时,变压器的损耗最小。
变压器损耗:
当变压器三相平衡运行时,即Ia=Ib=I。
当变压器处于最大不平衡状态时,即Ia=3I,Ib=Ic = 0,Qa=(3I)2R=9I2R=3(3I2R);也就是说,最大的不平衡是平衡的三倍。
(2)三相负载不平衡可能导致燃烧变压器的严重后果:当上述不平衡过度时,重载电流过大(增加到3倍),超载,可能导致绕组和变压器油过热。
绕组过热,绝缘老化加速;变压器油过热,导致石油降解,敏捷了变压器绝缘功能,减少变压器瞬态(每8℃温度上升,使用年限将减少一半),甚至烧绕组。
(3)三相负载的不平衡运行将导致变压器零序电流过大,部分金属部件温度升高:根据变压器的三相不平衡负荷运行,零序电流一定会攻击,和内部的存在零序电流互感器,将攻击核心零序磁通,零序磁通在变压器油舱壁或其他金属组件在一个电路。
但当配电变压器设计用于磁性元件、金属部件、磁滞和涡流损耗时,由于发热造成这些部件,变压器的温度异常升高,导致变压器的运行严重。
3.2对高压线路的影响。
(1)增加高压线路损耗:
低压侧三相负载平衡、6 ~ 10千伏高压侧也平衡,每个阶段的高压线路电流,它的功率损耗是:Δi2r P1 = 3 低压电网的不平衡三相负载不平衡将反映在高压侧。
在最大不平衡状态下,高电压对应的相位为1.5i,而另外两个相位为0.75i,功率损耗为:
ΔP2 = 2(I)0.75 - 2 r +(I)1.5 - 2 r = 3.375 I2R = 1.125(3 I2R);高压线路上的功率损耗增加了12.5%。
(2)增加高压线路跳闸频率,减少开关设备寿命:
我们知道高压线通过流动问题来占据适当的份额,原因是电流过大。
低压电网三相不平衡负载可能造成高压一相电流过大,导致高压线路过流断电,导致停电,变电站的开关柜频繁跳闸,使用寿命缩短。
4三相负荷不平衡解决方案
针对现在配网三相负荷不平衡问题,现有解决方案如下:(1)需求加粗分支线单相线的线径,下降线路损耗,改进用电质量;(2)选用在支线处设备单相进步变压器或选用缩短供电半径的办法来解决问题;(3)直接对原有主变压器进行增容;(4)在变压器下端设备无功补偿箱或归纳配电箱;(5)人工投切法;(6)换相开关自动切换线路。
以上几个办法,第四,五种办法用得比较多,第六种是自动操控的新运用,这三种办法的坏处如下:人工手动投切法:电力人员对改造后的线路运转状况进行负荷查询剖析,经过走访记载配电变压器各类负载最大均匀负荷及发展趋势,对配电变压器负荷电流进行经常性跟踪测验,及时发现不平衡超支状况,反应负荷剖析成果的一起,进行相应调整。
该办法操作简单,但调整时需断线、换相,费工费时,且对三相负荷的调整滞后、不精确,只能做到暂时性的三相平衡,实践效果并不抱负。
电容补偿法:电容补偿法是运用无功补偿原理,对三相四线制系统中存在的无功功率形成的三相负荷不平衡状况,经过调整系统的功率因数,到达进步电网电压的意图。
该办法比较适用于台区变压器做无功补偿运用,不适用三相四线制系统中因单相负荷分配不平衡形成的负荷电流不平衡问题。
再者,因为三相四线制系统接入电容负载,虽电容负载自身不发作电力谐波,但电容负载会使电力系统中存在的谐波扩大,假如电容负载和电力系统中的理性负载振动频率与系统固有频率附近,则会形成电力系统谐波无限扩大,导致停电事端的发作。
换相开关法:在负载用户处设备此设备,需求每个用户点都加装设备,作业量大;现大多选用载波办法长途操控投切动作,载波通信其时存在不稳定性;现有大部分换相开关存在短暂性供电间歇,有3-8秒或20毫秒停电间歇,对用户供电影响;若要完成杰出的全局操控,需求树立一套完整的操控系统,需树立一个开关切换后台办理系统,作业量大;设备分布点广且涣散,后期保护困难;因受实践台区地域性的约束,各个台区都不同,实践设备非常费事。
5小结
通过上述三相负荷不平衡自动调平装置的原理机制,以及实际工程应用的效果,PLAI治理三相不平衡面向的对象是电流且实时采集,使得无论负载分布如何、用电时间不一致,只要实时检测的三相电流因负载变化导致不平衡,PLAI都能快速动作平衡电流,大降低了线路损耗。
这就解决了三相不平衡传统解决方法中的客观局限性。