第六讲简单几何体的表面积与体积的计算

合集下载

8.3简单几何体的表面积与体积-【新教材】人教A版(2019)高中数学必修第二册同步讲义

8.3简单几何体的表面积与体积-【新教材】人教A版(2019)高中数学必修第二册同步讲义
【详解】
如图所示:
设外接球和内切球的半径分别为R,r,由于正四面体是中心对称图形,
所以外心和内心重合,球心O在高线上,底面中心为 ,
因为正四面体棱长为2,
所以 ,
在 中, ,即 ,
解得 ,
因为正四面体的体积为 ,
所以 ,
解得
9、在直三棱柱 中, , , , .
(1)求三棱锥 的表面积;
(2)求 到面 的距离.
故选:
题型七表面积、体积与函数
例7 底面半径为2,高为 的圆锥有一个内接的正四棱柱(底面是正方形,侧棱与底面垂直的四棱柱).
(1)设正四棱柱的底面边长为 ,试将棱柱的高 表示成 的函数.
(2)当 取何值时,此正四棱柱的表面积最大,并求出最大值.
【答案】(1) ;(2) , .
【分析】
(1)根据轴截面的三角形的比例关系,列式求函数;(2)根据 ,列出正四棱柱的表面积,并利用二次函数求最大值.
下底面面积:S下底=πr2
侧面积:S侧=πl(r+r′)
表面积:S=π(r′2+r2+r′l+rl)
2、体积公式
(1)柱体:柱体的底面面积为S,高为h,则V=Sh.
(2)锥体:锥体的底面面积为S,高为h,则V= Sh.
(3)台体:台体的上,下底面面积分别为S′,S,高为h,则V= (S′+ +S)h.
【详解】
(1)过圆锥及其内接圆柱的轴作截面,如图所示,
因为 ,所以 .从而 .
(2)由(1) ,因为 ,
所以当 时, 最大,
即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.
1、已知正方体外接球的体积是 ,那么该正方体的内切球的表面积为_____________.
【答案】

几何体的表面积和体积

几何体的表面积和体积

几何体的表面积和体积一、几何体的定义和分类几何体是指由平面图形绕某一轴线旋转或拉伸而成的立体图形。

常见的几何体包括圆柱体、圆锥体、球体、长方体等。

二、几何体的表面积1. 圆柱体表面积圆柱体表面积等于上下底面积之和加上侧面积。

公式为:S=2πr²+2πrh。

其中,r为底面半径,h为高。

2. 圆锥体表面积圆锥体表面积等于底面积加上侧面积。

公式为:S=πr²+πrl。

其中,r为底面半径,l为斜高线长。

3. 球体表面积球体表面积等于4倍的球半径平方乘以π。

公式为:S=4πr²。

其中,r为球半径。

4. 长方体表面积长方体表面积等于所有侧面积之和。

公式为:S=2(lw+lh+wh)。

其中,l、w、h分别代表长方体的长度、宽度和高度。

三、几何体的体积1. 圆柱体的容积圆柱的容积等于其底部面积与高度的乘积。

公式为:V=πr²h。

其中,r为底面半径,h为高。

2. 圆锥体的容积圆锥体的容积等于其底部面积乘以高度再除以3。

公式为:V=1/3πr²h。

其中,r为底面半径,h为高。

3. 球体的容积球体的容积等于4/3倍的球半径立方乘以π。

公式为:V=4/3πr³。

其中,r为球半径。

4. 长方体的容积长方体的容积等于其长度、宽度和高度之间的乘积。

公式为:V=lwh。

其中,l、w、h分别代表长方体的长度、宽度和高度。

四、几何体表面积和体积计算实例1. 计算一个底面直径为10cm、高20cm的圆柱体表面积和容积。

解:圆柱体表面积S=2πr²+2πrh=2×π×5²+2×π×5×20≈628.32cm²;圆柱体容积V=πr²h=π×5²×20≈1570.8cm³。

2. 计算一个半径为6cm、斜高线长10cm的圆锥体表面积和容积。

解:圆锥体表面积S=πr²+πrl=π×6²+π×6×10≈282.74cm²;圆锥体容积V=1/3πr²h=1/3×π×6²×10≈376.99cm³。

小学数学竞赛第六讲 简单几何体的表面积与体积的计算

小学数学竞赛第六讲 简单几何体的表面积与体积的计算

第六讲简单几何体的表面积与体积的计算一、四种常见几何体的平面展开图1.正方体沿正方体的某些棱将正方体剪开铺平,就可以得到它的平面展开图,这一展开图是由六个全等的正方形组成的,见图6—1。

图6─l只是正方体平面展开图的一种画法,还有别的画法(从略)。

2.长方体沿长方体的某些棱将长方体剪开铺平,就可以得到它的平面展开图。

这一展开图是六个两两彼此全等的长方形组成的,见图6—2。

图6—2只是长方体平面展开图的一种画法,还有别的画法(从略)。

3.(直)圆柱体沿圆柱的一条母线和侧面与上、下底面的交线将圆柱剪开铺平,就得到圆柱体的平面展开图。

它由一个长方形和两个全等的圆组成,这个长方形的长是圆柱底面圆的周长,宽是圆柱体的高。

这个长方形又叫圆柱的侧面展开图。

图6—3就是圆柱的平面展开图。

4.(直)圆锥体沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥体剪开铺平,就得到圆锥的平面展开图。

它是由一个半径为圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一个圆组成的,这个扇形又叫圆锥的侧面展开图。

具体图形见图6—4。

二、四种常见几何体表面积与体积公式1.长方体长方体的表面积=2×(a×b+b×c+c×a)长方体的体积=a×b×c(这里a、b、c分别表示长方体的长、宽、高)。

2.正方体正方体的表面积=6×a2正方体的体积=a3(这里a为正方体的棱长)。

3.圆柱体圆柱体的侧面积=2πRh圆柱体的全面积=2πRh+2πR2=2πR(h+R)圆柱体的体积=πR2h(这里R表示圆柱体底面圆的半径,h表示圆柱的高)。

4.圆锥体圆锥体的侧面积=πRl圆锥体的全面积=πRl+πR2母线长与高)。

三、例题选讲例1 图6—5中的几何体是一个正方体,图6—6是这个正方体的一个平面展开图,图6—7(a)、(b)、(c)也是这个正方体的平面展开图,但每一展开图上都有四个面上的图案没画出来,请你给补上。

几何体的表面积和体积计算

几何体的表面积和体积计算

几何体的表面积和体积计算几何体是指由空间中的点、线、面构成的实体形状,包括常见的球体、立方体、圆柱体等。

在几何学中,表面积和体积是表征几何体大小和形状的重要指标。

本文将介绍几何体表面积和体积的计算方法。

一、球体的表面积和体积计算球体是一种具有无限个相同半径的曲面,其表面积和体积的计算公式如下:表面积公式:S = 4πr²体积公式:V = (4/3)πr³其中,r表示球体的半径,π是一个数学常数(约等于3.14159)。

二、立方体的表面积和体积计算立方体是一种六个面都相等且相互垂直的立方体形状,其表面积和体积的计算公式如下:表面积公式:S = 6a²体积公式:V = a³其中,a表示立方体的边长。

三、圆柱体的表面积和体积计算圆柱体由两个平行且相等的圆面和一个侧面组成,其表面积和体积的计算公式如下:表面积公式:S = 2πr² + 2πrh体积公式:V = πr²h其中,r表示圆柱的底面半径,h表示圆柱的高。

四、其他除了球体、立方体和圆柱体外,还存在许多其他形状的几何体,如圆锥体、棱柱体、正四面体等。

它们的表面积和体积计算方法各不相同,具体的计算公式可以通过几何学原理来推导得到,或者通过公式手册查询获得。

在实际应用中,计算几何体的表面积和体积可以帮助我们求解一些实际问题,例如建筑设计、制造工程、容器容积计算等等。

掌握几何体的计算方法,对于解决各种几何问题非常重要。

总结:几何体的表面积和体积计算是几何学中的重要概念,不同几何体有不同的计算公式。

通过熟练掌握这些计算方法,我们可以准确地计算各种几何体的表面积和体积。

这不仅有助于我们理解几何体的特性和形状,也能够应用到实际问题中。

《简单几何体的表面积与体积》课件

《简单几何体的表面积与体积》课件
第八章 立体几何初步
8.3 简单几何体的表面积与体积
学习目标
1.了解球、柱、锥、台体的表面积的计算公式. 2.了解球、柱、锥、台体的体积的计算公式.
重点:了解柱体、锥体、台体和球的表面积和体积公式. 难点:台体的表面积和体积计算公式.
知识梳理
一、 棱柱、棱锥、棱台的表面积和体积
1.棱柱、棱锥、棱台的表面积 多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台 的表面积就是围成它们的各个面的面积的和.
1 2
VE-ABC=
1 2
×1
2
VE-ABCD=
3.
2

V=VE-ABCD+VF-EBC=6+
3 2
= 15
2
.
方法二:如图8-3-6,设G,H分别为AB,DC的中点,
图8-3-6
连接EG,EH,GH,DG,BH,则EG∥FB,EH∥FC,GH∥ BC,
得三棱柱EGH-FBC. 由题意得
VE-AGHD=
V圆锥=
1 3
πr2h(r是底
面半径,h
是高
).
V圆台=
1 3
πh(r′2+r′r+r2)(r′,r分别是上
、下底面半径
,h
是高).
三.柱体、锥体、台体的体积公式
V柱体=Sh(S为底面积,h为柱体高);
V锥体=
1 3
Sh(S为底面积,h为锥
体高)

V台体=
1 3
(S′+
SS +S)h(S′,S分别为上、下底面面积,
h为台体高).
柱、锥、台的体积公式之间的关系:当S′=S时, 台体变为柱体,台体的体积公式也就是柱体的体积 公式;当S′=0时,台体变为锥体,台体的体积公 式也就是锥体的体积公式.

立体几何简单几何体的表面积和体积PPT课件

立体几何简单几何体的表面积和体积PPT课件
• (1)证明:EF∥平面PAD; • (2)求三棱锥E-ABC的体积V.
第19页/共60页
• 分析:(1)由E、F为中点易想到中位线获证. • (2)求三棱锥E-ABC的体积,由于△ABC面积易求,需看E到平面ABC的距
离 是 否 可 求 , 注 意 到 E 为 P B 中 点 , PA ⊥ 平 面 A B C D , 因 此 只 需 取 A B 中 点 G , 则EG为高,或由E为PB中点知,E到平面ABC的距离等于P到平面ABC的距 离 的 一 半 . 而 P 到 平 面 A B C 的 距 离 为 PA , 也 可 获 解 . • 解析:(1)在△PBC中,E,F分别是PB,PC的中点, • ∴EF∥BC. • 又BC∥AD,∴EF∥AD, • 又∵AD⊂平面PAD,EF⊄平面PAD, • ∴EF∥平面PAD.
(3)如果正棱台的上、下底面的周长是 c′、c,斜高是 h′,那么它的侧面积是 S 正棱台侧=12(c+c′)h′
第2页/共60页
• (4)棱柱的全面积等于侧面积与两底面积的和;棱锥的全面积等于底面积与侧 面积的和;棱台的全面积等于侧面积与两底面积的和.
• 5.祖暅原理的应用:等底面积、等高的柱体(或锥体)体积相等. • 6.柱体体积V柱=Sh.特殊地,圆柱体积V=πr2h.
• 答案:B • 点评:不要将左视图的面积与三棱柱一个侧面的面积混淆.
第18页/共60页
• [例2] (2010·陕西文)如图,在四棱锥P-ABCD中,底面ABCD是矩形, PA ⊥ 平 面 A B C D , A P = A B , B P = B C = 2 , E , F 分 别 是 P B , P C 的 中 点 .
答案:C
第16页/共60页
(理)(2010·北京西城抽样)如图,三棱柱 ABC-A1B1C1 的侧棱长和底面边长均为 2,且侧棱 AA1⊥底面 ABC,其 正(主)视图是边长为 2 的正方形,则此三棱柱侧(左)视图

《立体几何初步——简单几何体的表面积与体积》数学教学PPT课件(4篇)

《立体几何初步——简单几何体的表面积与体积》数学教学PPT课件(4篇)
栏目 导引
第八章 立体几何初步
一个高为 16 的圆锥内接于一个体积为 972π 的 球,在圆锥里又有一个内切球.求: (1)圆锥的侧面积; (2)圆锥里内切球的体积.
栏目 导引
第八章 立体几何初步
解:(1)如图所示,作出轴截面,则等腰△SAB 内 接于⊙O,而⊙O1 内切于△SAB. 设⊙O 的半径为 R, 则有43πR3=972π, 所以 R3=729,R=9. 所以 SE=2R=18. 因为 SD=16,所以 ED=2. 连接 AE,又因为 SE 是直径,
栏目 导引
第八章 立体几何初步
角度二 球的内接长方体问题 一个长方体的各个顶点均在同一球的球面上,且一个顶
点上的三条棱的长分别为 1,2,3,则此球的表面积为________. 【解析】 长方体外接球直径长等于长方体体对角线长,即 2R = 12+22+32= 14, 所以球的表面积 S=4πR2=14π. 【答案】 14π
栏目 导引
第八章 立体几何初步
球的截面问题的解题技巧 (1)有关球的截面问题,常画出过球心的截面圆, 将问题转化为平面中圆的问题. (2)解题时要注意借助球半径 R,截面圆半径 r, 球心到截面的距离 d 构成的直角三角形,即 R2=d2+r2.
栏目 导引
第八章 立体几何初步
平面 α 截球 O 的球面所得圆的半径为 1,球心
A.17π C.20π
B.18π D.28π
栏目 导引
第八章 立体几何初步
【解析】 (1)设球的半径为 R,则由已知得 V=43πR3=323π,解得 R=2. 所以球的表面积 S=4πR2=16π. (2)由三视图可得此几何体为一个球切割掉18后剩下的几何体, 设球的半径为 r, 故78×43πr3=238π, 所以 r=2,表面积 S=78×4πr2+34πr2=17π,选 A. 【答案】 (1)B (2)A

小学数学认识简单的立体几何体的表面积与体积

小学数学认识简单的立体几何体的表面积与体积

小学数学认识简单的立体几何体的表面积与体积立体几何体是我们生活中常见的物体,它们具有三维的形状和空间特征,例如立方体、长方体、圆柱体、圆锥体等。

在学习数学时,了解立体几何体的表面积和体积是十分重要的。

本文将介绍小学数学中常见的简单立体几何体的表面积和体积的计算方法。

一、立方体立方体是最简单的立体几何体之一,它的六个面都是正方形。

我们可以通过计算正方形的面积来计算立方体的表面积。

立方体的体积则可以通过计算边长的立方来得到。

表面积的计算公式为:表面积 = 6 ×正方形的面积 = 6 ×边长 ×边长体积的计算公式为:体积 = 边长 ×边长 ×边长 = 边长的立方二、长方体长方体也是一种常见的立体几何体,它的六个面都是矩形。

和立方体类似,我们可以通过矩形的面积来计算长方体的表面积。

长方体的体积则可以通过计算长、宽、高三个边长的乘积来得到。

表面积的计算公式为:表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)体积的计算公式为:体积 = 长 ×宽 ×高三、圆柱体圆柱体是由一个圆和与圆共面的两个平行线所围成的几何体。

圆柱体包括一个侧面和两个底面。

我们可以通过计算圆的面积和矩形的面积来计算圆柱体的表面积。

圆柱体的体积则可以通过计算底面圆的面积和高来得到。

表面积的计算公式为:表面积 = 圆的侧面积 + 2 ×圆的底面积 = 圆的周长 ×高 + 2 ×圆的面积体积的计算公式为:体积 = 圆的底面积 ×高= π × 半径 ×半径 ×高四、圆锥体圆锥体是由一个圆锥与一个圆锥台所围成的几何体。

圆锥体包括一个侧面、一个底面和一个顶点。

我们可以通过计算圆的面积、圆锥的侧面积和圆锥台的面积来计算圆锥体的表面积。

圆锥体的体积则可以通过计算底面圆的面积和高来得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六讲简单几何体的表面积与体积的计算第六讲简单几何体的表面积与体积的计算一、四种常见几何体的平面展开图1.正方体沿正方体的某些棱将正方体剪开铺平,就可以得到它的平面展开图,这一展开图是由六个全等的正方形组成的,见图6—1。

图6─l只是正方体平面展开图的一种画法,还有别的画法(从略)。

2.长方体沿长方体的某些棱将长方体剪开铺平,就可以得到它的平面展开图。

这一展开图是六个两两彼此全等的长方形组成的,见图6—2。

图6—2只是长方体平面展开图的一种画法,还有别的画法(从略)。

3.(直)圆柱体沿圆柱的一条母线和侧面与上、下底面的交线将圆柱剪开铺平,就得到圆柱体的平面展开图。

它由一个长方形和两个全等的圆组成,这个长方形的长是圆柱底面圆的周长,宽是圆柱体的高。

这个长方形又叫圆柱的侧面展开图。

图6—3就是圆柱的平面展开图。

4.(直)圆锥体沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥体剪开铺平,就得到圆锥的平面展开图。

它是由一个半径为圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一个圆组成的,这个扇形又叫圆锥的侧面展开图。

具体图形见图6—4。

二、四种常见几何体表面积与体积公式1.长方体长方体的表面积=2×(a×b+b×c+c×a)长方体的体积=a×b×c(这里a、b、c分别表示长方体的长、宽、高)。

2.正方体正方体的表面积=6×a2正方体的体积=a3(这里a为正方体的棱长)。

3.圆柱体圆柱体的侧面积=2πRh圆柱体的全面积=2πRh+2πR2=2πR(h+R)圆柱体的体积=πR2h(这里R表示圆柱体底面圆的半径,h表示圆柱的高)。

4.圆锥体圆锥体的侧面积=πRl圆锥体的全面积=πRl+πR2母线长与高)。

三、例题选讲例1 图6—5中的几何体是一个正方体,图6—6是这个正方体的一个平面展开图,图6—7(a)、(b)、(c)也是这个正方体的平面展开图,但每一展开图上都有四个面上的图案没画出来,请你给补上。

分析与解:从图6—5和图6—6中可知:与;与;与互相处于相对面的位置上。

只要在图6—7(a)、(b)、(c)三个展开图中,判定谁与谁处在互为对面的位置上,则标有数字的四个空白面上的图案便可以补上。

先看图6—7中的(a),仔细观察可知,1与4,3与处在互为对面的位置上。

再看图6—7中的(b),同上,1与3,2与处在互为对面的位置上。

最后再看图6—7中的(c),同上,1与,2与4处在互为对面的位置上。

图6—7(a)、(b)、(c)标有数字的空白面上的图案见图6—8中的(a)、(b)、(c)。

例2 图6—9中的几何体是一个长方体,四边形APQC是长方体的一个截面(即过长方体上四点A、P、Q、C的平面与长方体相交所得到的图形),P、Q分别为棱A1B1、B1C1的中点,请在此长方体的平面展图上,标出线段AC、CQ、QP、PA来。

分析与解:只要能正确画出图6—9中长方体的平面展开图,问题便能迎刃而解。

图6—10中的粗实线,就是题目中所要标出的线段AC、CQ、QP、PA。

例3 在图6—11中,M、N是圆柱体的同一条母线上且位于上、下底面上的两点,若从M点绕圆柱体的侧面到达N,沿怎么样的路线路程最短?分析与解:沿圆柱体的母线MN将圆柱的侧面剪开铺平,得出圆柱的侧面展开图,见图6—12,从M点绕圆柱体的侧面到达N点。

实际上是从侧面展开图的长方形的一个顶点M 到达不相邻的另一个顶点N。

而两点间以线段的长度最短。

所以最短路线就是侧面展开图中长方形的一条对角线,见图6—12和图6—13。

例4 图6—14中的几何体是一棱长为4厘米的正方体,若在它的各个面的中心位置上,各打一个直径为2厘米,深为1厘米的圆柱形的孔,求打孔后几何体的表面积是多少(π=3.14)?分析与解:因为正方体的棱长为2厘米,而孔深只有1厘米,所以正方体没有被打透。

这一来打孔后所得几何体的表面积,等于原来正方体的表面积,再加上六个完全一样的圆柱的侧面积、这六个圆柱的高为1厘米,底面圆的半径为1厘米。

正方体的表面积为42×6=96(平方厘米)一个圆柱的侧面积为2π×1×1=6.28(平方厘米)几何体的表面积为96+6.28×6=133.68(平方厘米)答:(略)例5 图6—15是由18个边长为1厘米的小正方体拼成的几何体,求此几何体的表面积是多少?分析与解:从图6—15中可以看出,18个小正方体一共摆了三层,第一层2个,第二层7个,因为18-7-2=9,所以第三层摆了9个。

另外,上、下两个面的表面积是相同的,同样,前、后;左、右两个面的表面积也是分别相同的。

因为小正方体的棱长是1厘米,所以上面的表面积为12×9=9(平方厘米)前面的表面积为12×8=8(平方厘米)左面的表面积为12×7=7(平方厘米)几何体的表面积为9×2+8×2+7×2=答:(略)例6 图6—16中所示图形,是一个底面直径为20厘米的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6厘米,高20厘米的一个圆锥体铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?(π=3.14)分析与解:因为玻璃杯是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃杯的底面一样,是一直径为20厘米的圆,它的体积正好等于圆锥体铅锤的体积,这个小圆柱的高就是水面下降的高度。

因为圆锥形铅锤的体积为设水面下降的高度为x,则小圆柱的体积为x(20÷2)2×x=100πx(立方厘米)所以有下列方程:60π=100πx,解此方程得:x=0.6(厘米)答:铅锤取出后,杯中水面下降了0.6厘米。

例7横截面直径为2分米的一根圆钢,截成两段后,两段表面积的和为75.36平方分米,求原来那根圆钢的体积是多少(π=3.14)?分析与解:根据圆柱体的体积公式,体积=底面积×高。

假设圆钢长为x,因为将圆钢截成两段后,两段表面积的和,等于圆钢的侧面积加上四个底面圆的面积,所以有下面式子:2π×(2÷2)×x+4π×(2÷2)2=2πx+4π根据题目中给出的已知条件,可得下面方程:2πx+4π=75.36解方程:圆钢的体积为π×(2÷2)2×10≈31.4(立方分米)答:(略)。

例8 一个圆锥的侧面展开图是一个半径为10厘米、圆心角为216°的扇形,求此圆锥的体积是多少(π=3.14)?分析与解:要想求出圆锥的体积,就要先求出它的底面圆的半径与高。

按题意画图6—17。

在图6—17中,字母R、h 分别表示底面圆的半径和圆锥体的高,根据弧长公式:弧长=2лR×n÷360(这里R是圆的半径,n为弧所对圆心角的度数),便可求出弧长来。

这个弧长就是底面圆的周长,再利用周长公式,就可求出底面圆的半径R。

另外从图6—17中可以看出:圆锥的高、母线、底面圆的半径正好构成一个直角三角形,利用勾股定理便可求出圆锥的高h。

所以2πR=12π,得R=6(厘米)在直角三角形中,根据勾股定理有:102=h2+R2,即h2=102-R2=100-36=64,h=8(厘米)答:(略)例9 图6—18中的图形是一个正方体,H、G、F分别是棱AB、AD、AA1的中点。

现在沿三角形GFH所在平面锯掉正方体的一个角,问锯掉的这块的体积是原正方体体积的几分之几?分析与解:因为锯掉的是立方体的一个角,所以HA与AG、AF都垂直。

即HA垂直于三角形AGF所在的立方体的上底面,实际上锯掉的这个角,是以三角形AGF为底面,H为顶点的一个三棱锥,如果我们假设正方体的棱长为a,则正方体的体积为a3。

三棱锥的底面是直角三角形AGF,而角FAG为90°,G、F又分别为AD、而三棱锥的体积等于底面积与高的乘积再除以3,所以锯掉的那一角的体积为答:(略)例10 图6—19是一个里面装有水的三棱柱封闭容器,图6—20是这个三棱柱的平面展开图。

当以A面作为底面放在桌面上时,水高2厘米,如果以B面与C面分别作为底面放在桌面上时,水面高各为多少厘米?分析与解:我们先求以A面作为底面放在桌面上时容器内的水的体积。

此时水的体积,与以梯形FJQP为底面、JI为高的棱柱的体积相等。

棱柱的体积等于底面积乘以高,从图6—20可以看出,此棱柱的高JI为12厘米,梯形FJQP的下底FJ为3厘米,高QJ为2厘米。

因为PTJQ是个长方形,所以QJ=PT=2厘米,而Q点是GJ的中点,PQ平行于FJ,这样可以推算出QP为FJ的一半,为 1.5厘米,这一来梯形FJQP的面积为以C面为底面时,水的体积与以C(即三解形EHI)为底面,高为某数值此时水面的高度为:54÷6=9(厘米)以B面作为底面时,原来以A面为底面时不装水的那一部分,现在应装水,原来装水的某一部分现在应空出来,下面来讨论这两份之间的数量关系。

为方便起见,我们把C面适当放大成图6—21,在图6—21中,因为PQ平行于FJ,PT垂直于FJ,所以JQPT 是一长方图6ZI形,故JQ、PT、QG的长都是2厘米,TJ、PQ的长为 1.5厘米,因为FJ长为3厘米,所以FT的长也为1.5厘米,这一来三角形FPT与PQG的形状一样,面积相等。

这便说明原来以三角形PFT为底面,JI为高的装水的棱柱的体积,与现在以三角形PQG为底面,JI为高装水的棱柱的体积是相等的。

所以以B面为底面时,水面的高度等于PQ的长度,即水面高为 1.5厘米。

答:(略)习题六1.图6—22是一个正方体,一小虫从顶点A1出发,沿正方体的表面爬到顶点C,沿什么样的路线走距离最短,(请在展开图上表示出来)?2.用厚1厘米的木板,钉成一个小信箱,从外面量得这个长方体形信箱的长、宽、高如图6—23所示之尺寸。

在信箱的前面开了一个长20厘米、宽5厘米的投信孔,问做成这个小信箱所用木材的实际面积是多少平方厘米?3.图6—24中的图形,是一个棱长为6厘米的正方体,切去了一个长方体(尺寸见图),求剩余几何体的表面是多少?4.圆锥形塔尖,它的侧面积是62.8平方米,侧面展开图中扇形的圆心角为288度,其底面圆的半径是4米,求塔尖的高是多少(π=3.14)?5.一车工用一段长20厘米、直径为6厘米的圆钢,车一个如图6—25所示的零件,求这个零件的表面积是多少(π=3.14)?6.长方体的体积是12立方厘米,有两个侧面的面积分别是3平方厘米和12平方厘米,另一个侧面的面积是多少?7.图6—26中的几何体,是将长方体挖去一个圆柱体一半得到的,求图中几何体的体积是多少(π=3.14)?8.一块长24分米的长方形铁皮,在它的四个角上都剪去一边长为3分米的正方形,然后将它焊成一个无盖的盒子,已知盒子的容积是486立方分米,问这块铁皮原来宽多少?9.一块方木料,横截面是正方形,这个正方形的边长为1.8分米,木料长5分米,现在要把它加工成尽可能大的圆柱体,求这块方木料的利用率是多少?(π=3.14)?10.把一块长30厘米、宽20厘米、高5厘米的长方形铝锭,和一底面周长为37.68厘米、高30厘米的圆柱形铅块,熔铸成一底面圆半径为13厘米的圆锥体铝块,求这个圆锥体铝块的高是多少(л=3.14)?。

相关文档
最新文档