最新自动照明开关控制系统设计
智慧照明系统设计方案

智慧照明系统设计方案智慧照明系统是一种基于网络和传感器技术的智能照明系统,通过集成控制、感知、通信和管理等功能,实现对照明设备的智能控制和能源的高效利用。
下面将介绍一个基于无线网络的智慧照明系统设计方案。
1. 硬件设计:智慧照明系统的硬件设计主要包括智能照明灯具、无线传感器和网关设备。
智能照明灯具:采用LED灯具,具备可调光、可调色温和自动感应等功能,可根据不同需求灵活调节亮度和色温。
无线传感器:安装在室内或室外,用于感知环境的亮度、温度、湿度等参数,并将数据传输到网关设备。
网关设备:作为系统的核心,负责接收传感器数据并通过云平台实现控制指令的下发,同时将数据传输给云平台进行存储和分析。
2. 软件设计:智慧照明系统的软件设计主要包括嵌入式软件和云平台。
嵌入式软件:位于智能照明灯具和网关设备中的嵌入式软件,实现对灯具的控制和传感器数据的采集和传输。
灯具的控制包括调整亮度、色温和开关等,传感器数据的采集包括环境亮度、温度和湿度等参数。
云平台:作为系统的后台,负责存储和分析传感器数据,并实现对灯具的远程控制和管理。
用户可以通过手机App或Web页面进行照明设备的控制和调节,同时可以查看历史数据和能源消耗情况。
3. 系统架构:智慧照明系统的整体架构如下:传感器节点:包括智能照明灯具和无线传感器,采集环境数据并传输给网关设备。
网关设备:负责接收传感器数据,并将其发送到云平台进行存储和分析,同时接收云平台下发的指令,控制灯具的亮度和色温。
云平台:存储和分析传感器数据,实现对照明设备的远程控制和管理。
用户界面:通过手机App或Web页面,用户可以实时监控和控制照明设备,同时可以查看历史数据和能源消耗情况。
4. 功能设计:智慧照明系统的主要功能包括自动调光、自动调色温、人体感应和远程控制等。
自动调光:根据环境亮度的变化自动调节灯具的亮度,保持适宜的照明效果。
自动调色温:根据环境的变化自动调节灯具的色温,提供适宜的照明氛围。
智能照明系统设计

智能照明系统设计1.硬件设计照明设备应选用节能灯具,如LED灯。
LED灯具具有长寿命、高亮度、低功耗等优点,适合用于智能照明系统。
传感器可以选择光照传感器和人体红外传感器。
光照传感器用于感知环境光照强度,根据实际情况自动调节照明亮度;人体红外传感器用于感知人体的存在,当没有人在房间内时,系统可以自动关闭照明设备,以节约能源。
控制器是智能照明系统的核心。
控制器可选用微控制器、控制电路和网络模块等。
微控制器可用于控制照明设备的开关和亮度调节,根据传感器的数据实时调整照明度;控制电路用于实现各种功能的控制,如定时开关灯、彩色灯光切换等;网络模块可用于与智能手机、云端等设备进行通信,实现远程控制和云端管理。
2.软件设计系统控制软件负责控制照明设备的开关和亮度调节。
它需要实时响应传感器的数据,根据环境光照强度和人体存在情况,自动调节照明亮度。
同时,系统控制软件还应具备定时开关灯、彩色灯光切换等功能,满足用户的个性化需求。
用户界面设计应简洁、直观,方便用户操作。
用户可以通过智能手机、智能手表和远程控制器等设备,实现对智能照明系统的远程控制。
用户界面可以提供灯光开关、亮度调节、场景模式选择等功能,满足用户的不同需求。
2.功能设计-光敏感应功能:根据环境光照强度自动调节灯光亮度,确保室内照明合适,节约能源。
-人体感应功能:当没有人在房间内时,自动关闭照明设备,以节约能源。
-彩色灯光切换功能:通过调整灯光颜色和亮度,创造不同的氛围,满足用户的个性化需求。
-定时开关灯功能:根据用户设置的时间,自动开关照明设备,方便日常使用。
-远程控制功能:用户可以通过智能手机、智能手表等远程控制设备,实现对智能照明系统的远程控制,方便用户的操作。
以上是智能照明系统设计的主要内容,通过合理的硬件设计、软件设计和功能设计,可以实现高效能耗、智能化控制的照明系统,提高照明效果,节约能源,提高用户体验。
基于PLC的城市照明控制系统的设计

基于PLC的城市照明控制系统的设计随着城市规模的不断扩大和现代化水平的不断提高,城市照明系统也越来越重要。
良好的城市照明不仅美化了城市景观,也提高了人们生活的舒适度和安全性。
在过去,城市照明系统的控制主要依靠人工操作,存在着照明亮度不均匀、能耗高等问题。
而随着自动化技术的不断发展,基于PLC的城市照明控制系统应运而生,它能够实现照明的自动控制、能耗的优化管理和远程监控等功能。
本文将从基本原理、系统设计和应用优势等方面对基于PLC的城市照明控制系统进行详细介绍。
一、基本原理1. PLC技术PLC(可编程逻辑控制器)是一种专门用于工控领域的电气控制器,它具有高稳定性、高可靠性和高可编程性的特点。
PLC通过对输入信号的检测和处理,再经过逻辑运算生成相应的控制信号,控制各种执行器的工作状态,实现对工业生产过程的自动控制。
在城市照明控制系统中,PLC可以实现对灯光的开关控制、亮度调节、故障检测等功能。
2. 城市照明控制系统城市照明控制系统是指通过控制设备对城市中的公共照明进行管理和控制的一种系统。
在传统的照明控制系统中,人们需要手动操作开关来控制灯光,往往存在照明亮度不均匀、能耗浪费等问题。
而基于PLC的城市照明控制系统采用自动化技术,可以实现灯光的自动控制、亮度的调节以及故障的监测和报警。
二、系统设计基于PLC的城市照明控制系统主要由传感器、PLC控制器、执行器、人机界面、监控中心等组成。
1. 传感器传感器用于感知环境光强度、温度、湿度等信息,它们可以采集城市环境中的各种数据,传输给PLC控制器进行处理。
传感器的选择和部署直接关系到系统的性能和稳定性。
2. PLC控制器PLC控制器是整个系统的核心部件,它负责接收传感器采集的数据,并根据预设的控制算法生成相应的控制信号,控制灯光的开关、亮度等。
PLC控制器具有良好的扩展性和灵活性,可以根据实际需求进行编程和定制。
3. 执行器执行器是指驱动城市照明设备(如路灯、广告灯箱等)的电气执行器,它们接收PLC 控制器发出的指令,控制对应设备的开关状态和亮度。
直流智慧照明控制系统设计方案 (2)

直流智慧照明控制系统设计方案设计方案:直流智慧照明控制系统1. 系统概述直流智慧照明控制系统是一种集成了直流电源、照明设备和智能控制技术的照明系统。
通过智能控制算法和传感器,实现灯光的精确控制和管理,提高照明效果,节约能源。
2. 系统组成直流智慧照明控制系统主要由以下组件构成:- 直流电源:提供系统所需的直流电能,可以采用太阳能、电池等。
- 照明设备:包括LED灯、灯具、照明配件等。
- 智能控制器:集成了传感器、无线通讯模块、控制算法等。
- 用户终端:包括手机APP、电脑客户端等,用于用户远程控制、监控和管理系统。
3. 系统工作原理直流智慧照明控制系统的工作原理如下:- 通过直流电源提供稳定的直流电能供给照明设备,避免了交流电转换损耗。
- 传感器感知环境变化,如光照强度、人流量等。
- 智能控制器根据传感器数据,使用控制算法进行灯光的亮度调整、开关控制等操作。
- 用户通过终端设备远程控制照明系统,实现灯光的开关、亮度调节、时间调度等功能。
4. 系统特点- 能源高效:采用直流电源供电,避免了交流电能转换损耗,提高了能源的利用效率。
- 照明效果优良:通过智能控制算法,根据环境变化和用户需求,实现灯光的精确控制,提高照明效果。
- 智能自动化:系统可以根据传感器数据和用户需求进行智能调节,实现自动化控制,降低人工干预。
- 远程控制:用户可以通过手机APP或电脑客户端远程控制、监控和管理照明系统,方便实用。
- 可扩展性强:系统可以根据需求进行扩展和改造,增加更多的传感器、控制器和终端设备。
5. 应用场景直流智慧照明控制系统适用于各种照明场景,如办公室、酒店、商场、公共场所等。
- 办公室:系统可以根据员工的作息时间和环境变化,自动调节灯光亮度和色温,提供更舒适的工作环境。
- 酒店:系统可以根据客人的需求和环境变化,自动控制房间内灯光的开关和亮度,提供更好的入住体验。
- 商场:系统可以根据人流量和环境需求,自动控制商场内灯光的亮度和色彩,提高展示效果。
基于WiFi的智能LED照明控制系统设计

基于WiFi的智能LED照明控制系统设计概述本文档旨在介绍一个基于WiFi的智能LED照明控制系统的设计方案。
该系统能够实现远程控制和调节LED灯光的亮度和颜色,提供便捷和个性化的照明体验。
系统组成该系统主要由以下组成部分构成:1. LED灯具:使用可调节亮度和色温的LED灯具,提供灯光控制的基础。
2. WiFi模块:用于与用户的智能设备进行通信,接收用户指令并传输给LED灯具。
3. 服务器:负责处理用户指令并将其传输给正确的LED灯具,同时管理灯具的状态和配置信息。
系统功能该系统具备以下主要功能:1. 远程控制:用户可以通过连接到WiFi网络的智能设备,远程控制LED灯具的开关、亮度和颜色。
2. 调光调色:用户可以根据实际需求,通过调整LED灯具的亮度和色温,获得适合不同场景的照明效果。
3. 定时任务:用户可以设置定时任务,例如定时开关灯、定时调整亮度等,实现智能化的照明管理。
系统设计以下是该系统的设计概述:1. 用户界面:为了方便用户操作,该系统需要提供一个用户友好的界面,可以通过智能手机、平板电脑或电脑进行操作。
2. 通信协议:系统使用WiFi作为通信方式,用户通过连接到同一WiFi网络的智能设备与LED灯具进行通信。
3. 数据传输:用户指令通过WiFi模块传输到服务器,服务器根据指令类型进行相应处理,并将结果传输回LED灯具。
4. 灯具控制:LED灯具接收到服务器传输的指令后,根据指令进行相应的开关、亮度和颜色调节。
5. 状态管理:服务器负责管理灯具的状态和配置信息,并提供灯具管理接口供用户查询和操作。
优势和应用场景该系统的设计具有以下优势:1. 灵活便捷:用户可以通过智能设备随时随地控制LED灯具,为用户提供便捷的灯光控制体验。
2. 个性化照明:用户可以根据自己的需求和喜好,调整LED灯具的亮度和颜色,获得个性化的照明效果。
3. 能源节约:LED灯具具有高效节能的特点,可以帮助用户减少能源消耗。
智慧照明系统功能有哪些设计方案

智慧照明系统功能有哪些设计方案智慧照明系统是一种基于物联网技术的照明管理系统,其主要功能是通过网络连接,实现对照明设备的集中控制和管理,实现智能照明效果和节能目标。
下面是智慧照明系统功能的一些设计方案。
1. 自动亮度调节:智慧照明系统可以通过感应器、光线传感器等设备,感知室内和室外的光线情况,根据环境亮度自动调节照明设备的亮度。
这样可以在确保照明效果的同时,节省能源。
2. 时间控制功能:系统可以根据用户设置的时间参数,自动开启或关闭照明设备。
用户可以设定每天的开关时间,或者设定不同场景下的照明开关时间,以满足用户的需要。
3. 场景切换功能:智慧照明系统可以根据用户的需求,支持不同的照明场景切换。
用户可以根据需要选择不同的照明场景,如会议模式、阅读模式、休闲模式等,系统会自动调节照明设备的亮度和颜色,以适应不同场景下的照明需求。
4. 节能管理功能:智慧照明系统可以通过分析和处理采集到的数据,提供针对性的节能方案。
比如,系统可以根据实时数据,对照明设备的运行状态进行监测和分析,提醒用户及时更换能效较低的照明设备,或者对能源消耗较高的设备进行调整,以实现节能管理的目标。
5. 集中监控和远程控制功能:智慧照明系统可以实现对照明设备的集中监控和管理。
管理员可以通过系统的界面,实时监测照明设备的运行状态,比如亮度、开关状态等,并且可以进行远程控制,调整照明设备的亮度和颜色。
这样方便了管理员对照明设备的管理和维护。
6. 智能节能策略:智慧照明系统可以根据用户的生活习惯和节能需求,智能分析和制定节能策略。
比如,可以根据用户的起床时间和作息时间,智能调整居室的照明设备,早晨渐亮、晚间渐暗,以提升居室内的舒适度和节省能源。
7. 安全警报功能:智慧照明系统可以与安防系统联动,当安防设备报警时,系统可以自动控制照明设备进行闪烁或改变颜色,以吸引注意力和警示。
比如,在火警或入侵报警的情况下,可以通过照明系统迅速向用户传达警报信息。
试论建筑智能照明控制系统设计

试论建筑智能照明控制系统设计随着信息技术的不断发展,建筑智能化已经成为了当前建筑设计和施工的热点。
而在智能化建筑中,照明控制系统设计更是至关重要的一环。
一个高效、智能的照明控制系统可以为建筑节能、提升舒适度、增加安全性等方面带来很大的益处。
本文将就建筑智能照明控制系统的设计进行探讨,旨在为相关行业提供参考。
一、照明控制系统的基本原理建筑照明控制系统是通过对灯具的控制,来实现对照明设备的开关、调光、色温调节等功能,以达到人们对照明环境需求的目的。
现代照明控制系统主要包括传感器、执行器、控制器、通信网络等组成部分。
1. 传感器:传感器是照明控制系统中的输入设备,用于感知环境中的光线、人员活动等信息。
常见的传感器包括光敏传感器、红外传感器、超声波传感器等。
2. 执行器:执行器是照明控制系统中的输出设备,用于对灯具进行开关、调光等操作。
常见的执行器包括开关、调光器、调色温器等。
3. 控制器:控制器是照明控制系统中的核心部件,用于处理传感器采集来的数据,并根据预设的策略进行控制命令的下发。
控制器一般包括单片机、微处理器等控制芯片。
4. 通信网络:通信网络是照明控制系统各个部件之间进行数据传输与通信的媒介,现代照明控制系统中常见的通信网络包括有线网络和无线网络。
1. 灯具选择:在设计建筑智能照明控制系统时,首先要考虑的是灯具的选择。
不同的灯具具有不同的照明特性和控制特性,需要根据实际使用场景进行选择。
要考虑与控制器的兼容性,以确保系统的稳定性和高效性。
2. 传感器设置:传感器的设置对照明控制系统的性能有着至关重要的影响。
传感器的灵敏度、感知范围、安装位置等因素都需要进行合理的设计和配置,以保证系统能够准确感知环境信息,并做出相应的控制响应。
3. 控制策略:控制策略是建筑智能照明控制系统设计的核心内容,直接关系到系统的节能性和使用舒适度。
在设计控制策略时,需要考虑环境光线、人员活动、时间等多因素,制定合理的控制方案,以实现智能、高效的照明控制。
智能照明控制系统设计方案

智能照明控制系统设计方案设计方案一:硬件设备1.灯具:选择高效节能的LED灯作为智能照明控制系统的灯具。
LED 灯具具有高亮度、低能耗和长寿命等优点,符合绿色环保的要求。
2.传感器:安装光照传感器和人体感应传感器,实现自动亮度调节和人体存在时的照明控制。
光照传感器可以感知光照强度,根据环境光照自动调节灯的亮度;人体感应传感器可以感知到人体的存在,当人们进入或离开房间时自动开关灯。
3.无线通信设备:使用Wi-Fi或蓝牙等无线通信技术,实现灯具与智能控制设备(如手机、平板电脑)之间的远程通信和控制。
设计方案二:软件系统1.APP控制:开发一款专门的手机应用程序,通过手机或平板电脑实现对智能照明控制系统的远程控制。
用户可以在手机上设置灯具的开关、亮度、色彩、定时等功能,灵活地满足各种场景需求。
2.智能调光算法:针对不同的光照环境和使用需求,设计智能调光算法,使灯具能够根据光照强度和用户习惯自动调节亮度。
比如,在白天灯具亮度较低,夜晚灯具亮度较高,以提供合适的环境照明。
3.能耗监控:通过对智能照明控制系统的能耗进行实时监控和分析,提供能耗数据报告和建议。
用户可以根据报告进行合理的用电规划和能源节约,达到绿色环保的目的。
设计方案三:系统优化1.场景配置:将不同的照明需求和场景进行配置,如起床模式、工作模式、休息模式等。
用户可以通过选择不同的场景模式,实现自动化的照明控制,提高生活便利性。
2.定时控制:根据用户的生活作息时间,设置定时开关灯功能。
用户可以事先设置开关灯的时间,系统会在设定的时间自动开关灯。
3.系统智能化学习:通过对用户行为的分析和学习,系统可以逐渐了解用户的用光习惯,并根据用户习惯自动化地进行照明控制。
比如,系统可以根据用户在家的时间段和活动频率自动调控照明,一定程度上提高用户的生活舒适度。
总结:智能照明控制系统通过光照传感器、人体感应传感器和APP控制等技术手段,实现了对照明的智能化控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (2)一、设计原理及方框图 (3)二、原理图及其说明 (3)2.1原理说明 (4)2.2电路各部分介绍 (4)2.2.1红外线传感器 (4)2.2.2单相倍压整流电路 (6)2.2.3 延时电路 (7)2.2.4光控电子开关电路的设计 (7)2.2.5工作原理 (8)2.2.6红外线传感器、光控智能开关的制作与调试 (8)2.2.7光控电子开关的安装与调试 (9)三、照明电路中实际中元件的选用及设计 (10)1、电路设计原理 (10)2、工作原理 (10)3、元器件选择 (11)四、部分元器件介绍 (12)1、555定时器 (12)2、双向晶闸管 (14)2.1双向晶闸管的结构 (14)2.2双向晶闸管的工作原理 (14)3、稳压二极管 (15)3.1稳压二极管的介绍 (15)3.2稳压管的应用 (16)3.2.1浪涌保护电路 (16)3.2.2电视机里的过压保护电路 (16)3.2.3电弧抑制电路 (16)3.2.4串联型稳压电路 (16)4、光敏电阻器 (16)4.1光敏电阻的结构 (16)4.2光敏电阻的原理 (17)4.3光敏电阻的分类 (17)4.4光敏电阻的主要参数 (18)4.4光敏电阻的制作材料 (18)5、7805集成三端稳压器 (18)6、继电器 (20)6.1继电器的工作原理和特性 (20)6.1.3固态继电器(SSR)的工作原理和特性 (21)6.2继电器主要产品技术参数 (21)6.3继电器测试 (21)6.4继电器的电符号和触点形式 (22)6.5继电器的选用 (22)结束语 (24)谢辞 (25)参考文献 (26)教室自动感应照明控制系统的设计摘要为了适应现代电子技术飞速发展的需要,更好地培养21世纪的应用型电子技术人才,在自动化技术日趋成熟的今天,照明电路的自动化控制已是随处可见的了。
但是要做到功能强可靠性高、价格低廉等一系列优点,这就是我们现在研究的课题了。
照明电路不仅用在工业生产中而且已渗入到人们工作和生活的各个角落。
几乎是从小到生活照明,大到工业控制,照明电路都起到了举足轻重的作用。
自动感应照明控制系统有力地推动了各行业的技术改造和产品的更新换代,应用前景非常广阔。
目前,在各类学校教室的照明灯由于管理不善,经常是教室空无一人,却灯火通明,极大的浪费电源。
该设计题目是通过对目前市场上销售的同类产品的调查研究,找出现有产品的不足之处和为什么没有推广的原因,设计制作适合用户使用和方便使用的产品。
主要设计内容:人体感应检测系统设计、自动照明开关控制系统设计。
关键字HN911热释电红外线传感器 555定时器双向晶闸管稳压二极管光敏电阻器一、设计原理及方框图在光线亮时,节电开关呈关闭状态,灯不亮,夜间或光线较暗时,节电开关呈预备工作状态。
当有人经过该开关附近时,红外传感器检测到人体信号把节电开关启动,灯亮,当人离去时,延时40~50秒后节电开关自动关闭、灯灭。
图1是教室感应自动照明控制电路的原理方框图,由红外传感器、放大电路、倍压整流、光控电路、电子开关、延时和交流开关七部分电路组成。
图2.0教室感应自动照明控制电路的原理方框图二、原理图及其说明 20K R12M R247KR336K R6红外线传感器1uF C11uF C2VT1220uF C3CW1D1D2100K R447KR5D5VT220KR7VT3D347uF C4R8103uF C5D4DSD6-D9BT51K R951KR10GND220V图2-1红外线传感器、光控智能开关原理图2.1原理说明电路原理:红外传感器是感应人体信号,VT1、R1、R3、C1组成放大电路。
为了获得较高的灵敏度,VT1的β值选用大于100。
R3不宜过小,否则电路容易产生间歇振荡,C2、D1和D2、C3构成倍压整流电路。
R4、R5和光敏电阻D5组成光控电路。
有光照射在D5上时,阻值变小,对直流控制电压衰减很大。
VT2、VT3和R7、D3组成的电子开关截止,C4内无电荷,单向可控硅MCR截止,灯泡不亮。
在MCR截止时,直流高压经R9、R10、D4降压后加到C3、CW1(稳压管)上端。
C3为滤波电容,CW1为稳压值12~15V的稳压二极管,保证C3上电压不超过15V直流电压。
当无光照射D5时,D5阻值很大,对直流控制电压衰减很小,VT2、VT3等组成的电子开关导通,D3 也导通,使C4充电。
R8、C5和单向可控制MCR、D6~D9组成延时与交流开关。
C4通过R8把直流触发电压加到MCR控制端,MCR导通,灯泡点亮。
灯泡发光时间长短由C4、R8的参数决定,按图中所给出的元器件数值(R8为22K),发光40~50秒左右后,MCR截止,灯熄灭。
C5为抗干扰电容,用于消除灯泡发光抖动现象。
2.2电路各部分介绍2.2.1红外线传感器热释电人体红外线传感器是上世纪80年代末期出现的一种新型传感器件。
现在,已得到越来越广泛的应用。
目前,一些书刊只简要介绍了被动式热释电人体红外线传感器的基本应用。
本文就主动式和被动式两方面的基本应用原理作大致介绍。
目前,市场上出现的热释电人体红外线传感器主要有上海产的SD02、PH5324,德国产的LH1954、LH1958,美国HAMAMATSU公司产P2288,日本NIPPON CERAMIC公司的SCA02-1、RS02D等。
虽然它们的型号不一样,但其结构、外型和电参数大致相同,大部分可以彼此互换使用。
利用红外线的物理性质来进行测量的传感器。
红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。
任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。
红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,响应快等优点。
红外线传感器包括光学系统、检测元件和转换电路。
光学系统按结构不同可分为透射式和反射式两类。
检测元件按工作原理可分为热敏检测元件和光电检测元件。
热敏元件应用最多的是热敏电阻。
热敏电阻受到红外线辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。
光电检测元件常用的是光敏元件,通常由硫化铅、硒化铅、砷化铟、砷化锑、碲镉汞三元合金、锗及硅掺杂等材料制成。
红外线传感器常用于无接触温度测量,气体成分分析和无损探伤,在医学、军事、空间技术和环境工程等领域得到广泛应用。
例如采用红外线传感器远距离测量人体表面温度的热像图,可以发现温度异常的部位,及时对疾病进行诊断治疗(见热像仪);利用人造卫星上的红外线传感器对地球云层进行监视,可实现大范围的天气预报;采用红外线传感器可检测飞机上正在运行的发动机的过热情况等。
HN911采用热释电红外控制模块的照明灯,它可以用于卫生间、储藏室、楼梯走廊等处,可做到人来灯亮,人走灯灭,并且还具有白天自动封锁功能。
HN911系列模块是采用新技术和新工艺,将高灵敏度的热释电红外传感器、放大器、信号处理及输出电路组装在一起制成模块式电路,它具有从信号接收至控制输出的全部功能。
在它的输出端接上晶体管放大电路或单稳态电路可以驱动继电器,接上光耦合电路可以驱动双向可控硅。
图2-3 HN911模块的内部电路结构2.2.2单相倍压整流电路在一些需用高电压、小电流的地方,常常使用倍压整流电路。
倍压整流,可以把较低的交流电压,用耐压较低的整流二极管和电容器,“整”出一个较高的直流电压。
倍压整流电路一般按输出电压是输入电压的多少倍,分为二倍压、三倍压与多倍压整流电路。
图4-4是二倍压整流电路。
电路由变压器B、两个整流二极管D1、D2及两个电容器C1、C2组成。
图2.4单相倍压整流电路其工作原理如下:e2正半周(上正下负)时,二极管D1导通,D2截止,电流经过D1 对C1充电,将电容Cl上的电压充到接近e2的峰值,并基本保持不变。
e2 为负半周(上负下正)时,二极管D2导通,Dl截止。
此时,Cl上的电压Uc1=2E2与电源电压e2串联相加,电流经D2 对电容C2充电,充电电压Uc2=e2 峰值+1.2E2≈22E2。
如此反复充电,C2上的电压就基本上是22E2了。
它的值是变压器电级电压的二倍,所以叫做二倍压整流电路。
在实际电路中,负载上的电压Usc=2x1.2E2。
整流二极管D1和D2所承受的最高反向电压均为22E2。
电容器上的直流电压Uc1=2E2,Uc2=22E2。
可以据此设计电路和选择元件2.2.3延时电路分析RC电路的过渡过程时,不一定只分析电容电压的变化,可能是任意支路电流或任意元件上的电压,所以一般用f(t)表示任意一种电量。
这里写出分析RC电路任意电量的过渡过程的步骤:(1)计算换路前最后时刻t=0-时电容电压uc(0-)的值。
分析电路时,要把电容看作开路,按直流电路的分析方法计算;(2)按换路定律uc(0+)=uc(0-),写出换路后的电容电压;(3)求电路中需要的f(0+)值。
注意使用换路后的电路,将uc(0+)作为直流电压源进行分析;(4)求f(∞)值:注意使用换路后的电路,电容看成开路用直流电路分析方法;(5)求时间常数t:R是从电容两端看进去的等效电阻,注意应将电压源短路、电流源开路,再进行电阻的串并联,然后计算t=RC。
(6)用三要素公式求:所以RC延时电路的延迟时间可以通过改变RC的值来实现,它具有改变方便,制作简单的优点,因而广泛用于对延迟时间要求不是很高,很长的电路中。
2.2.4光控电子开关电路的设计光控电子开关起到日熄夜亮的控制作用,以节约用电。
<160W图2-5光控电子开关原理图2.2.5工作原理电路如图2-4所示,220V交流电通过灯泡H及整流全桥后XC5215-6BG225I,单向可控硅VS因无触发电流而阻断。
此时流过灯泡H的电流≤2.2mA,灯泡H不能发光。
电阻R1和稳压二极管DW使三极管V偏压不超过6.8V,对三极管起保护作用。
夜晚,亮度小于一定程度时,光敏二极管D呈现高阻状态≥100KΩ,使三极管V正向导通,发射极约有0.8V的电压,使可控硅VS触发导通,灯泡H发光。
RP是清晨或傍晚实现开关转换的亮度选择元件。
2.2.6红外线传感器、光控智能开关的制作与调试本电路按要求选择元器件,焊接正确,即可使用推广。
若灵敏度不够,可减小热释电红外线传感器串联的电阻R1,但R1不够太小,应视具体情况而定。
适当减小R1后灵敏度仍不够时,可更换耦合电容C1,将1uF换成0.7uF,效果将很显著。
制作的如图2-3所示。
图2-6红外线传感器、光控智能开关PCB板2.2.7光控电子开关的安装与调试安装时将它与受控电灯H串联,并让它正对着天幕或房子采光窗前较明亮的空间,避免3米以内夜间灯光的直接照射。
调试宜傍晚时进行,调节RP阻值的大小,使受控电灯H在适当的亮度下始点亮。
制作的如图2-5所示。