同分母分式的加减习题

合集下载

八年级数学下册 第17章分式 17.2分式的运算 2分式的加减法习题课件

八年级数学下册 第17章分式 17.2分式的运算 2分式的加减法习题课件
【解题探究】
(1)①分式加减的两种运算是:同分母的分式加减和异分母的分
式加减.
②同分母的分式加减方法是:分母不变,分子(fēnzǐ)相加减;异分母的 分式加减方法是:先通分,转化为同分母的分式运算,再按同分母
的分式加减方法运算.
第六页,共二十五页。
(2)按照(1)的探究(tànjiū)计算:
m 1 m1 1 ; m1 m1 m1
第十六页,共二十五页。
【跟踪训练】
4.(2012·临沂中考)化简 (1 4 ) 的a 结果(jiē guǒ)是( )
(A) a2
(B) a a2 a2
a
a2
(C) a2
(D) a
a
a2
【解析】选A. (1 4)a (1 4)a 2
a 2a 2 a 2 a
1a24 a2a2. a a2 a a
第十七页,共二十五页。
bb
b
提示:不成立.
理由是当分式的分子是多项式时,进行减法运算时要加括号.即
acdacdacd.
bb b
b
第五页,共二十五页。
分式的加减运算
【例1】计算:(1)(2012·泉州中考)
m 1 ________; m1 m1
(2 )2 a b 2b b 4 a 2 2 a ; (3 )x 1 3 6 1 2 x x x 2 6 9 .
【解析(jiě xī)m 】 62m 6 m 3
m 3m 2 9m 3m 3m 3 ( m 3 ) 2
m 3 m 31.
答案m :13 m 3 m 3
第二十三页,共二十五页。
5.先化简,再求值:(1)(2012·珠海(zhū hǎi)中考(x)x1x21x)x1,

分式知识点及例题

分式知识点及例题

分式知识点及例题一、分式的概念形如$\dfrac{A}{B}$($A$、$B$是整式,且$B$中含有字母,$B\neq 0$)的式子叫做分式。

其中,$A$叫做分子,$B$叫做分母。

例如:$\dfrac{x}{y}$,$\dfrac{2}{x + 1}$,$\dfrac{3x 1}{x^2 1}$等都是分式。

需要注意的是:(1)分式的分母中必须含有字母。

(2)分母的值不能为零,如果分母的值为零,那么分式就没有意义。

例如,在分式$\dfrac{x}{x 1}$中,当$x 1 = 0$,即$x = 1$时,分式没有意义。

二、分式的基本性质分式的分子与分母同乘(或除以)一个不等于$0$的整式,分式的值不变。

即:$\dfrac{A}{B} =\dfrac{A \times M}{B \times M}$,$\dfrac{A}{B} =\dfrac{A \div M}{B \div M}$($M$为不等于$0$的整式)例如:$\dfrac{x}{y} =\dfrac{x \times 2}{y \times 2} =\dfrac{2x}{2y}$三、分式的约分把一个分式的分子与分母的公因式约去,叫做分式的约分。

约分的关键是确定分子与分母的公因式。

确定公因式的方法:(1)系数:取分子、分母系数的最大公约数。

(2)字母:取分子、分母相同字母因式的最低次幂。

例如:\\begin{align}\dfrac{6xy}{9x^2y} &=\dfrac{2 \times 3 \times x \times y}{3 \times 3 \times x \times x \times y}\\&=\dfrac{2}{3x}\end{align}四、分式的通分把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

通分的关键是确定几个分式的最简公分母。

确定最简公分母的方法:(1)取各分母系数的最小公倍数。

(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式。

分式的加减 课件

分式的加减 课件

你认为
1 1 ? 2a 3a
1 1 ? x 1 x 1
异分母分式的加减法法则:
1、异分母的分式相加减:先通分,变为同分母的 分式,再加减
2、数学表达式:ba
c d
ad bd
bc bd
ad bc bd
例2 计算 :
1
1
(1)2c2d 3cd 2
1
1
(2)2p 3q 2p 3q
(3)x22x-
4
x
1
2
1、判断题:
(1)
a
a
b
a
a
b
a
b
a
a
b
0
(X)
(2) 1 x 1 x x1 x1 x1
(X)
2.下列各式计算正确的是( D )
A. 1 1 1
a b ab
B. m m 2m
a b ab
C. b b 1 1
aa a
D. 1 1 0
ab ba
3、计算:
(1() x
3x 1)2
(
x
3 1)
2
(2) 3y
2x 2y
2xy x 2 xy
课堂小结:
⑴ 分式加减运算的方法思路:
异分母 相加减
通分 转化为
同分母 相加减
分母不变 转化为
分子(整式) 相加减
(2)分子相加减时,如果分子是一个多项式,要将分子 看成一个整体,用括号括起来,再运算。
(3)分式加减运算的结果要约分,化为最简分式 (或整式)。
分式的加减
计算:
(1) 1 8
3 8
(3) 1 5
3 20
(2) 1 8
3 8

沪教版(上海)七年级第一学期10.2《分式运算》知识点与练习

沪教版(上海)七年级第一学期10.2《分式运算》知识点与练习

基本运算:分式的乘法:a c a cb d b d⋅⋅=⋅分式的除法:a c a d a db d bc b c⋅÷=⨯=⋅ 乘方:()n nn nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数) 分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a bc c c±±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bcb d bd bd bd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算。

结果以最简形式存在。

【例1】计算:(1)222934m m m m +-⋅-- (2)2342()()()b a ba b a -⋅-÷-(3)32231(4)()2mn m n ---÷- 【解析】(1)32m m +- (2)58a b - ⑶49128m n -【例2】(1)222256712228x x x x x x x x -+-+÷----(2)22266(3)443x x x x x x x -+-÷+⋅-+-(3)32322423()(1)2111x x x xx x x x x --÷-÷+-++分式运算例题讲解知识要点【解析】(1)21x x ++ (2)22x -- (3)23x -【例3】(1)2222135333x x x x xx x x +--+-++++ (2) 222222222222()()()()()()a b c b c a c a b a c b a b c b c a ------+++-+-+- (3)222424444254a a a a a a a -++-+--+ 【解析】(1)2 (2)1 (3)1【例4】(1)2221()111a a a a a a a ---÷⋅-++ (2)422423216424(2)416844m m m m m m m m m m -+-+÷⨯÷+++--+(3)()()22222222222a b ca b c ab ac a a ab ab a b a b -----+⋅÷-++- (4)abbc ac c ba ac ab bc b a c bc ac ab a c b +---++----+---222 (5)abbc ac c ba c ac bc ab b ac b bc ac ab a c b a +----++----++----222222( a ,b ,c 都不相等) 【解析】(1)22(1)(1)a a +-- (2)1 (3)a b c a b--+ (4)2c a - (5)0 【例5】计算: (1)1122x y x y ------(2)()()()()()()()()()()444444444476415642364316439643641164196427643564++++++++++ 【解析】(1)xyy x+(2)337 【例6】(1)求代数式22135624816x x x x x x x x ++++÷⋅++++的值,其中3x = (2)先化简,再求值:224125(2)2[2()](34)(2)a a a a a a a a+++÷--÷-+,其中4a =。

专题25 分式的运算-重难点题型(举一反三)(学生版)

专题25 分式的运算-重难点题型(举一反三)(学生版)

专题5.2 分式的运算-重难点题型【知识点1 分式的加减】同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

①同分母分式的加减:a b a bc c c±±=; ②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=。

注:不论是分式的哪种运算,都要先进行因式分解。

【题型1 分式的加减】【例1】(2021春•盐城月考)化简: (1)a a−b+b b−a; (2)x 2−4x 2−4x+4−4x x 2−2x.【变式1-1】当m >﹣3时,比较m+2m+3与m+3m+4的大小.【变式1-2】(2021•乐山)已知A x−1−B 2−x=2x−6(x−1)(x−2),求A 、B 的值.【变式1-3】(2021春•河南期末)若a >0,M =aa+1,N =a+1a+2 (1)当a =1时,M =12,N =23;当a =3时,M =34,N =45;(2)猜想M 与N 的大小关系,并证明你的猜想.【题型2 分式与整式的混合运算 】 【例2】(2021•嘉兴一模)计算x 2x+2−x +2时,两位同学的解法如下:解法一:x 2x+2−x +2=x 2x+2−x+21=x 2x+2−(x+2)2x+2解法二:x 2x+2−x +2=1x+2[x 2−(x −2)(x +2)] (1)判断:两位同学的解题过程有无计算错误?若有误,请在错误处打“×”. (2)请选择一种你喜欢的方法,完成解答.【变式2-1】(2021•梧州)计算:(x ﹣2)2﹣x (x ﹣1)+x 3−4x 2x 2.【变式2-2】(2021秋•昌平区期中)阅读下列材料,然后回答问题.我们知道,假分数可以化为整数与真分数的和的形式.例如:32=1+12,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:x+1x−2,x 2x+2这样的分式是假分式;1x−2,xx 2−1这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:x+1x−2=(x−2)+3x−2=1+3x−2,x 2x+2=(x+2)(x−2)+4x+2=x −2+4x+2.解决下列问题: (1)将分式x−2x+3化为整式与真分式的和的形式;(2)如果分式x 2+2x x+3的值为整数,求x 的整数值.【变式2-3】(2021春•玄武区期中)著名数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则.”《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂;从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.阅读材料:在处理分数和分式的问题时,有时由于分子大于分母,或分子的次数高于分母的次数,在实际运算时难度较大,这时,我们可将分数(分式)拆分成一个整数(整式)与一个真分数(分式)的和(差)的形式,通过对它的简单分析来解决问题,我们称这种方法为分离常数法,此法在处理分式或整除问题时颇为有效. 将分式分离常数可类比假分数变形带分数的方法进行,如:x 2−2x+3x−1=x(x−1)+x−2x+3x−1=x +−(x−1)+2x−1=x ﹣1+2x−1,这样,分式就拆分成一个分式2x−1与一个整式x ﹣1的和的形式. 根据以上阅读材料,解答下列问题: (1)假分式x+6x+4可化为带分式 形式;(2)利用分离常数法,求分式2x 2+5x 2+1的取值范围;(3)若分式5x 2+9x−3x+2拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m ﹣11+1n−6,则m 2+n 2+mn 的最小值为 .【知识点2 分式的混合运算】 1.乘法法则:db ca d cb a ⋅⋅=⋅。

同分母分式的加减运算

同分母分式的加减运算

例2 通分
1 1 与 2
2x 3y
2 a 与 b
ab ab
解:1 最简公分母为6xy
1 13y 3y , 2 22x 4x 2x 2x 3y 6xy 3y 3y 2x 6xy
2 最简公分母是a ba b
a ab

aa b a ba b,
问题2:想一想,异分母的分数如何加减?
如 1 1 应该怎样计算? 23
【异分母分数加减法的法则】
通分,把异分母分数化为同分母分数。
问题3:想一想,异分母的分式如何进行加减?

11 ab
应该怎样计算?
异分母的分式
转化 通分
同分母的分式
异分母分式通分时,通常取最简单的公分母
(简称最简公分母)作为它们的共同分母。

xy x y
;(

× (6) x 3 2 x 1 .
3xy
3xy
3xy


2、 计算:
1 y x
xy xy
yx x y
1
2 3x x y
2x y 2x y
3x x y
2x y
2x y 1 2x y
3 x 2 x 1 x 3 4 a a
x2
x2
2
a c3 a2 b2

b c3 a2 b2
a c3 b c3

a2 b2
ab
a2 b2
1 ab
同分母分式加减的基本步骤: 1、分母不变,把分子相加减。 (1)如果分式的分子是多项式,一定要加上括 号; (2)如果是分子式单项式,可以不加括号。 2、分子相加减时,应先去括号,再合并同类项; 3、最后的结果,应化为最简分式或者整式。

新人教版八年级(上)数学第十五章分式知识点和典型例习题

新人教版八年级(上)数学第十五章分式知识点和典型例习题

新人教版八年级(上)数学第十五章分式知识点和典型例习题新人教版八年级(上)数学第十五章分式知识点和典型练习【知识网络】【思维方式】1。

转变观念转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等.2.建模思想本章中常用的数学方法包括:因式分解、一般除法、除法归约、分母去除等。

运用数学知识解决实际问题时,首先要建立简单的数学模型,通过数学模型解决实际问题,并经历了“实际问题-分数阶方程模型-求解-解释解的合理性”的数学过程,了解分数阶方程的模型思想对培养解决实际问题的数学建模思想具有重要意义。

3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一课分数运算【知识要点】1.分式的概念以及基本性质;2.与分数运算相关的算法3分数的减少和评估(一般分数和减少)4幂算法【主要公式】1.同分母加减法则:bcb?ca?a?a?a?0?2.不同分母的加减法则:ba?dc?bcac?daac?bc?daac?a?0,c?0?;3.分式的乘法与除法:ba?dc?bdac,ba?cbdbdd?a?c?ac4.同基幂的加减算法:实际上,它是将相似的5项同基幂的乘法和除法合并;A.m●an=am+n;am÷an=am-n6.产品和功率的功率:(AB)=ambn,(上午)Nm=amn7.负指数幂:a-p=1apa0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2(一)、分式定义及有关题型问题类型1:测试分数的定义1【例1】下列代数式中:x?,12x?y,a?bx2?y2x?ya?b,x?y,x?y,是分式的有:.问题类型2:检查分数的有意义条件【例2】当x有何值时,下列分式有意义(1)x?4x?4(2)3x26?x1x2?2(3)x2?1(4)|x|?3(5)x?1问题类型3:检查分数值为0的条件【例3】当x取何值时,下列分式的值为0.(1)x?1x|?23x?3(2)|x2?4(3)x2?2倍?x2?5倍?六题型四:考查分式的值为正、负的条件[例4](1)当x是什么值时,分数48?x为正;(2)当x为何值时,分式5.x3?(x?1)2为负;(3)当x为何值时,分式十、二x?3是一种非负数练习:1.当x取何值时,下列分式有意义:(1)16|x|?3(2)3?x1(x?1)2?1(3)1.1x2。

(附七套八下期末试卷)北师大版八下数学优秀教案:5.3 第1课时 同分母分式的加减

(附七套八下期末试卷)北师大版八下数学优秀教案:5.3 第1课时 同分母分式的加减

5.3 分式的加减法第1课时 同分母分式的加减1.了解并掌握同分母分式的加减法则;2.会用同分母分式的加减法则进行同分母分式加减运算.(重点,难点)一、情境导入大约公元250年前后,古希腊数学家丢番图在形容如何将42表示成两个数的平方和时,得出了一组答案,这两个数都是分母为b ,分子比是4∶3的分数.你能根据这些条件,求出这两个数来吗?二、合作探究探究点一:同分母分式的加减运算计算:(1)3a -2b 3ab -3a +3b 3ab ;(2)1a -1+-a 2a -1; (3)x -2x -1-2x -3x -1. 解析:根据同分母分式加减法的法则,把分子相加减,分母不变.注意(1),(3)两小题属于同分母分式的减法运算,减式的分子要变号.解:(1)原式=3a -2b -3a -3b 3ab =-5b 3ab =-53a ;(2)原式=1-a 2a -1=-(a +1)(a -1)a -1=-a-1;(3)原式=x -2-2x +3x -1=-x +1x -1=-1.方法总结:同分母分式相加减,分母不变,分子相加减,最后结果要化为最简分式或整式.探究点二:分式的符号法则计算:(1)2x 2-3y 2x -y +x 2-2y 2y -x ;(2)2a +3b b -a +2b a -b -3b b -a.解析:(1)先把第二个分式的分母y -x 化为-(x -y),再把分子相加减,分母不变;(2)先把第二个分式的分母a -b 化为-(b -a),再把分子相加减,分母不变.解:(1)原式=2x 2-3y 2x -y -x 2-2y2x -y=2x 2-3y 2-(x 2-2y 2)x -y=x 2-y 2x -y =(x +y )(x -y )x -y =x +y ; (2)原式=2a +3b b -a -2b b -a -3b b -a=2a +3b -2b -3bb -a=2a -2b b -a =-2(b -a )b -a=-2. 方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:f g ±h g =f ±hg .2.分式的符号法则:f g =-f -g ,-f g =f -g =-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.八年级下学期数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档