广西河池2013年中考数学试题

合集下载

广西南宁市中考2013年数学试卷

广西南宁市中考2013年数学试卷

广西南宁市中考2013年数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请考上用2B铅笔在答题卡上将选定答案标号涂黑.2.(3分)(2013•南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是().南宁)2013年6月11日,神舟十号飞船发射成功,神舟十号飞船身高9米,重约8吨,飞行3.(3分)(2013•4.(3分)(2013•南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()5.(3分)(2013•南宁)甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机号跑道的概率是:.6.(3分)(2013•南宁)若分式的值为0,则x的值为()7.(3分)(2013•南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()×20×2π×15=300π+,故本选项正确;9.(3分)(2013•南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为(),10.(3分)(2013•南宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()11.(3分)(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()BAC==,故可得出BAC==,CD=412.(3分)(2013•南宁)如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为(),xx+4y=x+4,ODx+4x+4上,3x•x=x•(1××.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2013•南宁)若二次根式有意义,则x的取值范围是x≥2.解:根据题意,使二次根式14.(3分)(2013•南宁)一副三角板如图所示放置,则∠AOB=105°.15.(3分)(2013•南宁)分解因式:x2﹣25=(x+5)(x﹣5).16.(3分)(2013•南宁)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是86分.17.(3分)(2013•南宁)有这样一组数据a1,a2,a3,…an,满足以下规律:,(n≥2且n为正整数),则a2013的值为﹣1(结果用数字表示).a1==2==,18.(3分)(2013•南宁)如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为﹣π.=OB=2OD=OG=PG=BG=;π)π﹣﹣π=π故答案为﹣三、(本大题共2小题,每小题6分,共12分)19.(6分)(2013•南宁)计算:20130﹣+2cos60°+(﹣2)3+2×20.(6分)(2013•南宁)先化简,再求值:,其中x=﹣2.()÷÷•四、本大题共2小题,每小题8分,共16分21.(8分)(2013•南宁)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.,且相似比为(22.(8分)(2013•南宁)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.)体育部分所对应的圆心角的度数为:1800×=480五、(本大题满分8分)23.(8分)(2013•南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.,=六、(本大题满分10分)24.(10分)(2013•南宁)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地直接的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.,×,,表示小时后两车相遇,此时距离x=x=x=所以,当≤x≤或七、(本大题满分10分)25.(10分)(2013•南宁)如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.(1)求证:DE是⊙O的切线;(2)求tan∠ABE的值;(3)若OA=2,求线段AP的长.,ABE==,EAP=,AP==八、(本大题满分10分)26.(10分)(2013•南宁)如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.的长,然后代入+,x12,,然后表示出+,解得x2m2AO=m2+1AM=m2m2+1+=+,x22 +==联立+=取何值,+的式子表示出+。

广西2013年初中数学毕业升学考试试题样卷

广西2013年初中数学毕业升学考试试题样卷

2013年某某初中毕业升学考试试题样卷数学(考试时间:120分钟 满分:120分)注意事项:1.试卷分为试题卷和答题卡两部分,在本试...题.卷上作答无效........ 2.答题前,请认真阅读答题....卡.上的注意事项....... 3.考试结束后,将本试卷和答题......卡.一并交回.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题..卡.上对应题目的答案标号涂黑). 1.在0,-1,2,-1.5这四个数中,是负整数的是A. -1B. 0 C )2.如图,与∠1是同位角的是A .∠2B .∠3C .∠4D .∠5(知识X 围:同位角 能力:了解 难度: 0.95) 3.如图,数轴上点N 表示的数可能是A.10 B.5 C.3 D.2(知识X 围:实数、数轴 能力:理解 难度: 0.90)4.下面四个图案是某种衣物的说明标识,其中没有用到图形的平移、旋转或轴对称设计的是(知识X 围:图形的平移、旋转和对称 能力: 了解 难度: 0.95) 5.在一次多人参加的男子马拉松长跑比赛中,其中一名选手要判断自己的成绩是否比一半以上选手的成绩好,他可以根据这次比赛中全部选手成绩的哪一个统计结果进行比较 (A )平均数 (B )众数 (C ) 极差(D )中位数(知识X 围: 统计 能力: 理解 难度: 0.85) 6.下列计算正确的是第2题图第3题图(A) 222)(n m m m -=- (B) 62232)2(b a ab = (C)a a a 283= (D)xy xy xy 532=+(知识X 围:有关运算 能力: 理解 难度: 0.85) 7.图l 是由六个小正方体组合而成的一个立体图形,它的主视图是(知识X 围:视图 能力: 了解 难度: 0.90)8.若分式xx x 2422--的值为零,则x 的值为A. -2B. 2 C(知识X 围: 分式,因式分解 能力: 理解 难度: 0.8) 9.如图,一个圆锥形零件,高为8cm ,底面圆的直径为12cm ,则此圆锥的侧面积是A. 260cm π B.248cm π C. 296cm π D.230cm π (知识X 围:圆锥侧面展开 能力:掌握 难度: 0.75)10.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会 A.逐渐增大 B .不变 C .逐渐减小 D .先增大后减小 (知识X 围:反比例函数 能力: 掌握 难易程度: 0.75) 11.一个边长为4的等边三角形ABC 的高与⊙O 的直径相等,如图放置, ⊙O 与BC 相切于点C ,⊙O 与AC 相交于点E ,则CE 的长是: A. 32 B .3 C .2 D .3(知识X 围: 圆,三角形 能力 : 灵活运用 难度: 0.60)12.如图,已知扇形的圆心角为︒60,半径为1,将它沿着箭头方向无滑动滚动到B A O '''位置,则有:12cm 8cm第9题图ECBO第11题图yO A B 第10题图①点O 到O '的路径是1OO →21O O →O O '2; ②点O 到O '的路径是⋂1OO →⌒21O O →⋂'O O 2; ③点O 在1O →2O 段上的运动路径是线段21O O ; ④点O 到O '所经过的路径长为π34; 以上命题正确的序号是:A. ②③ B .③④ C .①④ D .②④(知识X 围: 图形旋转、圆的弧长 能力: 灵活运用 难度: 0.40) 二、填空题(共6小题,每小题3分,共18分,请将答案填在答题..卡.上). 13.函数42-=x y 的自变量x 的取值X 围是___________。

2013年全国中考数学(169套)选择填空解答压轴题分类解析汇编 专题06:双动点问题

2013年全国中考数学(169套)选择填空解答压轴题分类解析汇编 专题06:双动点问题

编辑一、选择题1. (2013年山东临沂3分)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F 分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t (s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为【】∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8。

故选B。

2. (2013年山东烟台3分)如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是【 】A .AE=6cmB .4sin EBC 5∠= C .当0<t≤10时,22y t 5=D .当t=12s 时,△PBQ 是等腰三角形3. (2013年四川南充3分) 如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm ,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5cm ;②当0<t≤5时,22y t 5=;③直线NH 的解析式为5y t 272=-+;④若△ABE 与△QBP 相似,则t=294秒。

其中正确的结论个数为【 】A. 4B. 3C. 2D. 14. (2013年福建三明4分)如图,在矩形ABCD中,O是对角线AC的中点,动点P从点C出发,沿DC 方向匀速运动到终点C.已知P,Q两点同时出发,并同时到达终点,连接OP,OQ.设运动时间为t,四边形OPCQ的面积为S,那么下列图象能大致刻画S与t之间的关系的是【】二、填空题1. (2013年湖北武汉3分)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF 交BD于G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是▲ .2. (2013年浙江杭州4分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值▲ (单位:秒)3. (2013年广西河池3分)如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF。

2011年广西省河池市中考数学试题(word)

2011年广西省河池市中考数学试题(word)

A B CDEAB O CD主视图 俯视图 左视图A B C D O2011年广西区河池市中考数学试题一、选择题(本大题共12小题,每小题3分,满分36分) 1.-3的相反数是【 】A .3B .-3C . 1 3D .- 132.函数y =1-x 的自变量x 的取值范围是【 】A .x >1B .x <1C .x ≥1D .x ≤13.如图,AB ∥CD ,AC 、BD 交于点O ,∠A =30º,∠COD =105º,则∠D =【 】A .30ºB .45ºC .65ºD .75º4.下列运算中,正确的是【 】A .x6-x2=x3B .(-3x)2=6x2C .3x3-2x2=xD .x3·x =x45.解集在数轴上表示为如图所示的不等式组是【 】 A .⎩⎨⎧x >-1x ≥2 B .⎩⎨⎧x <-1x≤2 C .⎩⎨⎧x <-1x ≥2 D .⎩⎨⎧x >-1x ≤2 6.五箱龙眼的质量(单位:kg)分别为:18、20、21、22、19,则这五箱龙眼质量的平均数和中位数分别为【 】A .19和20B .20和19C .20和20D .20和217.把二次函数y =x2的图象沿着x 轴向右平移2个单位,再向上平移3个单位,所得到的图象的函数解析式为【 】A .y =(x +2)2+3B .y =(x -2)2+3C .y =(x +2)2-3D .y =(x -2)2-38.如图是一个几何体的三视图,则此几何体是【 】 A .圆柱 B .棱柱 C .圆锥 D .棱台9.如图,已知点A(1,0)、B(7,0),⊙A 、⊙B 的半径分别为1和2,将⊙A 沿x 轴向右平移3个单位,则此时该圆与⊙B 的位置关系是【 】A .外切B .相交C .内含D .外离10.如图,A 、D 是⊙O 上的两点,BC 是⊙O 直径.若∠D =35º,则∠OAC =【 】A .35ºB .55ºC .65ºD .70º11.如图,在△ABC 中,AB =AC ,∠A =36º,AB 的垂直平分线DE 交AC 于D ,交AB 于E .下列结论错误的是【 】A .BD 平分∠ABCB .△BCD 的周长等于AB +BCC .AD =BD =BC D .点D 是线段AC 的中点12.如图,在□ABCD 中,点E 为AB 的中点,点F 为AD 上一 点,EF 交AC 于点G ,AF =2cm ,DF =4cm ,AG =3cm ,则AC 的长为【 】A .9cmB .14cmC .15cmD .8cm 二、填空题(本大题共6小题,每小题3分,满分18分)A B C DF E O13.因式分解:x2-9= .14.计算:362273⨯-= .15.为了解九年级学生体能情况,随机抽查了其中的30名学生,测试了1min 仰卧起坐的次数,并绘制成如图的频数分布直方图,则仰卧起坐的次数在20~25次之间的频数是 .16.如图是二次函数y1=ax2+bx +c(a ≠0)和一次函数y2=mx +n(m ≠0)的图象,当y1>y2时,x 的取值范围是 . 17.如图,用一个半径为60cm 、圆心角为150º的扇形围成一个圆锥,则这个圆锥的底面半径为cm.18.如图,在△ABC 中,∠ABC =90º,AB =3,BC =4,P 是BC 边上的动点,设BP =x .若能在AC 边上找到一点Q ,使∠BQP =90º,则x 的取值范围是 .三、解答题(本大题共8小题,满分66分)19.(6分)计算:845sin 42120111--+⎪⎭⎫ ⎝⎛+- .20.(6分)先化简,再求值:(x +3)2-(x -1)(x -2),其中x =-1.21.(8分)如图,在□ABCD 中,点E 、F 分别是AD 、BC 的中点,AC 与EF 相交于点O .(1)过点B 作AC 的平行线BG ,延长EF 交BG 于点H ; (2)在(1)的图中,找出一个与△BFH 全等的三角形,并证明你的结论.次数/次150º 60cmABPCQ22.(8分)某班毕业晚会设计了即兴表演节目的摸球游戏:在一个不透明的盒子里装有4个分别标有数字1、2、3、4的乒乓球,这些球除数字外,其它完全相同.晚会上每位同学必须且只能做一次摸球游戏.游戏规则为:从盒子里随机摸出一个球,放回搅匀后再摸出一个球.若第二次摸出的球上的数字小于第一次摸出的球上的数字,就要给大家即兴表演一个节目.(1)参加晚会的同学性别比例如图,女生有18人,则参加晚会的学生共有 人; (2)(3)估计本次晚会上有多少名同学即兴表演节目?23.(8分)大众服装店今年4月用4000元购进了一款衬衣若干件,上市后很快售完,服装店于5月初又购进同样数量的该款衬衣,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了5000元. (1)第一批衬衣进货时的价格是多少?(2)第一批衬衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣的每件售价至少是多少元?(利润=售价-成本,利润率= 利润成本×100%))24.(8分)如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A 中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B 与点O 的距离x(cm),观察活动托盘B 中砝码的质量y(g)(1)把上表中(x ,y)的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑的曲线连接这些点;(2)观察所画的图象,猜测y 与x 之间的函数关系,求出函数关系式并加以验证; (3)当砝码的质量为24g 时,活动托盘B 与点O 的距离是多少?(4)将活动托盘B 往左移动时,应往活动托盘B 中添加还是减少砝码?25.(10分)如图1,在△OAB 中,∠OAB =90º,∠AOB =30º,OB=8.以OB 为一边,在△OAB 外作等边三角形OBC ,D 是OB 的中点,连接AD 并延长交OC 于E . (1)求点B 的坐标;(2)求证:四边形ABCE 是平行四边形;(3)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.26.(12分)已知直线l经过A(6,0)和B(0,12)两点,且与直线y=x交于点C.(1)求直线l的解析式;(2)点P(x,0)在线段OA上运动,过点P作直线l的平行线交直线y=x于点D,求△PCD的面积S与x的函数关系式.S有最大值吗?若有,求出当S最大时x的值;(3)点P(x,0)在线段x轴上运动,是否存在点P使得△PCA成为等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.。

广西南宁市中考2013年数学试卷(含解析)

广西南宁市中考2013年数学试卷(含解析)

广西南宁市中考2013年数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请考上用2B铅笔在答题卡上将选定答案标号涂黑.1.(3分)(2013•南宁)在﹣2,1,5,0这四个数中,最大的数是()A.﹣3 B.1C.5D.0考点:有理数大小比较.分析:根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.解答:解:在﹣2,1,5,0这四个数中,大小顺序为:﹣2<0<1<5,所以最大的数是5.故选C.点评:本题主要考查了有理数的大小的比较,解题的关键利用熟练掌握有理数的大小比较法则,属于基础题.2.(3分)(2013•南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.B.C.D.考点:点、线、面、体.分析:根据半圆绕它的直径旋转一周形成球即可得出答案.解答:解:半圆绕它的直径旋转一周形成球体.故选:A.点评:本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.3.(3分)(2013•南宁)2013年6月11日,神舟十号飞船发射成功,神舟十号飞船身高9米,重约8吨,飞行速度约每秒7900米,将数7900用科学记数法表示,表示正确的是()A.0.79×104B.7.9×104C.7.9×103D.0.79×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将7900用科学记数法表示为:7.9×103.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.正方形考点:平行投影.分析:根据平行投影的性质分别分析得出即可即可.解答:解:将矩形木框立起与地面垂直放置时,形成的影子为线段;将矩形木框与地面平行放置时,形成的影子为矩形;将木框倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且矩形对边相等,故得到的投影不可能是三角形.故选:A.点评:本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.5.(3分)(2013•南宁)甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.12C.34D.14考点:概率公式.分析:由设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.解答:解:∵设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,∴甲抽到1号跑道的概率是:14.故选D.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.(3分)(2013•南宁)若分式的值为0,则x的值为()A.﹣1 B.0C.2D.﹣1或2考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣2=0,再解方程即可.解答:解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故选:C.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.7.(3分)(2013•南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.600πcm2D.150πcm2考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.解答:解:烟囱帽所需要的铁皮面积=×20×2π×15=300π(cm2).故选B.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.8.(3分)(2013•南宁)下列各式计算正确的是()A.3a3+2a2=5a6B.C.a4•a2=a8D.(ab2)3=ab6考点:二次根式的加减法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可.解答:解:A、3a3与2a2不是同类项,不能合并,故本选项错误;B、2+=3,故本选项正确;C、a4•a2=a6,故本选项错误;D、(ab2)3=a3b6,故本选项错误.故选B.点评:本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.9.(3分)(2013•南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15考点:二元一次方程组的应用.分析:要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论.解答:解:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得,解得:2x+2y=16.故选C.点评:本题考查了学生观察能力和识图能力,列二元一次方程组解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.10.(3分)(2013•南宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c(a≠0)的两个根D.当x<1时,y随x的增大而增大考点:二次函数的性质.分析:根据对称轴及抛物线与x轴交点情况,结合二次函数的性质,即可对所得结论进行判断.解答:解:A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意;B、观察图象,可知抛物线的顶点坐标为(1,﹣4),又抛物线开口向上,所以函数ax2+bx+c(a≠0)的最小值是﹣4,正确,故本选项不符合题意;C、由图象可知抛物线与x轴的一个交点为(﹣1,0),而对称轴为直线x=1,所以抛物线与x轴的另外一个交点为(3,0),则﹣1和3是方程ax2+bx+c(a≠0)的两个根,正确,故本选项不符合题意;D、由抛物线的对称轴为x=1,所以当xx<1时,y随x的增大而减小,错误,故本选项符合题意.故选D.点评:此题考查了二次函数的性质和图象,解题的关键是利用数形结合思想解题.11.(3分)(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()A.4B.5C.4D.3考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据∠BAC=∠BOD可得出=,故可得出AB⊥CD,由垂径定理即可求出DE的长,再根据勾股定理即可得出结论.解答:解:∵∠BAC=∠BOD,∴=,∴AB⊥CD,∵AE=CD=8,∴DE=CD=4,设OD=r,则OE=AE﹣r=8﹣r,在RtODE中,OD=r,DE=4,OE=8﹣r,∵OD2=DE2+OE2,即r2=42+(8﹣r)2,解得r=5.故选B.点评:本题考查的是垂径定理及圆周角定理,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.12.(3分)(2013•南宁)如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.D.考点:反比例函数综合题.专题:探究型.分析:先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x 轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x解答:解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴CF=OD,∵点B在直线y=x+4上,∴B(x,x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选D.点评:本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy 的特点求出k的值即可.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2013•南宁)若二次根式有意义,则x的取值范围是x≥2.考点:二次根式有意义的条件.分析:根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.解答:解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为x≥2.点评:本题考查二次根式的意义,只需使被开方数大于或等于0即可.14.(3分)(2013•南宁)一副三角板如图所示放置,则∠AOB=105°.考点:角的计算.分析:根据三角板的度数可得:∠1=45°,∠2=60°,再根据角的和差关系可得∠AOB=∠1+∠2,进而算出角度.解答:解:根据三角板的度数可得:∠1=45°,∠2=60°,∠AOB=∠1+∠2=45°+60°=105°,故答案为:105.点评:此题主要考查了角的计算,关键是掌握角之间的关系.15.(3分)(2013•南宁)分解因式:x2﹣25=(x+5)(x﹣5).考点:因式分解-运用公式法.分析:直接利用平方差公式分解即可.解答:解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).点评:本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.16.(3分)(2013•南宁)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是86分.考点:加权平均数.分析:利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.解答:解:小海这学期的体育综合成绩=(80×40%+90×60%)=86(分).故答案为86.点评:本题考查的是加权平均数的求法.本题易出现的错误是求80、90这两个数的平均数,对平均数的理解不正确.17.(3分)(2013•南宁)有这样一组数据a1,a2,a3,…a n,满足以下规律:,(n≥2且n为正整数),则a2013的值为﹣1(结果用数字表示).考点:规律型:数字的变化类.专题:规律型.分析:求出前几个数便不难发现,每三个数为一个循环组依次循环,用过2013除以3,根据商和余数的情况确定答案即可.解答:解:a1=,a2==2,a3==﹣1,a4==12,…,依此类推,每三个数为一个循环组依次循环,∵2013÷3=671,∴a2013为第671循环组的最后一个数,与a3相同,为﹣1.故答案为:﹣1.点评:本题是对数字变化规律的考查,根据计算得到每三个数为一个循环组依次循环是解题的关键.18.(3分)(2013•南宁)如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为﹣π.考点:三角形的内切圆与内心.分析:连接OB,以及⊙O与BC的切点,在构造的直角三角形中,通过解直角三角形易求得⊙O的半径,然后作⊙O与小圆的公切线EF,易知△BEF也是等边三角形,那么小圆的圆心也是等边△BEF的重心;由此可求得小圆的半径,即可得到四个圆的面积,从而由等边三角形的面积减去四个圆的面积和所得的差即为阴影部分的面积.解答:解:如图,连接OB、OD;设小圆的圆心为P,⊙P与⊙O的切点为G;过G作两圆的公切线EF,交AB于E,交BC 于F,则∠BEF=∠BFE=90°﹣30°=60°,所以△BEF是等边三角形.在Rt△OBD中,∠OBD=30°,则OD=BD•tan30°=1×=,OB=2OD=,BG=OB﹣OG=;由于⊙P是等边△BEF的内切圆,所以点P是△BEF的内心,也是重心,故PG=BG=;∴S⊙O=π×()2=π,S⊙P=π×()2=π;∴S阴影=S△ABC﹣S⊙O﹣3S⊙P=﹣π﹣π=﹣π.故答案为﹣π.点评:此题主要考查了等边三角形的性质、相切两圆的性质以及图形面积的计算方法,难度适中.三、(本大题共2小题,每小题6分,共12分)19.(6分)(2013•南宁)计算:20130﹣+2cos60°+(﹣2)考点:实数的运算;零指数幂;特殊角的三角函数值.分析:分别进行零指数幂、二次根式的化简,然后代入特殊角的三角函数值合并即可得出答案.解答:解:原式=1﹣3+2×﹣2=﹣3.点评:本题考查了实数的运算,属于基础题,关键是掌握零指数幂的运算法则及一些特殊角的三角函数值.20.(6分)(2013•南宁)先化简,再求值:,其中x=﹣2.考点:分式的化简求值.专题:计算题.分析:先算括号里面的,再把除式的分母分解因式,并把除法转化为乘法,然后进行约分,最后把x的值代入进行计算即可得解.解答:解:(+)÷=÷=•=x﹣1,当x=﹣2时,原式=﹣2﹣1=﹣3.点评:本题考查了分式的化简求值,分子、分母能因式分解的先因式分解;除法要统一为乘法运算.四、本大题共2小题,每小题8分,共16分21.(8分)(2013•南宁)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示,∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为,∴S△A1B1C1:S△A2B2C2=()2=.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键,还利用了相似三角形面积的比等于相似比的平方的性质.22.(8分)(2013•南宁)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.考点:折线统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.解答:解:(1)90÷30%=300(名),故,一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:×360°=48°;(4)1800×=480(名).答:1800名学生中估计最喜爱科普类书籍的学生人数为480.点评:本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.五、(本大题满分8分)23.(8分)(2013•南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)首先根据菱形的性质,得到AB=BC=AD=CD,∠B=∠D,结合点E、F分别是边BC、AD的中点,即可证明出△ABE≌△CDF;(2)首先证明出△ABC是等边三角形,结合题干条件在Rt△AEB中,∠B=60°,AB=4,即可求出AE的长.解答:解:(1)∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D,∵点E、F分别是边BC、AD的中点,∴BE=DF,在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵∠B=60°,∴△ABC是等边三角形,∵点E是边BC的中点,∴AE⊥BC,在Rt△AEB中,∠B=60°,AB=4,sin60°==,解得AE=2.点评:本题主要考查菱形的性质等知识点,解答本题的关键是熟练掌握菱形的性质、全等三角形的证明以及等边三角形的性质,此题难度不大,是一道比较好的中考试题.六、(本大题满分10分)24.(10分)(2013•南宁)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地直接的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.考点:一次函数的应用.分析:(1)x=0时甲的y值即为A、B两地的距离;(2)根据图象求出甲、乙两人的速度,再利用相遇问题求出相遇时间,然后求出乙的路程即可得到点M的坐标以及实际意义;(3)分相遇前和相遇后两种情况求出x的值,再求出最后两人都到达B地前两人相距3千米的时间,然后写出两个取值范围即可.解答:解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=23,23×30=20千米,所以,点M的坐标为(23,20),表示小时后两车相遇,此时距离B地20千米;(3)设x小时时,甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=35,②若是相遇后,则15x+30x=30+3,解得x=,③若是到达B地前,则15x﹣30(x﹣1)=3,解得x=95,所以,当35≤x≤或95≤x≤2时,甲、乙两人能够用无线对讲机保持联系.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,难点在于(3)要分情况讨论.七、(本大题满分10分)25.(10分)(2013•南宁)如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.(1)求证:DE是⊙O的切线;(2)求tan∠ABE的值;(3)若OA=2,求线段AP的长.考点:切线的判定;圆周角定理;解直角三角形.专题:证明题.分析:(1)连结AD、OD,根据圆周角定理得∠ADB=90°,由AB=AC,根据等腰三角形的直线得DC=DB,所以OD为△BAC的中位线,则OD∥AC,然后利用DE⊥AC得到OD⊥DE,这样根据切线的判定定理即可得到结论;(2)易得四边形OAED为正方形,然后根据正切的定义计算tan∠ABE的值;(3)由AB是⊙O的直径得∠AFB=90°,再根据等角的余角相等得∠EAP=∠ABF,则tan∠EAP=tan∠ABE=,在Rt△EAP中,利用正切的定义可计算出EP,然后利用勾股定理可计算出AP.解答:(1)证明:连结AD、OD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴AD垂直平分BC,即DC=DB,∴OD为△BAC的中位线,∴OD∥AC,而DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(2)解:∵OD⊥DE,DE⊥AC,∴四边形OAED为矩形,而OD=OA,∴四边形OAED为正方形,∴AE=AO,∴tan∠ABE==;(3)解:∵AB是⊙O的直径,∴∠AFB=90°,∴∠ABF+∠FAB=90°,而∠EAP+∠FAB=90°,∴∠EAP=∠ABF,∴tan∠EAP=tan∠ABE=,在Rt△EAP中,AE=2,∵tan∠EAP==,∴EP=1,∴AP==.点评:本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和解直角三角形.八、(本大题满分10分)26.(10分)(2013•南宁)如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.考点:二次函数综合题.专题:代数几何综合题.分析:(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解;(2)根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证;(3)①k=0时,求出AM、BN的长,然后代入+计算即可得解;②设点A(x1,x12﹣1),B(x2,x22﹣1),然后表示出+,再联立抛物线与直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出x1+x2,x1•2,并求出x12+x22,x12•x22,然后代入进行计算即可得解.解答:(1)解:∵抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1),∴,解得,所以,抛物线的解析式为y=x2﹣1;(2)证明:设点A的坐标为(m,m2﹣1),则AO==m2+1,∵直线l过点E(0,﹣2)且平行于x轴,∴点M的纵坐标为﹣2,∴AM=m2﹣1﹣(﹣2)=m2+1,∴AO=AM;(3)解:①k=0时,直线y=kx与x轴重合,点A、B在x轴上,∴AM=BN=0﹣(﹣2)=2,∴+=+=1;②k取任何值时,设点A(x1,x12﹣1),B(x2,x22﹣1),则+=+==,联立,消掉y得,x2﹣4kx﹣4=0,由根与系数的关系得,x1+x2=4k,x1•x2=﹣4,所以,x12+x22=(x1+x2)2﹣2x1•x2=16k2+8,x12•x22=16,∴+===1,∴无论k取何值,+的值都等于同一个常数1.点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,勾股定理以及点到直线的距离,根与系数的关系,根据抛物线上点的坐标特征设出点A、B的坐标,然后用含有k的式子表示出+是解题的关键,也是本题的难点,计算量较大,要认真仔细.。

2013年广西中考数学真题卷含答案解析

2013年广西中考数学真题卷含答案解析

2013年南宁市初中毕业升学考试试卷数学试题(含答案全解全析)(满分120分时间120分钟)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A、B、C、D四个结论,其中只有一个是正确的.1.在-2,1,5,0这四个数中,最大的数是()A.-2B.1C.5D.02.如图所示,将平面图形绕轴旋转一周,得到的几何体是()3.2013年6月11日,神舟十号飞船发射成功.神舟十号飞船身高约9米,重约8吨,飞行速度约每秒7900米.将数7900用科学记数法表示,正确的是()A.0.79×104B.7.9×104C.7.9×103D.79×1024.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能...出现的投影是()A.三角形B.线段C.矩形D.正方形5.甲、乙、丙、丁四名选手将参加100米决赛.赛场共设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.12C.13D.146.若分式x-2x+1的值为0,则x的值为()A.-1B.0C.2D.-1或27.如图,圆锥形的烟囱帽底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.600πcm2D.150cm28.下列各式计算正确的是()A.3a3+2a3=5a6B.2√a+√a=3√aC.a4·a2=a8D.(ab2)3=ab69.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种.两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.15的是()10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误..A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是-4C.-1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大11.如图,AB 是☉O 的直径,弦CD 交AB 于点E,且AE=CD=8,∠BAC=12∠BOD,则☉O 的半径为( )A.4√2B.5C.4D.312.如图,直线y=12x 与双曲线y=k x (k>0,x>0)交于点A,将直线y=12x 向上平移4个单位长度后,与y 轴交于点C,与双曲线y=kx (k>0,x>0)交于点B.若OA=3BC,则k 的值为( )A.3B.6C.94D.92第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分) 13.要使二次根式√x -2有意义,则x 的取值范围是 . 14.一副三角板如图所示放置,则∠AOB= °.15.因式分解:x 2-25= .16.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末体育成绩(百分制)分别是80分,90分,则小海这个学期的体育综合成绩是 分.17.有这样一组数据a1,a2,a3,…,a n,满足以下规律:a1=12,a2=11-a1,a3=11-a2,…,a n=11-a n-1(n≥2且n为正整数),则a2013的值为.(结果用数字作答)18.如图,在边长为2的正三角形中,将其内切圆和三个角切圆...(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为.三、(本大题共2小题,每小题满分6分,共12分)19.计算:20130-√27+2cos60°+(-2).20.先化简,再求值:(x x-1+1x-1)÷x+1x2-2x+1,其中x=-2.四、(本大题共2小题,每小题满分8分,共16分)21.如图,△ABC三个顶点坐标分别为A(-1,3),B(-1,1),C(-3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2.请在第三象限内画出△A2B2C2,并求出S△A1B1C1∶S△A2B2C2的值.22.2013年6月,某中学结合广西中小学生阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②所提供的信息,解答下列问题:(1)在这次抽样调查中,一共抽查了多少名学生?(2)请把折线统计图(图①)补充完整;(3)求出扇形统计图(图②)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.五、(本大题满分8分)23.如图,在菱形ABCD中,AC是对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.六、(本大题满分10分)24.在一条笔直的公路上有A、B两地.甲骑自行车从A地到B地;乙骑摩托车从B地到A地,到达A地后立即按原路返回.如图是甲、乙两人离.B.地的距离....y(km)与行驶时间x(h)之间的函数图象.根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;甲、乙两人能(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,请直接写出....够用无线对讲机保持联系时x的取值范围.七、(本大题满分10分)25.如图,在△ABC中,∠BAC=90°,AB=AC,AB是☉O的直径,☉O交BC于点D,DE⊥AC于点E,BE交☉O于点F,连结AF,AF的延长线交DE于点P.(1)求证:DE是☉O的切线;(2)求tan∠ABE的值;(3)若OA=2,求线段AP的长.八、(本大题满分10分)26.如图,抛物线y=ax2+c(a≠0)经过C(2,0)、D(0,-1)两点,并与直线y=kx交于A、B两点,直线l 过点E(0,-2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM; (3)探究:①当k=0时,直线y=kx 与x 轴重合,求出此时1AM +1BN 的值;②试说明无论k 取何值,1AM +1BN 的值都等于同一个常数.答案全解全析:1.C 因为-2<0<1<5,所以最大的数为5,故选C.2.A 半圆绕直径所在的直线旋转一周所得的几何体为球,故选A.3.C 7 900=7.9×103,故选C.4.A 在平行光线下,矩形的投影可能是线段或矩形或正方形,矩形的平行投影不可能是三角形,故选A.5.D 甲抽到每个跑道的可能性相等,共4个跑道,则甲抽到每个跑道的可能性都是14,抽到1号道的概率为14,故选D.6.C 由x -2x+1=0解得x=2,当x=2时,x+1≠0,故x=2是原分式方程的解,故选C. 7.B S 圆锥侧=πrl=15×20π=300π cm 2,故选B.8.B 因为3a 3+2a 3=5a 3,a 4·a 2=a 6,(ab 2)3=a 3b 6,所以选项A 、C 、D 错误,故选B. 9.C 设笑脸气球x 元/个,爱心气球y 元/个. 则{3x +y =14,①x +3y =18,②由①+②得2(x+y)=16,故选C.评析 本题考查二元一次方程组的应用,确定等量关系列方程组是关键,应根据题意灵活解方程组.10.D 由题中图象可知抛物线的对称轴为x=1,顶点坐标为(1,-4),开口向上,点(-1,0)关于直线x=1的对称点为(3,0),故选项A 、B 、C 正确,故选D.11.B 连结AD,则∠BAD =12∠BOD=∠BAC,∴BC ⏜=BD ⏜,又AB 为直径,∴CD⊥AB,DE=12CD=4,设☉O 的半径为r,则OE=8-r,在Rt△DEO 中,OE 2+DE 2=OD 2,(8-r)2+42=r 2,解得r=5,故选B. 12.D 作AE⊥y 轴于点E,BF⊥y 轴于点F,易证△BFC∽△AEO,所以BF AE =BC AO =13,设x B =m,则x A =3m,所以有B (m ,12m +4),A (3m ,32m).因点A,B 在y=kx 上,所以k=m (12m +4)=3m·32m,解得m=0(舍去)或m=1.所以k=92,故选D.评析 本题考查一次函数、反比例函数、图形的相似等知识,关键是根据相似比确定A 、B 两点的坐标,求出k 值.属中等难度题. 13.答案 x≥2解析 x-2≥0时二次根式有意义,∴x≥2. 14.答案 105解析 由题意得∠AOB=45°+60°=105°. 15.答案 (x+5)(x-5)解析 由平方差公式得x 2-25=(x+5)(x-5). 16.答案 86解析 设综合成绩为x ,则x =80×40%+90×60%=86(分). 17.答案 -1 解析 a 1=12,a 2=11-a 1=11-12=2,a 3=11-a 2=11-2=-1,a 4=11-a 3=11-(-1)=12,…,即每3个循环一次,而2 013÷3=671,所以a 2 013=-1.18.答案 √3-4π9解析 设内切圆的半径为R,角切圆的半径为r,可求得R=√33,r=√39,S 阴影=√34×22-πR 2-3πr 2=√3-π3-π9=√3-4π9.19.解析 原式=1-3√3+2×12-2(4分)=1-3√3+1-2(5分) =-3√3.(6分) 20.解析 原式=x+1x -1÷x+1(x -1)2(2分)=x+1x -1·(x -1)2x+1(3分)=x-1.(4分)当x=-2时,原式=-2-1(5分) =-3.(6分)21.解析 (1)轴对称图形如图所示.(3分) (2)位似图形如图所示.(6分)∵△A 1B 1C 1∽△A 2B 2C 2,A 1B 1A 2B 2=12,(7分)∴S △A 1B 1C 1∶S △A 2B 2C 2=(12)2=14.(8分) 22.解析 (1)90÷30%=300(名).(2分) (2)如图所示. (4分)×360°=48°.(6分)(3)40300×1 800=480(名).(8分)(4)8030023.解析(1)证明:在菱形ABCD中,AB=BC=CD=DA,(1分)∠B=∠D.(2分)∵点E、F分别是边BC、AD的中点,∴BE=DF,(3分)∴△ABE≌△CDF.(4分)(2)解法一:∵AB=BC,∠B=60°,∴△ABC是等边三角形.(5分) ∵点E是BC边的中点,∴AE⊥BC.(6分)在Rt△ABE中,sin∠B=AE,(7分)AB=2√3.(8分)∴AE=AB·sin∠B=4×√32解法二:∵AB=BC,∠B=60°,∴△ABC是等边三角形.(5分)∵点E是BC边的中点,∴AE⊥BC.(6分)∴∠BAE=30°.AB=2,(7分)在Rt△ABE中,BE=12∴AE=√AB2-BE2=√42-22=2√3.(8分)评析 本题考查菱形的性质、三角形全等的判定、等边三角形的性质、勾股定理等知识,属基础题.24.解析 (1)30千米.(2分)(2)解法一:当0≤x≤2时,设y甲=kx+b,将点(0,30),(2,0)代入得{b =30,2k +b =0,解得{k =-15,b =30,∴y 甲=-15x+30(0≤x≤2).(3分)当0≤x≤1时,设y 乙=mx,将点(1,30)代入得m=30,∴y 乙=30x(0≤x≤1),(4分)当y 甲=y 乙时,-15x+30=30x,(5分)解得x=23,此时y 甲=y 乙=20,∴点M 的坐标为(23,20).(6分) 该点坐标所表示的实际意义:甲、乙两人行驶23小时后第一次相遇,此时两人离B 地的距离均为20千米.(7分)解法二:由题图可知,甲的速度为15千米/时,(3分)乙的速度为30千米/时.(4分)设经过x 小时后甲、乙两人第一次相遇,则15x+30x=30,(5分)解得x=23,∴30x=20,∴点M 的坐标为(23,20).(6分) 该点坐标所表示的实际意义:甲、乙两人行驶23小时后第一次相遇,此时两人离B 地的距离均为20千米.(7分)(3)35≤x≤23(8分)或23<x≤1115(9分)或95≤x≤2.(10分)评析本题是以行程问题为背景的一次函数应用型问题,考查了待定系数法求函数解析式,一次函数图象及其性质,数形结合是常用的解题方法.25.解析(1)证法一:连结OD.∵∠BAC=90°,AB=AC,∴∠C=∠ABC=45°.∵DE⊥AC,∴∠CDE=45°.(1分)∵OB=OD,∴∠ODB=∠ABC=45°.(2分)∵∠CDE+∠ODE+∠ODB=180°,∴∠ODE=90°,∴DE是☉O的切线.(3分)证法二:连结OD.∵∠BAC=90°,AB=AC,∴∠ABC=45°.∵OB=OD,∴∠ODB=∠ABC=45°,(1分)∴∠DOB=90°.(2分)∵DE⊥AC,BA⊥AC,∴DE∥BA,∴∠ODE=∠DOB=90°,∴DE是☉O的切线.(3分)(2)∵∠BAC=∠DEA=∠ODE=90°,OA=OD,∴四边形AODE是正方形.(4分)∴AE=OA=12AB,(5分)∴tan∠ABE=AEAB =12.(6分)(3)∵AB是☉O的直径, ∴∠AFB=90°.(7分)∵∠EAP+∠PAB=90°,∠PAB+∠ABE=90°,∴∠EAP=∠ABE,(8分)∴tan∠ABE=tan∠EAP=PE AE =12.∵AE=OA=2,∴PE=1.(9分)在Rt△AEP 中,AP=√AE 2+PE 2=√5.(10分)评析 本题考查圆的性质、切线的判定、平行四边形的性质以及解直角三角形,构造相应的直角三角形是解题关键.26.解析 (1)将点C(2,0),D(0,-1)代入y=ax 2+c得{c =-1,4a +c =0,(1分) 解得{a =14,c =-1,∴此抛物线的解析式为y=14x 2-1.(2分) (2)证明:过点A 作AG 垂直于y 轴,垂足为点G.设点A 的坐标为(x 1,14x 12-1),则AO 2=AG 2+GO 2 =x 12+(14x 12-1)2=116x 14+12x 12+1.(3分)AM 2=(14x 12-1+2)2 =116x 14+12x 12+1.(4分) ∴AO 2=AM 2.∵AO、AM 的值均为正数,∴AO=AM.(5分)(3)①当k=0时,直线AB 与x 轴重合,且AB∥MN,则AM=2,BN=2,∴1AM +1BN =1.(6分) ②当k>0时,延长AG,交BN 于点H,由(2)可知AO=AM,同理可证:BO=BN.(7分)设AO=AM=m,BN=BO=n.易知BN∥OE,∴△AGO∽△AHB,∴AOOG =ABBH,即m2-m=m+nn-m,(8分)整理得m+n=mn.∵m≠0,n≠0,∴两边同除以mn得1m +1n=1,即1AM +1BN=1.(9分)当k<0时,同理可证:1AM +1BN=1,综上所述,无论k取何值,1AM +1BN的值都等于同一个常数.(10分)评析本题属二次函数的综合题,考查了待定系数法求函数解析式、勾股定理、三角形相似的判定与性质,本题难点在相似三角形的构造,依据条件作垂线是构造相似三角形的途径.本题对学生的计算能力要求较高,属难题.。

2013年广西省钦州市中考数学试题(word版,含答案)

广西钦州市2013年中考数学试卷一、选择题(共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项是符合题意的。

用2B铅笔把答题卡上对应题目的答案标号涂黑)1.(3分)7的倒数是()A.﹣7 B.7C.﹣17D.172.(3分)随着交通网络的不断完善.旅游业持续升温,据统计,在今年“五一”期间,某风景区接待游客403000人,这个数据用科学记数法表示为()A.403×103B.40.3×104C.4.03×105D.0.403×1063.(3分)下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.4.(3分)在下列实数中,无理数是()A.0B.C.D.65.(3分)已知⊙O1与⊙O2的半径分别为2cm 和3cm,若O1O2=5cm.则⊙O1与⊙O2的位置关系是()A.外离B.相交C.内切D.外切6.(3分)下列运算正确的是()A.5﹣1= B.x2•x3=x6C.(a+b)2=a2+b2D.=7.(3分)关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是()A.m<3 B.m≤3 C.m>3 D.m≥38.(3分)下列说法错误的是()A.打开电视机,正在播放广告这一事件是随机事件B.要了解小赵一家三口的身体健康状况,适合采用抽样调查C.方差越大,数据的波动越大D.样本中个体的数目称为样本容量9.(3分)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为()A.+=1 B.10+8+x=30 C.+8(+)=1D.(1﹣)+x=810.(3分)等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°11.(3分)如图,图1、图2、图3分别表示甲、乙、丙三人由甲A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为()A.甲<乙<丙B.乙<丙<甲C.丙<乙<甲D.甲=乙=丙12.(3分)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2B.3C.4D.5二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上)13.(3分)比较大小:﹣12(填“>”或“<”)14.(3分)当x=时,分式无意义.15.(3分)请写出一个图形经过一、三象限的正比例函数的解析式.16.(3分)如图,DE是△ABC的中位线,则△ADE与△ABC的面积的比是.17.(3分)不等式组的解集是.18.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.三、解答题(本大题共8分,满分66分,请将答案写在答题卡上,解答应写出文字说明或演算步骤)19.(6分)计算:|﹣5|+(﹣1)2013+2sin30°﹣.20.(6分)如图,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求证:梯形ABCD是等腰梯形.21.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.22.(12分)(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:①所调查的七年级50名学生在这个月内做好事次数的平均数是 4.4,众数是5,极差是6:②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.①用“树状图法”或“列表法”表示所有可能出现的结果;②取出的两个小球上所写数字之和是偶数的概率是多少?23.(7分)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A(﹣2,m),B(4,﹣2)两点,与x轴交于C点,过A作AD⊥x轴于D.(1)求这两个函数的解析式:(2)求△ADC的面积.24.(7分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)25.(10分)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.26.(12分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.(1)求点A的坐标和∠AOB的度数;(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;(3)在(2)的情况下,判断点C′是否在抛物线y=x2+2x上,请说明理由;(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.参考答案1、D2、C3、B4、C5、D6、A7、A8、B9、C 10、B 11、D 12、C13、<14、215、y=x(答案不唯一)16、1:417、3<x≤518、1019.:解:原式=5﹣1+2×﹣5=﹣1+1=0.20.:证明:∵AB∥DE,∴∠DEC=∠B,∵∠DEC=∠C,∴∠B=∠C,∴梯形ABCD是等腰梯形.21.解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).22.:解:(1)①平均数;(2×5+3×6+4×13+5×16+6×10)÷50=4.4;众数:5次;极差:6﹣2=4;②做好事不少于4次的人数:800×=624;(2)①如图所示:②一共出现6种情况,其中和为偶数的有3种情况,故概率为=.23.解:(1)∵反比例函数y=的图象过B(4,﹣2)点,∴k=4×(﹣2)=﹣8,∴反比例函数的解析式为y=﹣;∵反比例函数y=的图象过点A(﹣2,m),∴m=﹣=4,即A(﹣2,4).∵一次函数y=ax+b的图象过A(﹣2,4),B(4,﹣2)两点,∴,解得∴一次函数的解析式为y=﹣x+2;(2)∵直线AB:y=﹣x+2交x轴于点C,∴C(2,0).∵AD⊥x轴于D,A(﹣2,4),∴CD=2﹣(﹣2)=4,AD=4,∴S△ADC=•CD•AD=×4×4=8.24.:解:(1)过B作BG⊥DE于G,Rt△ABF中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5;(2)由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.25.解:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AC为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形BOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.26.解:(1)∵由y=x2+2x得,y=(x﹣2)2﹣2,∴抛物线的顶点A的坐标为(﹣2,﹣2),令x2+2x=0,解得x1=0,x2=﹣4,∴点B的坐标为(﹣4,0),过点A作AD⊥x轴,垂足为D,∴∠ADO=90°,∴点A的坐标为(﹣2,﹣2),点D的坐标为(﹣2,0),∴OD=AD=2,∴∠AOB=45°;(2)四边形ACOC′为菱形.由题意可知抛物线m的二次项系数为,且过顶点C的坐标是(2,﹣4),∴抛物线的解析式为:y=(x﹣2)2﹣4,即y=x2﹣2x﹣2,过点C作CE⊥x轴,垂足为E;过点A作AF⊥CE,垂足为F,与y轴交与点H,∴OE=2,CE=4,AF=4,CF=CE﹣EF=2,∴OC===2,同理,AC=2,OC=AC,由反折不变性的性质可知,OC=AC=OC′=AC′,故四边形ACOC′为菱形.(3)如图1,点C′不在抛物线y=x2+2x上.理由如下:过点C′作C′G⊥x轴,垂足为G,∵OC和OC′关于OA对称,∠AOB=∠AOH=45°,∴∠COH=∠C′OG,∵CE∥OH,∴∠OCE=∠C′OG,又∵∠CEO=∠C′GO=90°,OC=OC′,∴△CEO≌△C′GO,∴OG=4,C′G=2,∴点C′的坐标为(﹣4,2),把x=﹣4代入抛物线y=x2+2x得y=0,∴点C′不在抛物线y=x2+2x上;(4)存在符合条件的点Q.∵点P为x轴上的一个动点,点Q在抛物线m上,∴设Q(a,(a﹣2)2﹣4),∵OC为该四边形的一条边,∴OP为对角线,∴=0,解得x1=6,x2=4,∴P(6,4)或(﹣2,4)(舍去),∴点Q的坐标为(6,4).。

2013年广西河池中考数学试题(解析版)

2013年广西河池中考数学试题一.选择题1.(2013河池)在﹣2,﹣1,1,2这四个数中,最小的数是()A.﹣2 B.﹣1 C.1 D.2考点:有理数大小比较.分析:画出数轴,在数轴上标出各点,再根据数轴上右边的数总比左边的数大的特点进行解答.解答:解:如图所示:∵四个数中﹣2在最左边,∴﹣2最小.故选A.点评:本题考查的是有理数的大小比较,根据题意画出数轴.利用“数形结合”解答是解答此题的关键.2.(2013河池)如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是()A.20°B.50°C.70°D.110°考点:平行线的性质;对顶角、邻补角.分析:首先根据对顶角相等可得∠1=∠3,进而得到∠3=70°,然后根据两直线平行,同位角相等可得∠2=∠3=70°.解答:解:∵∠1=70°,∴∠3=70°,∵a∥b,∴∠2=∠3=70°,故选:C.点评:此题主要考查了平行线的性质,关键是掌握据两直线平行,同位角相等.3.(2013河池)如图所示的几何体,其主视图是()A.B.C.D.考点:简单组合体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形.从物体正面看,看到的是一个等腰梯形.解答:解:从物体正面看,看到的是一个等腰梯形.故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.4.(2013河池)2013年河池市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是()A.300名考生的数学成绩B.300C.3.2万名考生的数学成绩D.300名考生考点:总体、个体、样本、样本容量.分析:根据总体、样本、样本容量的定义可得答案.解答:解:3.2万名考生的数学成绩是总体,300名考生的数学成绩是样本,300是样本容量.故选:A.点评:此题主要考查了总体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5.(2013河池)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:把各不等式的解集在数轴上表示出来即可.解答:解:不等式组的解集在数轴上表示为:故选B.点评:本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.6.(2013河池)一个三角形的周长是36cm,则以这个三角形各边中点为顶点的三角形的周长是()A.6cm B.12cm C.18cm D.36cm考点:三角形中位线定理.分析:由三角形的中位线定理可知,以三角形三边中点为顶点的三角形的周长是原三角形周长的一半.解答:解:如图,点D、E、F分别是AB、AC、BC的中点,∴DE=BC,DF=AC,EF=AB,∵原三角形的周长为36cm,则新三角形的周长为=18(cm).故选C.点评:本题考查三角形的中位线,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.7.(2013河池)下列运算正确的是()A.x2+x3=x5B.(x2)3=x8C.x6÷x2=x3 D.x4x2=x6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项、同底数幂的乘除法、幂的乘方与积的乘方的法则对每一项进行分析,即可得出答案.解答:解:A.不是同类项,不能合并,故本选项错误;B.(x2)3=x6,故本选项错误;C.x6÷x2=x4,故本选项错误;D.x4x2=x6,故本选项错误.故选D.点评:此题考查了合并同类项、同底数幂的乘除法、幂的乘方与积的乘方,解题的关键是熟练掌握运算顺序和法则,注意指数的变化.8.(2013河池)如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有()A.5对B.4对C.3对D.2对考点:旋转的性质;全等三角形的判定与性质.分析:根据三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.解答:解:旋转后的图中,全等的三角形有:△B′CG≌△DCE,△A′B′C≌△ADC,△AGF≌△A′EF,△ACE≌△A′CG,共4对.故选:B.点评:本题考查图形的旋转和三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角,难度不大.9.(2013河池)如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3cm,则弦AB的长为()A.9cm B.3cm C.cm D.cm考点:垂径定理;圆周角定理;解直角三角形.分析:根据圆周角定理求出∠AOD,求出∠OAD,根据含30度角的直角三角形性质和勾股定理求出AD、OD,根据垂径定理即可求出AB.解答:解:∵∠CBA=30°,∴∠AOC=2∠CBA=60°,∵AB⊥OC,∴∠ADO=90°,∴∠OAD=30°,∴OD=OA=×3=(cm),由勾股定理得:AD==4.5cm,∵AB⊥OC,OC过O,∴AB=2AD=9(cm),故选A.点评:本题考查了垂径定理,含30度角的直角三角形性质,圆周角定理,勾股定理的应用,主要考查学生的推理和计算能力.10.(2013河池)如图,AB为⊙O的直径,C为⊙O外一点,过点C作的⊙O切线,切点为B,连结AC 交⊙O于D,∠C=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是()A.19°B.38°C.52°D.76°考点:切线的性质;圆周角定理.分析:首先连接BD,由AB为⊙O的直径,BC是⊙O的切线,根据圆周角定理与切线的性质,可得∠ADB=90°,AB⊥BC,又由同角的余角相等,易证得∠AED=∠ABD=∠C.解答:解:连接BD,∵AB为⊙O的直径,BC是⊙O的切线,∴∠ADB=90°,AB⊥BC,∴∠C+∠BAC=∠BAC+∠ABD=90°,∴∠ABD=∠C,∵∠AED=∠ABD,∴∠AED=∠C=38°.故选B.点评:此题考查了切线的性质以及圆周角定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.11.(2013河池)如图,在直角梯形ABCD中,AB=2,BC=4,AD=6,M是CD的中点,点P在直角梯形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示是()A. B. C.D.考点:动点问题的函数图象.分析:根据题意,求出点P与点B.点C重合时,即x=2,x=6时,y的值,结合选项进行判断即可得出答案.解答:解:连接AC,过点C作CE⊥AD于点E,过点M作MF⊥AB于点F,易得CE=2,MF=5,,当点P于与点B重合,即x=2时,y=AP×MF=×2×5=5;当点P于与点C重合,即x=6时,y=AD×CE=×6×2=6;结合函数图象可判断选项B正确.故选B.点评:本题考查了动点问题的函数图象,解答本题的关键是找到两个关键点,这样的题目思路不止一种,有时候不需要我们费力的求解出函数解析式.12.(2013河池)已知二次函数y=﹣x2+3x﹣,当自变量x取m对应的函数值大于0,设自变量分别取m﹣3,m+3时对应的函数值为y1,y2,则()A.y1>0,y2>0 B.y1>0,y2<0 C.y1<0,y2>0 D.y10,y2<0考点:二次函数图象上点的坐标特征;数形结合.分析:根据二次函数的性质得到二次函数y=﹣x2+3x﹣的图象的对称轴为x=,抛物线与y轴的交点为(0,﹣),则可得到抛物线与x轴两交点之间的距离小于3,所以当x=m时,y>0;当x=m﹣3时,y1<0;当x=m+3时,y2<0.解答:解:如图,∵二次函数y=﹣x2+3x﹣的图象的对称轴为x=﹣=,而抛物线与y轴的交点为(0,﹣),∴抛物线与x轴两交点之间的距离小于3,∵当x=m时,y>0,∴当x=m﹣3时,y1<0;当x=m+3时,y2<0.故选D.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式y=ax2+bx+c(a≠0).二.填空题13.(2013河池)若分式有意义,则x的取值范围是.考点:分式有意义的条件.分析:根据分式有意义的条件可知x﹣1≠0,再解不等式即可.解答:解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.点评:此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.14.(2013河池)分解因式:ax2﹣4a= .考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:ax2﹣4a,=a(x2﹣4),=a(x+2)(x﹣2).点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(2013河池)袋子中装有4个黑球2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,这个球为白球的概率是.考点:概率公式.分析:由袋子中装有4个黑球2个白球,这些球的形状、大小、质地等完全相同.直接利用概率公式求解即可求得答案.解答:解:∵袋子中装有4个黑球2个白球,这些球的形状、大小、质地等完全相同.∴随机地从这个袋子中摸出一个球,这个球为白球的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.16.(2013河池)如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是.考点:三角形内角和定理.分析:先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的定义求出∠ABC+∠ACN的度数,由三角形内角和定理即可得出结论.解答:解:∵△BOC中,∠BOC=120°,∴∠1+∠2=180°﹣120°=60°,∵BO和CO是△ABC的角平分线,∴∠ABC+∠ACB=2(∠1+∠2)=2×60°=120°,在△ABC中,∵∠ABC+∠ACB=120°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣120°=60°.故答案为:60°.点评:本题考查的是角平分线的定义,三角形内角和定理,即三角形的内角和是180°.17.(2013河池)如图,在△ABC中,AC=6,BC=5,sinA=,则tanB= .考点:解直角三角形.分析:如图,过点C作CD⊥AB于点D.通过解直角△ACD可以求得CD=4;然后通过解直角△CDB来求tanB的值.解答:解:如图,过点C作CD⊥AB于点D.∵在直角△ACD中,AC=6,sinA=,∴==,则CD=4.∴在直角△CDB中,由勾股定理求得BD===3,∴tanB==.故答案是:.点评:本题考查了解直角三角形.在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.18.(2013河池)如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质.分析:设BE=x,则EC=4﹣x,先利用等角的余角相等得到∠BAE=∠FEC,则可判断Rt△ABE∽Rt△ECF,利用相似比克表示出FC=,则DF=4﹣FC=4﹣=x2﹣x+4=(x﹣2)2+3,所以x=2时,DF有最小值3,而AF2=AD2+DF2,即DF最小时,AF最小,AF的最小值为=5.解答:解:设BE=x,则EC=4﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BEA=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴=,即=,解得FC=,∴DF=4﹣FC=4﹣=x2﹣x+4=(x﹣2)2+3当x=2时,DF有最小值3,∵AF2=AD2+DF2,∴AF的最小值为=5.故答案为:5.点评:本题考查了相似三角形的判定与性质:有两组对应边的比相等,并且它们的夹角也相等,那么这两个三角形相似;相似三角形的对应角相等,对应边的比相等.也考查了正方形的性质以及二次函数的最值问题.三.解答题19.(2013河池)计算:2cos30°﹣+(﹣3)2﹣|﹣|,(说明:本题不能使用计算器)考点:实数的运算;特殊角的三角函数值.分析:本题涉及平方根、特殊角的三角函数值、乘方、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2×﹣3+9﹣=+6﹣=6.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握平方根、特殊角的三角函数值、乘方、绝对值考点的运算.20.(2013河池)先化简,再求值:(x+2)2﹣(x+1)(x﹣1),其中x=1.考点:整式的混合运算—化简求值.分析:先根据整式乘法法则进行计算,再合并同类项,最后代入求出即可.解答:解:(x+2)2﹣(x+1)(x﹣1)=x2+4x+4﹣x2+1=4x+5,当x=1时,原式=4×1+5=9.点评:本题考查了整式的混合运算和求值的应用,主要考查学生的计算和化简能力.21.(2013河池)请在图中补全坐标系及缺失的部分,并在横线上写恰当的内容.图中各点坐标如下:A (1,0),B(6,0),C(1,3),D(6,2).线段AB上有一点M,使△ACM∽△BDM,且相似比不等于1.求出点M的坐标并证明你的结论.解:M(,)证明:∵CA⊥AB,DB⊥AB∴∠CAM=∠DBM= 度.∵CA=AM=3,DB=BM=2∴∠ACM=∠AMC(),∠BDM=∠BMD(同理),∴∠ACM=(180°﹣)=45°.∠BDM=45°(同理).∴∠ACM=∠BDM在△ACM与△BDM中,∴△ACM∽△BDM(如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似)考点:相似形综合题.分析:根据各点坐标如下:A(1,0),B(6,0),C(1,3),D(6,2).可以补全坐标系及缺失的部分,根据相似三角形的性质可得M(4,0),通过AA可证△ACM∽△BDM.解答:解:如图所示:当△ACM∽△BDM时,=,解得AM=3,则M(4,0).理由如下:∵CA⊥AB,DB⊥AB∴∠CAM=∠DBM=90度.∵CA=AM=3,DB=BM=2∴∠ACM=∠AMC(等边对等角),∠BDM=∠BMD(同理),∴∠ACM=(180°﹣90°)=45°.∠BDM=45°(同理).∴∠ACM=∠BDM在△ACM与△BDM中,,∴△ACM∽△BDM(如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似)点评:考查了平面直角坐标系的知识,相似三角形的判定和性质,本题难点是确定点M的坐标.22.(2013河池)为响应“美丽河池清洁乡村美化校园”的号召,红水河中学计划在学校公共场所安装温馨提示牌和垃圾箱.已知,安装5个温馨提示牌和6个垃圾箱需730元,安装7个温馨提示牌和12个垃圾箱需1310元.(1)安装1个温馨提示牌和1个垃圾箱各需多少元?(2)安装8个温馨提示牌和15个垃圾箱共需多少元?考点:二元一次方程组的应用.分析:(1)先设安装1个温馨提示牌需要x元,1个垃圾箱需要y元,根据安装5个温馨提示牌和6个垃圾箱需730元,安装7个温馨提示牌和12个垃圾箱需1310元,列出方程组,求出方程组的解即可.(2)根据安装1个温馨提示牌和1个垃圾箱各需50元、80元,可得安装8个温馨提示牌和15个垃圾箱共需的钱数是:50×8+80×15,再进行计算即可.解答:解:(1)设安装1个温馨提示牌需要x元,1个垃圾箱需要y元,根据题意得;,解得:,答:安装1个温馨提示牌和1个垃圾箱各需50元、80元.(2)安装8个温馨提示牌和15个垃圾箱共需的钱数是:50×8+80×15=1600(元),答:安装8个温馨提示牌和15个垃圾箱共需1600元.点评:本题考查了二元一次方程组的应用,关键是读懂题意,找出题目中的数量关系,根据数量关系列出方程组.23.(2013河池)瑶寨中学食堂为学生提供了四种价格的午餐供其选择,这四种价格分别是:A.3元,B.4元,C.5元,D.6元.为了了解学生对四种午餐的购买情况,学校随机抽样调查了甲、乙两班学生某天购买四种午餐的情况,依据统计数据制成如下的统计图表:甲、乙两班学生购买午餐的情况统计表品种人数班别A B C D甲 6 22 16 6乙?13 25 3(1)求乙班学生人数;(2)求乙班购买午餐费用的中位数;(3)已知甲、乙两班购买午餐费用的平均数为4.44元,从平均数和众数的角度分析,哪个班购买的午餐价格较高?(4)从这次接受调查的学生中,随机抽查一人,恰好是购买C种午餐的学生的概率是多少?考点:扇形统计图;统计表;加权平均数;中位数;众数;概率公式.分析:(1)由乙班学生购买C午餐的人数为25人,占百分比为:50%,即可求得乙班学生人数;(2)由乙班学生人数共50人,即可求得乙班购买午餐费用的中位数;(3)由甲、乙两班购买午餐费用的平均数为4.44元,可得甲班购买午餐费用的众数是:购买B午餐:4元;乙班购买午餐费用的众数是:购买C午餐:5元;即可求得答案;(4)直接利用概率公式求解即可求得答案.解答:解:(1)∵乙班学生购买C午餐的人数为25人,占百分比为:50%,∴乙班学生人数为:25÷50%=50(人);(2)∵乙班学生人数共50人,∴乙班购买午餐费用的中位数应在25与26人的平均数,∴乙班购买午餐费用的中位数是:购买C午餐:6元;(3)∵甲、乙两班购买午餐费用的平均数为4.44元,甲班购买午餐费用的众数是:购买B午餐:4元;乙班购买午餐费用的众数是:购买C午餐:5元;∴甲班购买的午餐价格较高;(4)恰好是购买C种午餐的学生的概率是:=.点评:本题考查扇形统计图、众数、中位数以及概率公式.注意在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°比.24.(2013河池)华联超市欲购进A、B两种品牌的书包共400个.已知两种书包的进价和售价如下表所示.设购进A种书包x个,且所购进的两种书包能全部卖出,获得的总利润为w元.品牌进价(元/个)售元(元/个)A 47 65B 37 50(1)求w关于x的函数关系式;(2)如果购进两种书包的总费不超过18000元,那么该商场如何进货才能获得最大?并求出最大利润.(提示利润率=售价﹣进价)考点:一次函数的应用.分析:(1)根据总利润=每个的利润×数量就可以表示出w与x之间的关系式;(2)分别表示出购买A、B两种书包的费用,由其总费用不超过18000元建立不等式组求出取值范围,再由一次函数的解析式据可以求出进货方案及最大利润.解答:解:由题意,得w=(65﹣47)x+(50﹣37)(400﹣x),=2x+5200.∴w关于x的函数关系式:w=2x+5200;(2)由题意,得47x+37(400﹣x)≤18000,解得:x≤320.∵w=2x+5200,∴k=2>0,∴w随x的增大而增大,∴当x=320时,w最大=5840.∴进货方案是:A种书包购买320个,B种书包购买80个,才能获得最大利润,最大利润为5840元.点评:本题考查了由销售问题的数量关系求函数的解析式的运用,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.25.(2013河池)如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△ABD≌△FBC;(2)如图(2),已知AD=6,求四边形AFDC的面积;(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2.在任意△ABC中,c2=a2+b2+k.就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可).考点:四边形综合题;综合题.分析:(1)由正方形ABFG与BCFD,得到两对边相等,一对直角相等,根据图形利用等式的性质得到一对角相等,利用SAS即可得到三角形全等;(2)连接FD,由(1)的三角形全等,得到AD=FC,∠BAD=∠BFC,利用等式的性质及垂直定义得到AD与CF垂直,四边形AFDC面积=三角形ACD面积+三角形ACF面积+三角形DMF面积﹣三角形ACM 面积,求出即可;(3)根据a,b及c为三角形三边长,利用两边之和大于第三边,两边之差小于第三边列出关于c的不等式,将a与b的值代入求出c的范围,进而确定出c2的范围,即a2+b2+k的范围,即可求出k的范围.解答:解:(1)∵正方形ABFG、BCED,∴AB=FB,CB=DB,∠ABF=∠CBD=90°,∴∠BAF+∠ABC=∠CBD+∠ABC,即∠ABD=∠CBF,在△ABD和△FBC中,,∴△ABD≌△FBC(SAS);(2)连接FD,∵△ABD≌△FBC,∴AD=FC,∠BAD=∠BFC,∴∠AMF=180°﹣∠BAD﹣∠CMA=180°﹣(∠BFC+∠BMF)=180°﹣90°=90°,∴AD⊥CF,∵AD=6,∴FC=AD=6,∴S四边形AFDC=S△ACD+S△ACF+S△DMF﹣S△ACM=AD•CM+CF•AM+DM•CM﹣AM•CM=3CM+3AM+(6﹣AM)(6﹣CM)﹣AM•CM=18;(3)∵在△ABC中,设BC=a=3,AC=b=2,AB=c,∴a﹣b<c<a+b,即1<c<5,∴1<c2<25,即1<a2+b2+k=13+k<25,解得:﹣12<k<12.点评:此题考查了全等三角形的判定与性质,三角形、四边形的面积,以及三角形的三边关系,属于多知识点的四边形综合题.26.(2013河池)已知:抛物线C 1:2y x =。

2013年中考数学真题

2013年中考数学真题(方程、不等式和函数)一元二次方程1.(2013宁夏) 一元二次方程x x x -=-2)2(的根是( ) A. 1- B. 0 C.1和2 D. 1-和22.(2013•乌鲁木齐)若关于x 的方程式x 2﹣x+a=0有实根,则a 的值可以是( ) A . 2 B . 1 C . 0.5 D . 0.25 3.(2013•新疆)如果关于x 的一元二次方程x 2﹣4x+k=0有实数根,那么k 的取值范围是 .4.(2013•鞍山)已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 没有实数根 D . 有两个实数根 5、(2013•滨州)一元二次方程2x 2﹣3x+1=0的解为 6.(2013甘肃白银)一元二次方程x 2+x ﹣2=0根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 无实数根 D . 无法确定 7.(2013•呼和浩特)(非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A . 3或﹣1B . 3C . 1D . ﹣3或18、(2013杭州)当x 满足条件⎪⎩⎪⎨⎧-<--<+)4(31)4(21331x x x x 时,求出方程0422=--x x 的根 9.(4分)(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x ﹣2)(x ﹣4)=0的根,则这个三角形的周长是( ) A . 11 B . 11或13 C . 13 D . 以上选项都不正确 10.(2013•天水)从一块正方形的木板上锯掉2m 宽的长方形木条,剩下的面积是48m 2,则原来这块木板的面积是( ) A . 100m 2 B . 64m 2 C . 121m 2 D . 144m 2 11、(2013昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为X 米,则可列方程为( )A.100×80-100X -80X=7644B.(100-X)(80-X)+X 2=7644C.(100-X)(80-X)=7644D.100X +80X=35612.(2013•乐山)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0. (1)求证:方程有两个不相等的实数根; (2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为5,当△ABC是等腰三角形时,求k 的值. 13、(2013青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程 . 14.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x ,则根据题意可列方程为 . 15.(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( ) A . 48(1﹣x )2=36 B . 48(1+x )2=36 C . 36(1﹣x )2=48 D . 36(1+x )2=48 16.(2013哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 . 17.(2013兰州)据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 A .8200%)1(76002=+x B .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x18.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.19(2013年广东).雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款? 20.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率; (2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.21.(2013绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。

2013年广西自治区百色市中考数学试卷(含答案)

2013年广西百色中考数学试题(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分。

)每小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑。

1.(2013年广西百色3分)-2013的相反数是【】A.-2013 B.2013 C.12013D.12013-【答案】B。

2.(2013年广西百色3分)已知∠A=65°,则∠A的补角的度数是【】A.15°B.35°C.115°D.135°【答案】C。

3.(2013年广西百色3分)百色市人民政府在2013年工作报告中提出,今年将继续实施十项为民办实事工程。

其中教育惠民工程将投资亿元,用于职业培训、扩大农村学前教育资源、农村义务教育学生营养改善计划、学生资助等项目。

那么数据282 000 000用科学记数法(保留两个有效数字)表示为【】A.×108B.×108C.×109D.×109【答案】B。

4.(2013年广西百色3分)下列运算正确的是【】A.2a+3b=5ab B.3x2y-2x2y=1 C.(2 a2)3=6a6 D.5x3÷x2=5x【答案】D。

5.(2013年广西百色3分)一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为【】A.6cm2B.4πcm2C.6πcm2D.9πcm2【答案】B。

6.(2013年广西百色3分)在反比例函数myx=中,当x>0时,y随x的增大而增大,则二次函数y=m x2+m x的图象大致是下图中的【】A.B.C.D.【答案】A。

7.(2013年广西百色3分)今年我市某县6月1日到10日的每一天最高气温变化如折线图所示,则这10个最高气温的中位数和众数分别是【】A.33℃33℃B.33℃32℃C.34℃33℃D.35℃33℃【答案】A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西河池2013年中考数学试题(本试卷满分120分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,共36分。

)每小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑。

1.在-2,-1,1,2这四个数中,最小的是【】A.-2 B.-1 C.1 D.22.如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是【】A.20°B.50°C.70°D.110°3.如图所示的几何体,其主视图是【】A B.C.D4.2013年河池市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是【】A.300名考生的数学成绩B.300 C.3.2万名考生的数学成绩D.300名考生5.把不等式组x>1x1-⎧⎨≤⎩的解集表示在数轴上,正确的是【】A.B.C.D.6.一个三角形的周长是36cm,则以这个三角形各边中点为顶点的三角形的周长..是【】A .6cmB .12cmC .18cmD .36cm 7.下列运算正确的是【 】A .235x x x +=B .()328x x = C .623x x x ÷=D .426x x x ⋅=8.如图(1),已知两个全等三角形的直角顶点及一条直角边重合。

将△ACB 绕点C 按顺时针方向旋转到A CB ''∆ 的位置,其中A C '交直线AD 于点E ,A B ''分别交直线AD 、AC 于点F 、G ,则在图(2)中,全等三角形共有【 】A .5对B .4对C .3对D .2对9.如图,⊙O 的弦AB 垂直半径OC 于点D ,∠CBA =30°,OC =33cm ,则弦AB 的长为【 】A .9cmB .33cmC .29cm D .233cm 10.如图,AB 为⊙O 的直径,C 为⊙O 外一点,过点C 作的⊙O 切线,切点为B ,连结AC 交⊙O 于D ,∠C =38°。

点E 在AB 右侧的半圆上运动(不与A 、B 重合),则∠AED 的大小是【 】A .19°B .38°C .52°D .76°11.如图,在直角梯形ABCD 中,AB=2,BC=4,AD=6,M 是CD 的中点,点P 在直角梯形的边上沿A→B→C→M 运动,则△APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示是【 】A BC D .12.已知二次函数23y x 3x 5-+-=,当自变量x 取m 对应的函数值大于0,设自变量分别取m -3,m +3 时对应的函数值为y 1,y 2,则【 】A .y 1>0,y 2>0B .y 1>0,y 2<0C .y 1<0,y 2>0D .y 1<0,y 2<0二、填空题(本大题共6小题,每小题3分,共18分。

)请把答案填在答题卷指定的位置上。

13.若分式2x 1-有意义,则的取值范围是 ▲ 。

14.分解因式:ax 2-4a = ▲ 。

15.袋子中装有4个黑球2个白球,这些球的形状、大小、质地等完全相同。

在看不到球的条件下,随机地从这个袋子中摸出一个球,这个球为白球的概率是 ▲ 。

16.如图,点O 是△ABC 的两条角平分线的交点,若∠BOC =118°,则∠A 的大小是 ▲ 。

17.如图,在△ABC 中, AC =6,BC =5,sinA =23,则tanB = ▲ 。

18.如图,正方形ABCD 的边长为4,E 、F 分别是BC 、CD 上的两个动点,且AE ⊥EF 。

则AF 的最小值是 ▲ 。

三、解答题(本大题共8小题,共66分)请在答题卷指定的位置上写出解答过程。

19.计算:()22cos303|︒--,(说明:本题不能使用计算器) 20.先化简,再求值:2(x 2)(x 1)(x 1)+-+-,其中x =1。

21.请在图中补全坐标系及缺失的部分,并在横线上写恰当的内容。

图中各点坐标如下:A(1,0),B(6,0),C(1,3),D(6,2)。

线段AB 上有一点M ,使△ACM ∽△BDM ,且相似比不等于1。

求出点M 的坐标并证明你的结论。

解:M ( ▲ , ▲ )证明:∵CA ⊥AB ,DB ⊥AB ,∴∠CAM=∠DBM= ▲ 度。

∵CA=AM=3,DB=BM=2,∴∠ACM=∠AMC ( ▲ ),∠BDM=∠BMD(同理),∴∠ACM=12(180°- ▲ ) =45°。

∠BDM =45°(同理)。

∴∠ACM =∠BDM 。

在△ACM 与△BDM 中,ACM BDM∠=∠⎧⎨⎩ ▲ ,∴△ACM ∽△BDM (如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似)。

22.为响应“美丽河池清洁乡村美化校园”的号召,红水河中学计划在学校公共场所安装温馨提示牌和垃圾箱。

已知,安装5个温馨提示牌和6个垃圾箱需730元,安装7个温馨提示牌和12个垃圾箱需1310元。

(1)安装1个温馨提示牌和1个垃圾箱各需多少元?(2)安装8个温馨提示牌和15个垃圾箱共需多少元?23.瑶寨中学食堂为学生提供了四种价格的午餐供其选择,这四种价格分别是:A.3元,B.4元,C.5元,D.6元。

为了了解学生对四种午餐的购买情况,学校随机抽样调查了甲、乙两班学生某天购买四种午餐的情况,依据统计数据制成如下的统计图表:甲、乙两班学生购买午餐的情况统计表乙班购买午餐情况扇形统计图(1)求乙班学生人数;(2)求乙班购买午餐费用的中位数;(3)已知甲、乙两班购买午餐费用的平均数为4.44元,从平均数和众数的角度分析,哪个班购买的午餐价格较高?(4)从这次接受调查的学生中,随机抽查一人,恰好是购买C种午餐的学生的概率是多少?24.华联超市欲购进A、B两种品牌的书包共400个。

已知两种书包的进价和售价如下表所示。

设购进A种书包x个,且所购进的两种书包能全部卖出,获得的总利润为w元。

(1)求w关于x的函数关系式;(2)如果购进两种书包的总费不超过18000元,那么该商场如何进货才能获得最大利润?并求出最大利润。

(提示利润= 售价-进价)25.如图(1),在Rt△ABC, ∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M。

(1)求证:△ABD≌△FBC;(2)如图(2),已知AD=6,求四边形AFDC的面积;(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2。

在任意△ABC中,c2=a2+b2+k。

就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可)。

26.已知:抛物线C1:y=x2。

如图(1),平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D。

(1)求抛物线C2的解析式;(2)探究四边形ODAB的形状并证明你的结论;(3)如图(2),将抛物线C2向下平移m个单位(m>0)得抛物线C3,C3的顶点为G,与y轴交于M。

点N是M关于x轴的对称点,点P(41m, m33)在直线MG上。

问:当m为何值时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?答案:13.14. ()()a x 2x 2+- 15.13 16. 56° 17.4318. 519. 解:原式=2396-+= 20. 解:原式=()2222x 4x 4x 1x 4x 4x 14x 5++--=++-+=+。

当x =1时,原式=4159⨯+= 21. 解:补全坐标系及缺失的部分如下:M ( 4 , 0 )证明:∵CA ⊥AB ,DB ⊥AB ,∴∠CAM=∠DBM= 90 度。

∵CA=AM=3,DB=BM=2,∴∠ACM=∠AMC ( 等边对等角 ),∠BDM=∠BMD (同理),∴∠ACM=12(180°- 90° ) =45°。

∠BDM =45°(同理)。

∴∠ACM =∠BDM 。

在△ACM 与△BDM 中,CAM AC D M BDMBM ∠=∠∠=∠⎧⎨⎩ ,∴△ACM ∽△BDM (如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似)。

22. 解:(1)设安装1个温馨提示牌需x 元,安装1个垃圾箱需y 元,根据题意,得5x 6y 7307x 12y 1310+=⎧⎨+=⎩,解得x 50y 80=⎧⎨=⎩。

答;安装1个温馨提示牌需50元,安装1个垃圾箱需80元。

(2)∵85015801600⨯+⨯=,∴安装8个温馨提示牌和15个垃圾箱共需1600元。

23. 解:(1)∵3÷6%=50(人),∴乙班学生人数为50人。

(2)∵乙班购买A 价午餐的人数为:50132539---=(人),∴乙班购买午餐费用的中位数都是购买C 价午餐,即乙班购买午餐费用的中位数为5元。

(3)∵甲班购买午餐费用的中位数为4元,∴从平均数和众数的角度分析,乙班购买的午餐价格较高。

(4)∵这次接受调查的学生数为100人,购买C 种午餐的学生有41人, ∴从这次接受调查的学生中,随机抽查一人,恰好是购买C 种午餐的学生的概率是41100。

24. 解:(1)∵购进A 、B 两种品牌的书包共400个,购进A 种书包x 个,∴购进A 种书包400x -个。

根据题意,得()()()w 6547x 5037400x 2x 5200=-+--=+, ∴w 关于x 的函数关系式为w 2x 5200=+。

(2)根据题意,得()47x 37400x 18000+-≤, 解得x 320≤。

由(1)w 2x 5200=+得,w 随x 的增大而增大, ∴当x 320=时,w 最大,为5840。

∴该商场购进A 种品牌的书包320个,B 两种品牌的书包80个,才能获得最大利润,最大利润为5840元。

25. 解:(1)证明:∵正方形ABFG 、BCED ,∴AB=FB ,CB=DB ,∠ABF=∠CBD=90°, ∴∠ABF +∠ABC=∠CBD +∠ABC ,即∠ABD=∠CBF 。

在△ABD 与△FBC 中,∵AB=FB ,∠ABD=∠CBF ,DB= CB , ∴△ABD ≌△FBC (SAS )。

(2)由(1)△ABD ≌△FBC 得,AD=FC ,∠BAD=∠BFC 。

∴∠AMF=180°-∠BAD -∠CMA=180°-∠BFC -∠BMF=180°-90°=90°。

相关文档
最新文档