传感器技术及应用(辅导资料)

传感器技术及应用(辅导资料)
传感器技术及应用(辅导资料)

《传感器技术及应用》复习资料

思考题与习题

第3章应变传感器

3.1 电阻应变式传感器

3.1.1 应变片的结构和类型

3.1.2 常用的应变片

3.2 薄膜应变电阻及传感器

3.2.1 薄膜分类

3.2.2 薄膜的工作原理

3.2.3 薄膜应变传感器的特点

3.3 电阻应变传感器使用中应注意的一些问题

思考题与习题

第4章磁敏传感器

4.1 磁敏传感器的物理基础——霍尔、磁阻、形状效应

4.1.1 基础知识

4.1.2 霍尔效应

4.1.3 磁阻效应

4.1.4 形状效应

4.2 霍尔元件

4.2.1 霍尔元件的工作原理

4.2.2 霍尔元件的结构

4.2.3 基本电路

4.2.4 电磁特性

4.2.5 误差分析及误差补偿

4.3 磁阻元件

4.3.1 长方形磁阻元件

4.3.2 科尔宾元件

4.3.3 平面电极元件

4.3.4 InSb—NiSb共晶磁阻元件

4.3.5 曲折形磁阻元件

4.3.6 磁阻元件的温度补偿

4.4 磁敏二极管

4.4.1 磁敏二极管的结构

4.4.2 磁敏二极管的工作原理

4.4.3 磁敏二极管的特性

4.4.4 磁敏二极管的补偿技术

4.5 磁敏三极管

4.5.1 磁敏三极管的结构

4.5.2 磁敏三极管的工作原理

4.5.3 磁敏三极管的特性4.5.4 温度补偿技术

4.6 磁敏传感器的应用

4.6.1 霍尔元件的应用

4.6.2 磁阻元件的应用

思考题与习题

第5章压电传感器

5.1 压电效应

5.1.1 石英晶体的压电效应5.1.2 压电常数

5.1 _3压电陶瓷的压电效应

5.2 压电材料

5.2.1 压电晶体

5.2.2 压电陶瓷

5.2.3 新型压电材料

5.3 等效电路与测量电路

5.3.1 等效电路

5.3.2 测量电路

5.4 压电传感器及其应用

5.4.1 压电传感器中压电片的连接5.4.2 压电式力传感器

5.4.3 压电式压力传感器5.4.4 压电式加速度传感器5.4.5 应用实例

思考题与习题

第6章光纤传感器

6.1 基础知识

6.1.1 光纤的结构

6.1.2 光纤的种类

6.1.3 光纤的传光原理

6.1.4 光纤的特性

6.1.5 光纤的耦合

6.2 光纤传感器的分类及构成6.2.1 分类

6.2.2 构成部件

6.3 功能型光纤传感器举例6.3.1 相位调制型光纤传感器6.3.2 光强调制型光纤传感器6.3.3 偏振态调制型光纤传感器6.4 非功能型光纤传感器举例6.4.1 传输光强调制型光纤传感器6.4.2 反射光强调制型光纤传感器6.4.3 频率调制型光纤传感器

6.4.4 光纤液位传感器

思考题与习题

第7章光栅传感器

7.1 光栅基础

7.1.1 光栅的分类及结构7.1.2 莫尔条纹的原理7.1.3 莫尔条纹的特点

7.2 光栅传感器的工作原理7.2.1 光电转换原理

7.2.2 莫尔条纹测量位移的原理7.2.3 辨向原理

7.3 莫尔条纹细分技术

7.3.1 细分方法

7.3.2 光电元件直接细分7.3.3 CCD直接细分

7.3.4 光栅传感器的误差

7.4 常用光学系统

7.4.1 透射直读式光路7.4.2 反射直读式光路7.4.3 反射积分式光路

思考题与习题

第8章光电传感器

8.1 光电传感器的基本效应8.1.1 生导体的粒子特性8.1.2 光电效应

8.2 外光电效应光电元件8.2.1 光电管

8.2.2 光电倍增管

8.3 光电导效应及光电元件8.3.1 光敏电阻的结构及原理8.3.2 光敏电阻的特性

8.4 光电伏特效应及光电元件8.4.1 光电导结型光电元件8.4.2 光电伏特型光电元件8.5 CCD图像传感器

8.6 应用光路

8.6.1 反射式

8.6.2 透射式

8.6.3 线纹瞄准用光电传感器8.6.4 脉冲式光电传感器

思考题与习题

第9章气、湿敏传感器

9.1 气敏传感器

9.1.1 半导体气敏元件的分类及必备条件

9.1.2 表面控制型电阻式半导体气敏元件

……

第10章智能传感器

第11章传感器应用技术

第12章传感器的选择与使用

第1章传感器的特性

传感器(transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,

按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。传感器广泛应用于社会发展及人类生活的各个领域,如工业自动化、农业现代化、航天技术、军事工程、机器人技术、资源开发、海洋探测、环境

监测、安全保卫、医疗诊断、交通运输、家用电器等。

1.1传感器的组成与分类

传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。其包含以下几个方面的含义:1.传感器是测量装置,能完成检测任务2.它的输入量是某一被测量,可能是物理量,也可能是化学量、生物量等3.输出量是某种物理量,这种量要便于传输、转换、处理、显示等等,这种量可以是气、光、电量,但主要是电量。4.输入输出有对应关系,且应有一定的精确度。

一、传感器的组成

传感器一般由敏感元件、转换元件、转换电路三部分组成。其在传感电路中的表现如图1.1所示。

图1.1 传感电路

敏感元件(Sensitive element):直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。转换元件(Transduction element):以敏感元件的输出为输入,把输入转换成电路参数。转换电路(Transduction circuit):上述电路参数接入转换电路,便可转换成电量输出。实际上,有些传感器很简单,仅由一个敏感元件(兼作转换元件)

组成,它感受被测量时直接输出电量。如热电偶。有些传感器由敏感元件和转换元件组成,没有转换电路。有些传感器,转换元件不止一个,要经过若干次转换。

二、传感器的分类

目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:

按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。

按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。

关于传感器的分类:

1.按被测物理量分:如:力,压力,位移,温度,角度传感器等;

2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等;

3.按照传感器转换能量的方式分:

(1)能量转换型:如:压电式、热电偶、光电式传感器等;

(2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等;

4.按照传感器工作机理分:

(1)结构型:如:电感式、电容式传感器等;

(2)物性型:如:压电式、光电式、各种半导体式传感器等;

5.按照传感器输出信号的形式分:

(1)模拟式:传感器输出为模拟电压量;

(2)数字式:传感器输出为数字量,如:编码器式传感器。

传感器的分类经整理如表1.1.

1.2传感器的基本特性

传感器特性分为静态特性和动态特性。

(一)传感器的静态特性

传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力、迟滞、漂移、测量范围、精度、稳定性和阈值。

(1)传感器线性度。通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。

拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。

(2)传感器的灵敏度。灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。

它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。

灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm 时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。

当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。

提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。

(3)迟滞。传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间,其输入输出特性曲线不重合的现象称为迟滞。对于同一大小的输入信号,传感器的正反输出信号不相等,这个差值称为迟滞差值。

(4)传感器的重复性。重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得线性曲线不一致的程度。

(5)漂移。传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间变化,此现象称为漂移。产生漂移的原因有两个方面:一是传感器自身结构参数;二是周围环境(如温度、湿度等)

(6)传感器的分辨力。分辨力是指传感器可能感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。

通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。

(二)传感器的动态特性

所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。

传感器的动态特性与其输入信号的变化形式密切相关,在研究传感器动态特性时,通常是根据不同输入信号的变化规律来考察传感器响应的。实际传感器输入信号随时间变化

传感器技术及应用-教案及习题

第一章引言 ?教学要求 1.掌握传感器的基本概念。 2.掌握传感器的组成框图(p2,图1.1)。 3.掌握传感器的静态性能和动态性能。 4.了解传感器的课程性质和课程任务。 5.了解传感器的分类和发展趋势。 ?教学内容 1.1 传感器的发展和作用 了解。 1.2 什么是传感器 传感器定义:能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。顾名思义,传感器的功能是一感二传,即感受被测信息,并传送出去。根据传感器的功能要求,它一般应由三部分组成,即:敏感元件、转换元件、转换电路。 1.3 传感器的分类 1.根据被测物理量分类 速度传感器、位移传感器、加速度传感器、温度传感器、压力传感器等。 2.按工作原理分类 应变式、电压式、电容式、涡流式、差动变压器式等。 3.按能量的传递方式分类 有源的和无源的传感器。 1.4 传感器的性能和评价 1.4.1 传感器的静态特性 传感器的静态特性是指传感器的输入信号不随时间变化或变化非常缓慢时,所表现出来的输出响应特性,称静态响应特性。通常用来描述静态特性的指标有:

测量范围、精度、灵敏度、稳定性、非线性度、重复性、灵敏阈和分辨力、迟滞。 ? 稳定性 传感器的稳定性,一是指传感器测量输出值在一段时间内的变化,即用所谓的稳定度表示;二是指在传感器外部环境和工作条件变化时而引起输出值的变化,即用影响量来表示。 ? 灵敏度 传感器灵敏度是表示传感器的输入增量与由它引起的输出增量之间的函数关系。更确切地说,灵敏度k等于传感器输出增量与被测量增量之比,是传感器在稳态输出输入特性曲线上各点的斜率。用公式表示为: ? 灵敏阈与分辨力 灵敏阈是指传感器能够区分出的最小读数变化量。 对模拟式仪表,当输入量连续变化时,输出量只做阶梯变化,则分辨力就是输出量的每个阶梯所代表的输入量的大小。对于数字式仪表,灵敏度阈就是分辨力,即仪表指示数字值的最后一位数字所代表的值。 从物理含义看,灵敏度是广义的增益,而灵敏度阈则是死区或不灵敏度。 ? 迟滞 传感器在正(输入量增大)反(输入量减小)行程中——输入特性曲线不重合的程度称为迟滞。 ? 线性度 传感器的输出——输入校准曲线与理论拟合直线之间的最大偏差与传感器满量程输出之比,称为该传感器的“非线性误差”或称“线性度”,也称“非线性度”。 1.4.2传感器的动态特性 动态特性是指传感器对于随时间变化的输入量的响应特性。只要输入量是时间的函数,则其输出量必将是时间的函数。研究动态特性的标准输入形式有三种,即正弦、阶跃和线性,而经常使用的是前两种。 ? 零阶传感器动态特性指标

传感器原理及应用期末考试试卷(含答案)

传感器原理及应用 一、单项选择题(每题2分.共40分) 1、热电偶的最基本组成部分是()。 A、热电极 B、保护管 C、绝缘管 D、接线盒 2、为了减小热电偶测温时的测量误差,需要进行的温度补偿方法不包括( )。 A、补偿导线法 B、电桥补偿法 C、冷端恒温法 D、差动放大法 3、热电偶测量温度时( )。 A、需加正向电压 B、需加反向电压 C、加正向、反向电压都可以 D、不需加电压 4、在实际的热电偶测温应用中,引用测量仪表而不影响测量结果是利用了热电偶的哪 个基本定律( )。 A、中间导体定律 B、中间温度定律 C、标准电极定律 D、均质导体定律 5、要形成测温热电偶的下列哪个条件可以不要()。 A、必须使用两种不同的金属材料; B、热电偶的两端温度必须不同; C、热电偶的冷端温度一定要是零; D、热电偶的冷端温度没有固定要求。 6、下列关于测温传感器的选择中合适的是()。 A、要想快速测温,应该选用利用PN结形成的集成温度传感器; B、要想快速测温,应该选用热电偶温度传感器; C、要想快速测温,应该选用热电阻式温度传感器; D、没有固定要求。 7、用热电阻测温时,热电阻在电桥中采用三线制接法的目的是( )。 A、接线方便 B、减小引线电阻变化产生的测量误差 C、减小桥路中其他电阻对热电阻的影响 D、减小桥路中电源对热电阻的影响 8、在分析热电偶直接插入热水中测温过程中,我们得出一阶传感器的实例,其中用到了()。 A、动量守恒; B、能量守恒; C、机械能守恒; D、电荷量守恒; 9、下列光电器件中,基于光电导效应工作的是( )。 A、光电管 B、光敏电阻 C、光电倍增管 D、光电池

传感器技术与应用第3版习题答案

《传感器技术与应用第3版》习题参考答案 习题1 1.什么叫传感器?它由哪几部分组成? 答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。传感器通常由敏感元件和转换元件组成。其中敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。 2. 传感器在自动测控系统中起什么作用? 答:自动检测和自动控制技术是人们对事物的规律定性了解、定量分析预期效果所从事的一系列技术措施。自动测控系统是完成这一系列技术措施之一的装置。一个完整的自动测控系统,一般由传感器、测量电路、显示记录装置或调节执行装置、电源四部分组成。传感器的作用是对通常是非电量的原始信息进行精确可靠的捕获和转换为电量,提供给测量电路处理。 3. 传感器分类有哪几种?各有什么优、缺点? 答:传感器有许多分类方法,但常用的分类方法有两种,一种是按被测输入量来分,如温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等;另一种是按传感器的工作原理来分,如电学式传感器、磁学式传感器、光电式传感器、电势型传感器、电荷传感器、半导体传感器、谐振式传感器、电化学式传感器等。还有按能量的关系分类,即将传感器分为有源传感器和无源传感器;按输出信号的性质分类,即将传感器分为模拟式传感器和数字式传感器。 按被测输入量分类的优点是比较明确地表达了传感器的用途,便于使用者根据其用途选用;缺点是没有区分每种传感器在转换机理上有何共性和差异,不便使用者掌握其基本原理及分析方法。 按工作原理分类的优点是对传感器的工作原理比较清楚,有利于专业人员对传感器的深入研究分析;缺点是不便于使用者根据用途选用。 4. 什么是传感器的静态特性?它由哪些技术指标描述? 答:传感器测量静态量时表现的输入、输出量的对应关系为静态特性。它有线性度、灵敏度、重复性、迟滞现象、分辨力、稳定性、漂移等技术指标。 5. 为什么传感器要有良好的动态特性?什么是阶跃响应法和频率响应法? 答:在动态(快速变化)的输入信号情况下,要求传感器能迅速准确地响应和再现被测信号的变化。因此,需要传感器具有良好的动态特性。 测试和检验传感器的动态特性有瞬态响应法和频率响应法。阶跃响应法即瞬态响应法,是给传感器输入一个单位阶跃函数的被测量,测量其输出特性。动态特性优良的传感器的输出特性应该上升沿陡,顶部平直。 频率响应法是给传感器输入各种频率不同而幅值相同,初相位为零的正弦函数的被测量,测量其输出的正弦函数输出量的幅值和相位与频率的关系。动态特性优良的传感器,输出的正弦函数输出量的幅值对于各频率是相同的,相位与各频率成线性关系。

《传感器原理与应用》综合练习答案(期末考试)

《传感器原理与应用》综合练习 一、填空题 1.热电偶中热电势的大小仅与金属的性质、接触点温度有关,而与热电极尺寸、形状及温度分布无关。 2.按热电偶本身结构划分,有普通热电偶、铠装热电偶、微型热电偶。3.热电偶冷端电桥补偿电路中,当冷端温度变化时,由不平衡电桥提供一个电位差随冷端温度变化的附加电势,使热电偶回路的输出不随冷端温度的变化而改变,达到自动补偿的目的。 4.硒光电池的光谱峰值与人类相近,它的入射光波长与人类正常视觉的也相近,因而应用较广。 5.硅光电池的光电特性中,光照度与其短路电流呈线性关系。 6.压电式传感器的工作原理是基于某些介质材料的压电效应。 7.压电陶瓷是人工制造的多晶体,是由无数细微的电畴组成。电畴具有自己极化方向。经过极化过的压电陶瓷才具有压电效应。 8.压电陶瓷的压电常数比石英晶体大得多。但石英晶体具有很多优点,尤其是其它压电材料无法比的。 9.压电式传感器具有体积小、结构简单等优点,但不能测量频率小的被测量。特别不能测量静态量。 10.霍尔效应是导体中的载流子在磁场中受洛伦茨力作用发生位移的结果。 11.霍尔元件是N型半导体制成扁平长方体,扁平边缘的两对侧面各引出一对电极。一对叫激励电极用于引入激励电流;另一对叫霍尔电极,用于引出霍尔电势。 12.减小霍尔元件温度误差的措施有:(1)利用输入回路的串联电阻减小由输入电阻随温度变化;引起的误差。(2)激励电极采用恒流源,减小由于灵敏度随温度变化引起的误差。 13.霍尔式传感器基本上包括两部分:一部分是弹性元件,将感受的非电量转换成磁物理量的变化;另一部分是霍尔元件和测量电路。 14.磁电式传感器是利用霍尔效应原理将磁参量转换成感应电动势信号输出。 15.变磁通磁电式传感器,通常将齿轮的齿(槽)作为磁路的一部分。当齿轮转动时,引起磁路中,线圈感应电动势输出。 16.热敏电阻正是利用半导体的数目随着温度变化而变化的特性制成的热敏感元件。 17.热敏电阻与金属热电阻的差别在于,它是利用半导体的电阻随温度变化阻值变化的特点制成的一种热敏元件。 18.热敏电阻的阻值与温度之间的关系称为热敏电阻的。它是热敏电阻测温的基础。 19.热敏电阻的基本类型有:负温度系数缓变型、正温度系数剧变型、临界温度型。 20.正温度系数剧变型和临界温度型热敏电阻不能用于温度范围的温度控制,而在某一温度范围内的温度控制中却是十分优良的。 21.正温度系数剧变型和临界温度型热敏电阻属于型,适用于温度监测和温度控制。

《传感器技术与应用》期中考试题(含答案)

一、填空题:(每空2分,共20分) 1、传感器的动态特性越好,则能测的信号频率越宽(宽、窄)。 2、已知一米尺的修正值为-2mm,现用该米尺测得某物体长度为32.5cm,则该物体长度为 32.3 。 3、测50mm的物体,测得结果为50.02mm,则相对误差为 0.04% 。 4、相敏检波电路与差动变压器配合使用是为了辨别方向。 5、电阻式传感器是将被测非电量转换为电阻的变化的装置。 6、在差动变压器的实验中,观察到的现象是在一定范围内呈线性。 7、在某些晶体物质的极化方向上施加电场时,这些晶体物质会产生变形,这种现象称为逆压电效应。 8、电容式传感器存在的边缘效应可以通过初始电容量c0 或 加装等位环来减小。 9、差动变压器是属于信号调制中的调幅类型(调幅、调频、调相)。 二、判断题(正确的打√,错误的打×。每小题1分,共10分) 1、差动结构从根本上解决了非线性误差的问题。( x ) 2、为了使压电陶瓷具有压电效应,必须在一定温度下通过强电场作用对其作极化处理。( Y ) 3、变间隙型的电感式传感器初始间隙越大,灵敏度越低,非线性误差越小,量程越大。( Y ) 4、变面积型的电容式传感器输出与输入之间的关系是线性的。( Y ) 5、压电式传感器只能进行动态测量。( Y ) 6、随机误差可以通过系统校正来减小或消除。( X ) 7、求和取平均是为了减小系统误差。( X )

8、电涡流式传感器不仅可以用于测量金属,还可以测量非金属。( X ) 9、石英晶体沿任意方向施加力的作用都会产生压电效应。( X ) 10、电容传感器采用运算放大器测量电路则从原理上解决了单个变间隙型电容传感器输出特性非线性问题。( Y ) 三、计算题(每小题10分,共50分) 1、将一电阻应变片接入电桥电路中,已知电阻应变片在无应变时的电阻值为80欧,R3=40欧,R4=100欧。运算放大器的电压增益为20。问R2选取多大合适?如果该电阻应变片的灵敏度为4,受力的作用后发生变形其应变为2×10-3,电阻值变化为多少?受到该力的作用后输出电压U为多少? U

传感器原理及应用试题库(已做)

一:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件, 测量电路三个部分组成。 2.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计 和箔式应变计结构。 3.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器。 4.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。 5.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。最常用的是最小二乘法线性度。 6.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。 7.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿 法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 8.应变式传感器一般是由电阻应变片和测量电路两部分组成。 9.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 10.国家标准GB 7665--87对传感器下的定义是:能够感受规定的被测量并按照 一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。 11.传感器按输出量是模拟量还是数字量,可分为模拟量传感器和数字量传感器 =输出量的变化值/输入量的变化12.传感器静态特性的灵敏度用公式表示为:k (x) 值=△y/△x 13.应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变; 蠕变小;机械滞后小;耐疲劳性好;具有足够的稳定性能;对弹性元件和应变计不产生化学腐蚀作用;有适当的储存期;应有较大的温度适用范围。14.根据传感器感知外界信息所依据的基本校园,可以将传感器分成三大类: 物理传感器,化学传感器,生物传感器。

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

传感器原理及应用期末复习资料精装版

信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 1.什么是传感器? 广义:传感器是一种能把特定的信息按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准:定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 2.传感器由哪几个部分组成?分别起到什么作用? 传感器一般由敏感元件、转换原件和基本电路组成。敏感元件感受被测量,转换原件将其响应的被测量转换成电参量,基本电路把电参量接入电路转换成电量。传感器的核心部分是转换原件,转换原件决定传感器的工作原理。 3.传感器的总体发展趋势是什么?传感器的应用情况。 传感器正从传统的分立式朝着集成化、数字化、多功能化,微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。未来还会有更新的材料,如纳米材料,更有利于传感器的小型化。发展趋势主要体现在这几个方面:发展、利用新效应;开发新材料;提高传感器性能和检测范围;微型化与微功耗;集成化与多功能化;传感器的智能化;传感器的数字化和网络化。 4.了解传感器的分类方法。所学的传感器分别属于哪一类? 按传感器检测的范畴分类:物理量传感器、化学量传感器、生物量传感器 按传感器的输出信号分类:模拟传感器、数字传感器 按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器 按传感器的功能分类:单功能传感器、多功能传感器、智能传感器 按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器 电化学传感器 按传感器的能源分类:有源传感器、无源传感器 国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传感器 含12个小类:力学量、热学量、光学量、磁学量、电学量、声学量、射线、气体、离子、温度传感器以及生化量、生理量传感器。 1.传感器的性能参数反映了传感器的输入输出关系 2.传感器的静态特性是什么?由哪些性能指标描述?主要性能参数的意义是什么 1线性度:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,线性度RL是表征实际特性与拟合直线不吻合的参数 拟合方法:理论线性度(理论拟合)、c、端基线性度(端点连线拟合)d、独立线性度(端点平移) 最小二乘法线性度 2迟滞:传感器在正、反行程期间输入、输出曲线不重合的现象称迟滞(迟环)。 3重复性:传感器输入量按同一方向作多次测量时输出特性不一致的程度。 4灵敏度: 在稳定条件下输出微小增量与输入微小增量的比值 传感器输出曲线的斜率就是其灵敏度。灵敏度S 反映输入变量能引起的输出变化量 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。 5分辨率和阈值:分辨率——传感器能够检测到的最小输入增量; 阈值——输入小到某种程度输出不再变化的值 6 漂移是指传感器的输入被测量不变,而其输出量却发生了改变。包括零点漂移与灵敏度漂移, 7稳定性:传感器在一较长时间内保持性能参数的能力 3.传递函数的定义是什么? 初始条件为零时输出的拉氏变换与输入的拉氏变换之比。 4.电涡流传感器有较好的线性和灵敏度

传感器分类及常见传感器的应用

机电一体化技术常用传感器及其原理 班级:机械设计制造及其自动化姓名: 学号:

一、传感器的分类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。 2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参

数的测量。

3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。 另外,根据传感器对信号的检测转换过程,传感器可划分为直接转换型传感器和间接转换型传感器两大类。前者是把输入给传感器的非电量一次性的变换为电信号输出,如光

传感器技术与应用试题及答案(二)

传感器技术与应用试题及答案(二) 传感器技术与应用试题及答案(二) 题号一、选择题(本大题共20小题,每小题2分,共40分) 1、以下不属于我国电工仪表中常用的模拟仪表精度等级的是( ) A 0.1 B 0.2 C 5 D 2 2、( )又可分为累进性的、周期性的和按复杂规律变化的几种类型。 A 系统误差 B 变值系统误差 C 恒值系统误差 D 随机误差 3、改变电感传感器的引线电缆后,( ) A不必对整个仪器重新标定 B 必须对整个仪器重新调零 C 必须对整个仪器重新标定 D不必对整个仪器重新调零 4、在电容传感器中,若采用调频法测量转换电路,则电路中( )。 A、电容和电感均为变量 B、电容是变量,电感保持不变 C、电感是变量,电容保持不变 D、电容和电感均保持

不变 5、在两片间隙为1mm的两块平行极板的间隙中插入( ),可测得最大的容量。 A、塑料薄膜 B、干的纸 C、湿的纸 D、玻璃薄片 6、热电阻测量转换电路采用三线制是为了( ) 。 A、提高测量灵敏度 B、减小非线性误差 C、提高电磁兼容性 D、减小引线电阻的影响 7、当石英晶体受压时,电荷产生在( ) 。 A、Z面上 B、X面上 C、Y面上 D、X、Y、Z面上 8、汽车衡所用的测力弹性敏感元件是( )。 A、悬臂梁 B、弹簧管 C、实心轴 D、圆环 9、在热电偶测温回路中经常使用补偿导线的最主要的目的是( )。 A、补偿热电偶冷端热电势的损失 B、起冷端温度补偿作用 C、将热电偶冷端延长到远离高温区的地方 D、提高灵敏度 10、在仿型机床当中利用电感式传感器来检测工件尺寸,该加工检测装置是采了( )测量方法。 A、微差式 B、零位式 C、偏差式 D、零点式 11、测得某检测仪表的输入信号中,有用信号为20毫伏,干扰电压也为20毫伏, 则此时的信噪比为( )。

传感器技术与应用题库

传感器技术与应用题库 传感器技术与应用 知识储备 练习题 0-1. 传感器特性在检测系统中起到什么作用, 0-2(传感器的性能参数反映了传感器的什么关系, 静态参数有哪些,各种参数代表什么意义, 动态参数有那些,应如何选择, 0-3(解释下列名词术语: 1)敏感元件;2)传感器; 3)信号调理器;4)变送器。 0-4(根据电容传感器的工作原理说明它的分类,电容传感器能 够测量哪些物理参量, 0-5(通常传感器由,,,,,,,,,,,,,,,,,,,部分组成, 是能把外界,,,,,,,,转换成,,,,,,,,器件和装置。 0-6(测量系统的静态特性指标主要有哪些, - 1 - 传感器技术与应用 学习情境1 温度的检测 练习题 1-1(什么是热电效应,热电势由哪几部分组成, 1-2(热电偶产生热电势的原因和条件是什么,

1-3(描述热电偶的四个基本定律和它们的实用价值。 1-4(为什么热电偶需要冷端补偿,冷端补偿有哪几种方法, 1-5(用镍铬-镍硅(K型)热电偶测量温度,已知冷端温度为40?, 用高精度毫伏表测得这时的热电动势为29(188mv,求被 测点的温度。 1-6(用镍铬-镍硅(K型)热电偶测量炉温,已知热端温度为 800?,冷端温度为50?,为了进行炉温的调节及显示, 要将热电偶产生的热电动势信号送到仪表室,仪表室的温 度为20?,分别求冷端用铜导线与用补偿导线连接到仪表 测得的炉温,并比较结果。 1-7(简述热电阻测温原理,常用热电阻有哪些,它们的性能特点是什么, 1-8(热敏电阻有哪几种类型,简述它们的特点及用途。 1-9(描述常用的三种温度传感器的异同点。 1-10(联系实际,描述一个测温系统。指出它的测温范围、使用 的器件。并说出为什么使用该测温器件, 1-11(简要描述使用的测温传感器的原理、接线和注意事项等。 - 2 - 传感器技术与应用 学习情境2 气体的检测 练习题 2-1(简述气敏电阻的组成、工作原理及特性。 2-2(为什么气敏电阻需要加热使用, 2-3(如下图所示为可燃气体报警器电路图, (1)试分析其工作原理,并选用合适的元件参数。

传感器与应用试题库

《传感器与应用》 一、填空题(每空1分,共25分) 1.传感器的灵敏度是指稳态标准条件下,输出变化量与输入变化量的比值。对线性传感器来说,其灵敏度是一常数 .2.用弹性元件和电阻应变片及一些附件可以组成应变片传感器,按用途划分用应变式力传感器、应变式加速度传感器等(任填两个)。3.采用热电阻作为测量温度的元件是将温度的测量转换为电阻的测量。4.单线圈螺线管式电感传感器主要由线圈、铁磁性外壳和可沿线圈轴向移动的活动铁芯组成。5.利用涡流式传感器测量位移时,为了得到较好的线性度和较好的灵敏度,应该让线圈与被测物的距离大大小于线圈半径6.空气介质变隙式电容传感器中,提高灵敏度和减少非线性误差是矛盾的,为此实际中大都采用差动式电容传感器7.振筒式传感器是以均匀薄壁圆筒作为敏感元件,将被测气体压力或密度的变化转换成频率。8.由光电管的光谱特性看出,检测不同颜色的光需要选用光电阴极材料不同的光电管,以便利用光谱特性灵敏度较高的区段。9.按热电偶本身结构划分,有普通热电偶、铠装热电偶、薄膜热电偶。10.硒光电池的光谱响应区段与人类相近,因而得到应用。11.热敏电阻正是利用半导体载流子数目随着温度变化而变化的特性制成的温度敏感元件。12.当半导体材料在某一方向承受应力时,它的电阻率发生显著变化的现象称为半导体压阻效应。用这个原理制成的电阻称固态压敏电阻。13.磁敏二极管工作时加正向电压。由于它的磁灵敏很高,特别适用于测量弱磁场。 二、选择题(每小题2分,共16分,7、8两题答案不止一个) 1.电阻应变片的初始电阻数值有多种,其中用的最多的是(B)。A 60ΩB120ΩC 200ΩD 350Ω2.电涡流式传感器激磁线圈的电源是( C )。A 直流 B 工频交流 C高频交流 D低频交流3.变间隙式电容传感器的非线性误差与极板间初始距离d0之间是(B)。 A 正比关系 B 反比关系 C 无关系 4.单色光的波长越短,它的(A)。 A 频率越高,其光子能量越大 B 频率越低,其光子能量越大 C 频率越高,其光子能量越小 D 频率越低,其光子能量越小 5.热电偶可以测量( C )。 A 压力 B 电压 C 温度 D 热电势 6.光敏电阻适于作为(B)。 A 光的测量元件 B 光电导开关元件 C 加热元件 D 发光元件 7.目前我国使用的铂热电阻的测量范围是( AD )。

传感器技术与应用考题及部分答案

一、填空题(每空1分,共30分) 1、声波是一定频率范围内可以在弹性介质中传播的波,低于16 Hz的声波称为次声波,高于20k Hz的声波称为超声波。 2、超声波可分为纵波、横波、表面波。 3、超声波中的纵波能在固体、液体、气体中传播;横波只能在固体中传播。 4、在空气中传播的超声波,其频率应选得较低;在固体、液体中传播的超声波,其频率应选得较高。 5、光电元件的工作原理是基于不同形式的光电效应。 6、光敏电阻的相对光敏灵敏度与入射光波长的关系称为光谱特性,亦称为光谱响应。 7、光敏电阻的阻值与入射光量有关,而与电压、电流无关。 8、光敏晶体管的光电特性是指外加偏置电压一定时,光敏晶体管的输出电流与光照度之间的关系。 9、光电检测必须具备光源、被测物、和光敏元件。 10、光电开关可分为直射(透射)型和反射型两种。 11、光纤传感器主要由光导纤维、光源和光探测器组成。 12、光纤是利用光的完全内反射原理传输光波的一种媒质。 13、接触式码盘的码道数n越大,所能分辨的角度α越小,测量精度越高。

14、感应同步器利用定尺和滑尺的两个平面印刷电路绕组的互感随其相对位置变化的原理,将位移转换为电信号。 二、选择题(每小题2分,共30分) 1、直探头可发射和接收 A 波,斜探头可发射和接收 B 波。 A 纵B横C表面 2、超声波测厚常用C 法。 A穿透B反射C脉冲回波 3、光敏二极管在测光电路中应处于 B 偏置状态;而光电池通常处于 A 偏置状态。 A 正向B反向C零 4、温度上升,光敏电阻、光敏二极管、光敏三极管的暗电流 A 。 A上升B下降C不变 5、普通型硅光电池的峰值波长为 B 。 A 0.8mm B 0.8μm C 0.8nm 6、下列传感器中,不能直接用于直线位移测量的传感器是 C 。 A 长光栅 B 感应同步器 C 角编码器 7、增量式位置传感器输出的信号是 C 。 A 电压信号 B 电流信号 C 脉冲信号 8、某直线光栅每毫米刻线数为50线,采用四细分技术,则该光栅的分辨力为 A μm。 A 5 B 20 C 50 9、光栅中采用sin和cos两套光电元件是为了 B 。 A 抗干扰 B 辨向 C 进行三角函数运算 10、增量式编码器通常为 B 码盘。 A 接触式 B 光电式 C 电磁式 11、有一只1024位增量式角编码器,光敏元件在30秒内连续输出了102400个脉冲,则该编码器测得的转速为 A r/min。 A 200 B 1024 C 3000 12、感应同步器的输出电压 C 励磁电压。

传感器原理与应用复习题及答案

中南大学现代远程教育课程考试(专科)复习题及参考答案 传感器原理与应用 一、名词解释 1.传感器 2.传感器的线性度 3.传感器的灵敏度 4.传感器的迟滞 5.绝对误差 6.系统误差 7.弹性滞后 8.弹性后效 9.应变效应 10.压电效应 11.霍尔效应 12.热电效应 13.光电效应 14.莫尔条纹 15.细分 二、填空题 1.传感器通常由、、三部分组成。 2.按工作原理可以分为、、、。 3.按输出量形类可分为、、。 4.误差按出现的规律分、、。 5.对传感器进行动态的主要目的是检测传感器的动态性能指标。 6.传感器的过载能力是指传感器在不致引起规定性能指标永久改变的条件下,允许超过的能力。 7.传感检测系统目前正迅速地由模拟式、数字式,向方向发展。 8.已知某传感器的灵敏度为K0,且灵敏度变化量为△K0,则该传感器的灵敏度误差计算公式为rs= 。 9.为了测得比栅距W更小的位移量,光栅传感器要采用技术。 10.在用带孔圆盘所做的光电扭矩测量仪中,利用孔的透光面积表示扭矩大小,透光面积减小,则表明扭矩。 11.电容式压力传感器是变型的。 12.一个半导体应变片的灵敏系数为180,半导体材料的弹性模量为1.8×105Mpa,其中压阻系数πL 为Pa-1。 13.图像处理过程中直接检测图像灰度变化点的处理方法称为。 14.热敏电阻常数B大于零的是温度系数的热敏电阻。 15.若测量系统无接地点时,屏蔽导体应连接到信号源的。 16.目前应用于压电式传感器中的压电材料通常有、、。 17.根据电容式传感器的工作原理,电容式传感器有、、 三种基本类型 18.热敏电阻按其对温度的不同反应可分为三类、、。 19.光电效应根据产生结果的不同,通常可分为、、三种类型。

传感器技术与应用

传感器技术与应用教学大纲 书名:传感器技术与应用 作者:贾海瀛编著 出版社:高教 出版日期:2015-09-01 ISBN:9787040422658 贾海瀛编写的《传感器技术与应用(高等职业教育电类基础课新形态一体化规划教材)》是新形态高等职业教育电类课程系列教材之一,也是“十二五” 职业教育国家规划教材,同时也是国家精品资源共享课程配套教材。 本书介绍了传感器技术的基本概念、特性、作用和发展趋势;各种常用传感器的基本结构、使用性能、工作原理和测量电路;具体实例中传感器的选用原则;典型非电量——温度、湿度、气体、力、液位、流量、位移和速度等的检测应用实例。由生产生活具体实例引入,深入浅出,将传感器技术与应用技能的相应知识点融入工作任务之中,减少了部分复杂公式的推导过程,增加了常用传感器标定、性能、选用等知识;新型传感器的使用;大量的生产生活中的实际应用和各类电子大赛典型设计电路,实用性和操作性极强,满足了新一轮高等职业教育教学改革的需求,以提高高素质劳动者和技术技能型人才培养的质量。本书可作为高等职业院校、高等专科院校、高校、民办高校及本科院校举办的二级职业技术学院应用电子技术、自动控制、仪器仪表、机电一体化及相关专业的教学用书,也适用于五年制高职、中职相关专业,并可作为社会从业人士的业务参考书及培训用书。 目录 知识储备 任务一认识传感器 任务二了解常用传感器的作用和基本构成 任务三了解传感器的分类和发展 一、传感器的分类 二、传感器的基本特性 三、传感器的发展 任务四学会选用传感器 一、传感器的选择原则 二、传感器的常见使用方法 三、传感器的命名、代号和图形符号 项目一温度的检测 任务一盐浴炉温度的检测 任务要求 知识引入 一、认识热电偶 二、热电偶的使用

传感器原理及应用习题

《第一章传感器的一般特性》 1 试绘制转速和输出电压的关系曲线,并确定: 1)该测速发电机的灵敏度。 2)该测速发电机的线性度。 2.已知一热电偶的时间常数τ=10s,若用它来测量一台炉子的温度,炉内温度在540οC和500οC 之间按近似正弦曲线波动,周期为80s,静态灵敏度k=1,试求该热电偶输出的最大值和最小值,以及输入与输出信号之间的相位差和滞后时间。 3.用一只时间常数为0.355s 的一阶传感器去测量周期分别为1s、2s和3s的正弦信号,问幅值误差为多少? 4.若用一阶传感器作100Hz正弦信号的测试,如幅值误差要求限制在5%以内,则时间常数应取多少?若在该时间常数下,同一传感器作50Hz正弦信号的测试,这时的幅值误差和相角有多大? 5.已知某二阶系统传感器的固有频率f0=10kHz,阻尼比ξ=0.1,若要求传感器的输出幅值误差小于3%,试确定该传感器的工作频率范围。 6.某压力传感器属于二阶系统,其固有频率为1000Hz,阻尼比为临界值的50%,当500Hz的简谐压力输入后,试求其幅值误差和相位滞后。 《第二章应变式传感器》 1.假设某电阻应变计在输入应变为5000με时电阻变化为1%,试确定该应变计的灵敏系数。又若在使用该应变计的过程中,采用的灵敏系数为1.9,试确定由此而产生的测量误差的正负和大小。 2.如下图所示的系统中:①当F=0和热源移开时,R l=R2=R3=R4,及U0=0;②各应变片的灵敏系数皆为+2.0,且其电阻温度系数为正值;③梁的弹性模量随温度增加而减小;④应变片的热膨胀系数比梁的大;⑤假定应变片的温度和紧接在它下面的梁的温度一样。 在时间t=0时,在梁的自由端加上一向上的力,然后维持不变,在振荡消失之后,在一稍后的时间t1打开辐射源,然后就一直开着,试简要绘出U0和t的关系曲线的一般形状,并通过仔细推理说明你给出这种曲线形状的理由。 3.一材料为钢的实心圆柱形试件,直径d=10 mm,材料的弹性模量E=2 ×1011N/m2,泊松比μ=0.285,试件上贴有一片金属电阻应变片,其主轴线与试件加工方向垂直,如图1所示,若已知应变片的轴向灵敏度k x =2,横向灵敏度C=4%,当试件受到压缩力F=3×104N作用时。应变片的电阻相对变化ΔR/R为多少。 4.在材料为钢的实心圆柱形试件上,沿轴线和圆周方向各粘贴一片电阻120 Ω的金属电阻应变片,如图2所示,把这两片应变片接入差动电桥,已知钢的泊松比μ=0.285,应变片的灵敏系数k0=2,电桥电源电压U sr=6V(d.C.),当试件受轴向拉伸时,测得应变片R1的电阻变化值ΔR1=0.48 Ω,试求电桥的输出电压。 图1 图2 5.一台采用等强度梁的电子秤,在梁的上下两面各贴有二片电阻应变片,做成秤重传感器,如下图所示。已知l=100 mm,b=11 mm,t=3 mm,E=2.1×104N/mm2,k0=2,接入直流四臂差动电桥,供桥电压 6 V,当秤重0.5 kg时,电桥的输出电压U sc为多大。 6.今在(110)晶面的〈001〉〈110〉晶面上各放置一电阻条,如下图所示,试求:l)在0.1MPa

传感器技术及应用试题及答案

1、测量系统的静态特性指标主要有 2、被测量的数值处在稳定状态下,传感器输出与输入的关系称为传感器的______特性。 3、霍尔元件灵敏度的物理意义是 4、算式是计算传感器________的公式,当S在传感器的测量范围内为常量时, 说明该传感器是________。 5、涡流传感器的线圈与被测物体的距离减小时,互感系数M将________。 6、热电偶所产生的热电动势是电动势和电动势组成的,其表达式为 7、半导体应变片以________效应为主,它的灵敏度系数比金属应变片的______。 8、横向效应使应变式传感器的电阻丝灵敏系数变_______。 空气介质变隙式电容传感器中,提高灵敏度和减少非线性误差是矛盾的,为此实际中 大都采用________式电容传感器。 9、压磁式传感器的工作原理是:某些铁磁物质在外界机械力作用下,其内部产生 ,从而引起,这种现象称为,相反,某些铁磁物质在外界磁场的作用下会产生,这种现象称为 10、压电陶瓷起初并没有压电效应,经过________处理后才具有压电效应。 11、电阻应变片式传感器按制造材料可分为材料和材料。 12、测量过程中存在着测量误差,按性质可被分为、和三类 1、电阻应变片阻值为120,灵敏系数2K,沿纵向粘贴于直径为m05.0的圆形钢柱表面,钢材的弹性模量211 /102mNE,3.0,(1)求钢柱受N4108.9拉力作用时应变片电阻的变化量R 和相对变化量R R (;(2)又若应变片沿钢柱圆周方向粘贴,问受同样拉力作用时应变片电阻的相对变化量为多少? 2、有一台变间隙非接触式电容测微仪,其传感器的极板半径 r=5mm,假设与被测工件的初始间隙d0=0.5mm。已知试真空的介电常数等于8.854×10-12 F/m,求:(1)极板未移动时,电容的初始电容值。(2)极板沿不同方向移动时,传感器的位移灵 )。 敏度K(已知空气相对介电常数1ε ,真空的介电常数F/m108548ε120 . 3、已知一等强度梁测力系统,Rx为电阻应变片,应变片灵敏系数K=2,未受应变时,Rx = 100?。当试件受力F时,应变片承受平均应变ε= 1000μm/m,求: (1)应变片电阻变化量?Rx和电阻相对变化量?Rx/Rx 。(2)将电阻应变片Rx置于单臂测量电桥,电桥电源电压为直流3V,求电桥输出电压及电桥非线性误差。(3)若要使电桥电压灵敏度分别为单臂工作时的两倍和四倍,应采取哪些措施?分析在不同措施下的电桥输出电压及电桥非线性误差大小。 4、一台变间隙式平板电容传感器,其极板直径D=8mm,极板间初始间距d0=1mm,极板间介质为空气,其介电常数ε0=8.85×10-12F/m。试求: (1)初始电容C0; (2)当传感器工作时,间隙减小Δd=10μm,求其电容量变化ΔC; (3)如果测量电路的灵敏Ku=100mV/pF,则在Δd=±1μm时的输出电压U0。 石英晶体加速计及电荷放大器测量机械振动,已知加速度计灵敏度为5pC/g,电荷放大器灵敏度为50mV/pC,当机器达到最大加速度时的相应输出电压幅值为2V,试求机械的振动加速度。{注: (库仑),g为重力加速度} 5、已知测量齿轮齿数Z=18,采用变磁通感应式传感器测量工作轴转速, 如图所示。若测得输出电动势的交变频率为24(Hz),求:被测轴的转速n(r/min)为多少? 当分辨误差为±1齿时,转速测量误差是多少

13传感器技术与应用答案

传感器技术与应用习题答案 习题1 l.1 检测系统由哪几部分组成? 说明各部分的作用。 答:检测系统是由被测对象、传感器、数据传输环节、数据处理环节和数据显示环节构成。 传感器是把被测量转换成电学量的装置,显然,传感器是检测系统与被测对象直接发生联系的部件,是检测系统最重要的环节,检测系统获取信息的质量往往是由传感器的性能确定的。 数据传输、处理环节,又称之为测量电路,它的作用是将传感器的输出信号转换成易于测量的电压或电流信号。 数据显示记录环节是检测人员和检测系统联系的主要环节,主要作用是使人们了解被测量的大小或变化的过程。常用的有模拟显示、数字显示和图像显示三种。 1.2 传感器的型号有几部分组成?各部分有何意义? 答:传感器是由敏感元件、转换元件和测量电路组成,敏感元件:直接感受被测量的变化,并输出与被测量成确定关系的某一物理量的元件,它是传感器的核心。转换元件:将敏感元件输出的物理量转换成适于传输或测量电信号的元件。测量电路:将转换元件输出的电信号进行进一步转换和处理的部分,如放大、滤波、线性化、补偿等,以获得更好的品质特性,便于后续电路实现显示、记录、处理及控制等功能。 1.3 测量稳压电源输出电压随负载变化的情况时,应当采用何种测量方法? 如何进行? 答:直接测量。使用电压表进行测量,对仪表读数不需要经过任何运算,直接表示测量所需要的结果。 1.4 某线性位移测量仪,当被测位移由4.5mm变到5.0mm时,位移测量仪的输出电压由3.5V 减至 2.5V,试求该仪器的灵敏度。 解: 灵敏度s=(3.5-2.5)v/(5.0-4.5)mm=2v/mm 1.5 有三台测温仪表,量程均为0~800℃,精度等级分别为 2.5级、2.0级和1.5级,现要测量500℃的温度,要求相对误差不超过2.5%,选那台仪表合理? 答:2.5级时的最大绝对误差值为20℃,测量500℃时的相对误差为4%;2.0级时的最大绝对误差值为16℃,测量500℃时的相对误差为3.2%;1.5级时的最大绝对误差值为12℃,测量500℃时的相对误差为2.4%。因此,应该选用1.5级的测温仪器 1.6 什么是系统误差和随机误差?准确度和精密度的含义是什么? 它们各反映何种误差? 答:系统误差(简称系差):在一定的条件下,对同一被测量进行多次重复测量,如果误差按照一定的规律变化,则把这种误差称为系统误差。系统误差决定了测量的准确度。系统误差是有规律性的,因此可以通过实验或引入修正值的方法一次修正给以消除。 随机误差(简称随差,又称偶然误差):由大量偶然因素的影响而引起的测量误差称为随机误差。对同一被测量进行多次重复测量时,随机误差的绝对值和符号将不可预知地随机变

相关文档
最新文档