相关器的研究及其主要参数测量(v2.0)

合集下载

相关器的研究及其主要参数测量

相关器的研究及其主要参数测量

实验9-3 相关器的研究及其主要参数测量微弱信号检测是利用电子学、信息论、计算机、物理学的方法从噪声中提取出有用信号的一门技术学科。

“微弱信号”并不是单纯的信号幅度很小,而主要是指信号被噪声淹没,“微弱”是相对于噪声而言的。

因此,微弱信号检测是专门与噪声作斗争的技术,其主要任务是提高信噪比。

为此,就需要研究噪声的来源和性质,分析噪声产生的原因和规律,噪声的传播路径,有针对性地采取有效措施抑制噪声。

研究被测信号和噪声的特性及其差别,以寻找出从噪声中检测出有用信号的理论和方法。

微弱信号检测基本原理:频域的窄带化、时域信号的平均处理、离散量的计数统计、并行检测、自适应噪声抵消等。

微弱信号检测常见技术:相关检测、锁定放大、取样积分(多点平均)、光学多道分析仪、光子计数、自适应噪声抵消等。

【实验目的】1、了解相关器的原理2、测量相关器的输出特性3、测量相关器的抑制干扰能力和抑制白噪声能力【实验仪器】1、ND-501C型微弱信号检测实验综合装置包括:相关器实验盒、宽频带相移器实验盒、同步积分器实验盒、多点信号平均器实验盒、选频放大器实验盒、多功能信号源实验盒、有源高通-低通滤波器实验盒、低噪声前置放大器实验盒、交流-直流-噪声电压表实验盒、频率计实验盒、跟踪滤波器实验盒、相位计实验盒、双相相关器实验盒、PA级电流前置放大器实验盒、电压源-电流源实验盒、V X,V Y→V K,Vφ运算电路实验盒。

2、数字存储示波器【实验原理】相关器是锁定(相)放大器的核心部件。

相关器就是实现求参考信号和被测信号两者互相关函数的电子线路。

由相关函数的数学表达式可知,需要一个乘法器和积分器实现这一数学运算。

从理论上讲用一个模拟乘法器和一个积分时间为无穷长的积分器,就可以把深埋在任意大噪声中的微弱信号检测出来。

通常在锁定放大器中不采用模拟乘法器,也不采用积分时间为无穷长的积分器。

因为模拟乘法器要保证动态范围大,线性好将是困难的。

由于被测信号是正弦波或方波,乘法器就可以采用动态范围大、线性好、电路简单的开关乘法器。

声频功率放大器新旧标准解析及相关性能参数检测研究

声频功率放大器新旧标准解析及相关性能参数检测研究

声频功率放大器新旧标准解析及相关性能参数检测研究邝永辉【摘要】声频功率放大器是音响系统的重要组成部分,是声频信号经过声频功率放大器放大以后获得足够功率馈送给扬声器完成声音信号的再现.本文首先介绍了甲类功率放大器、乙类功率放大器、甲乙类功率放大器、定阻式功率放大器、定压式功率放大器的工作原理;再介绍了声频功率放大器新旧检验标准SJ/T 10406-2016《声频功率放大器通用规范》和SJ/T 10406-1993《声频功率放大器通用技术条件》;最后介绍了声频功率放大器相关性能参数的检测.【期刊名称】《电子测试》【年(卷),期】2018(000)002【总页数】3页(P51-53)【关键词】声频功率放大器;SYS-2722音频分析仪;增益限制的有效频率范围;总谐波失真加噪声(THD+N)【作者】邝永辉【作者单位】广东省质量监督电声产品检验站,广东江门,529000【正文语种】中文0 引言声频功率放大器简称功放,其作用是将较微弱的声频信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。

声频信号重放出来优劣的衡量主要有增益限制的有效频率范围、总谐波失真、信噪比等性能参数,这些参数与声频功率放大器本身的类型、机构设计有很大的关系,一台性能良好的声频功率放大器将给人带来高保真效果的听觉感受。

1 声频功率放大器分类声频功率放大器按功放管导电方式不同可分有甲类功率放大器、乙类功率放大器、甲乙类功率放大器等;按输出形式分有定阻式功率放大器和定压式功率放大器。

甲类功率放大器的功放管在信号的正、负半周均处于导通状态,在整个周期处于导通使得甲类功率放大器不存在开关失真和交越失真,信号在通过功放管时都可以比较完美地被放大,但因功放在没有输入信号的时候仍然要消耗电流,这样使得甲类功率放大器工作效率较低;乙类功率放大器的功率管静态工作电流为零,无信号时功放管不会消耗功率,这样使得乙类功率放大器的效率有较大的提高,但是因乙类功率放大器功率管的静态工作电流为零,使得输入信号波形的负半周不能被输出,这样会导致严重的非线性失真,乙类功率放大器工作点选择比较低,功率管在整个信号周期内只有50%的时间开启,使得乙类的效率比甲类高,但因只有一半时间进行信号放大,使得乙类功率放大器的失真比甲类大;甲乙类放大器的工作模式介于甲类与乙类之间,大部分时间只有一个晶体管工作,在零交越点时两个晶体管都工作,甲乙类放大器最大优点是改善了乙类放大器的非线性,消除了交越失真,当输入信号为零时,由于此时两个晶体管仍然处于导通状态,因此甲乙类放大器的最大工作效率介于甲类功放和乙类功放之间。

相关器的研究和主要参数测量(v2.0)

相关器的研究和主要参数测量(v2.0)

实验9-3 相关器的研究及其主要参数测量微弱信号检测是利用电子学、信息论、计算机、物理学的方法从噪声中提取出有用信号的一门技术学科。

“微弱信号”并不是单纯的信号幅度很小,而主要是指信号被噪声淹没,“微弱”是相对于噪声而言的。

因此,微弱信号检测是专门与噪声作斗争的技术,其主要任务是提高信噪比。

为此,就需要研究噪声的来源和性质,分析噪声产生的原因和规律,噪声的传播路径,有针对性地采取有效措施抑制噪声。

研究被测信号和噪声的特性及其差别,以寻找出从噪声中检测出有用信号的理论和方法。

微弱信号检测基本原理:频域的窄带化、时域信号的平均处理、离散量的计数统计、并行检测、自适应噪声抵消等。

微弱信号检测常见技术:相关检测、锁定放大、取样积分(多点平均)、光学多道分析仪、光子计数、自适应噪声抵消等。

【实验目的】1、了解相关器的原理2、测量相关器的输出特性3、测量相关器的抑制干扰能力和抑制白噪声能力【实验仪器】1、ND-501C型微弱信号检测实验综合装置包括:相关器实验盒、宽频带相移器实验盒、同步积分器实验盒、多点信号平均器实验盒、选频放大器实验盒、多功能信号源实验盒、有源高通-低通滤波器实验盒、低噪声前置放大器实验盒、交流-直流-噪声电压表实验盒、频率计实验盒、跟踪滤波器实验盒、相位计实验盒、双相相关器实验盒、PA级电流前置放大器实验盒、电压源-电流源实验盒、V X,V Y→V K,Vφ运算电路实验盒。

2、数字存储示波器【实验原理】相关器是锁定(相)放大器的核心部件。

相关器就是实现求参考信号和被测信号两者互相关函数的电子线路。

由相关函数的数学表达式可知,需要一个乘法器和积分器实现这一数学运算。

从理论上讲用一个模拟乘法器和一个积分时间为无穷长的积分器,就可以把深埋在任意大噪声中的微弱信号检测出来。

通常在锁定放大器中不采用模拟乘法器,也不采用积分时间为无穷长的积分器。

因为模拟乘法器要保证动态范围大,线性好将是困难的。

由于被测信号是正弦波或方波,乘法器就可以采用动态范围大、线性好、电路简单的开关乘法器。

集成电路主要参数与性能的测量方法

 集成电路主要参数与性能的测量方法

集成电路主要参数与性能的测量方法第一章:引言集成电路(Integrated Circuit,IC)作为现代电子技术的基础,已经成为了电路设计的主要方式和发展趋势。

因此,对于集成电路的主要参数和性能的测量方法的研究具有重要意义。

本文将对集成电路的主要参数和性能以及测量方法进行深入探讨。

第二章:集成电路的主要参数和性能(一)主要参数1.尺寸:IC的尺寸通常以晶圆直径来表示。

晶圆的直径通常在4-12英寸之间,尺寸与价格呈正相关趋势。

2.工艺节点:工艺节点是工艺技术的指标,它通常是指晶体管门宽和金属线的宽度。

工艺节点越小,表示晶体管门极容易变小,对晶体管的性能和功率效率的提高会有很大的帮助。

3.运行速度:运行速度是IC的一个重要性能参数,通常用截止频率、最大工作频率等来表示。

4.功耗:功耗是电路的重要指标之一,越小越好。

5.集成度:集成度是IC所能实现的复杂电路的规模。

(二)性能1.直流电路参数:包括电压增益、共模抑制比、输入电阻和输出电阻等。

2.交流电路参数:如输出功率、柔顺度、杂散信号等。

3.噪声参数:包括噪声系数、等效输入噪声电压等。

第三章:集成电路性能的测量方法(一)尺寸测量晶圆的尺寸测量通常使用光刻测量仪来进行,测量结果精度高、重复性好。

(二)运行速度测量1.直流电路参数的测量:可使用万用表、示波器等设备进行测量。

2.交流电路参数的测量:可以使用频谱分析器、动态信号分析仪等设备进行测量。

(三)功耗测量可以使用功率计、示波器等设备测量电路的功耗。

(四)集成度测量集成电路的集成度可以采用大规模集成电路测试系统进行测量。

(五)性能测量1.直流电路参数的测量:可使用各种测试电路(如差分放大电路)进行测量。

2.交流电路参数的测量:使用频谱分析器等仪器测量,可以得到其幅频特性、输出功率、等效杂散电平等参数。

3.噪声参数的测量:可以使用电压调制噪声功率谱仪等设备测量。

第四章:总结本文阐述了集成电路主要参数与性能的测量方法。

同步积分器的研究及主要参数测量.doc

同步积分器的研究及主要参数测量.doc

同步积分器的研究及主要参数测量.doc
实验⼆同步积分器的研究及主要参数测量
⼀、实验⽬的
了解同步积分器的原理,掌握同步积分器的输出特性,同步积分器的抑制⼲扰能⼒与抑制⽩噪声能⼒,同步积分器的过载电平的含义及同步积分器的等效噪声带宽的概念
基本原理:
同步积分器是⼀种同步滤波器,同步积分器能在噪声中提取微弱信号,具有很弱的抗⼲扰能⼒,和相关器⼀样是微弱信号检测仪器中的关键部件之⼀。

输出为交流信号,简单形式如下:
V i
同步积分器的原理图
⼆、实验仪器:
双踪通⽤⽰波器⼀台微弱信号检测技术实验综合装置
三、实验步骤:
1、输出波形的观察与测试
(1)按图连接线路(2)通⽤电源(3)⽤相位计测量同步积分器的输⼊信号与参考信号的相位差(4)调节相位器的相位移量,观察同步积分器的输出⽅波随参考信号之间相位差的变化规律并记录
u s u s u s u
s
u R u R o
u R
o
00=? 0
90=? 0180=? 0
270=?
2、谐波响应的观察与测量
改变置分频数n ,测量对应的n 次谐波响应,⽤电压表测出输出响应u s o u s o
u s
o
u R
o u R
o
o
n=1 n=2 n=3
五、实验结论
(1)同步积分器输出为⼀个与参考信号同频的⽅波,⽅波的幅值为π
πcos 2I V o =
随着相位的不同,幅值也发⽣变化
(2)同步积分器能够抑制偶此次谐波。

相关器1

相关器1

没有直流分量输出,说明相关器能抑制偶次谐波, 是以参考信号频率为参数的方波匹配滤波器。
物理学实验教学示范中心
近代物理实验
相敏特性
当输入信号为一恒定幅度的与参考信号同步的对 称方波时,相关器输出直流电压和参考信号与输 入信号的相位差成线性关系,这时相关器可作为 签相器。
物理学实验教学示范中心
近代物理实验
相关器原理图
物理学实验教学示范中心
近代物理实验
相关器各点波形
物理学实验教学示范中心 近代物理实验
谐波响应
当输入信号的频率与参考信号的奇次谐波频率 (2n+1)相同时,经低通滤波器就会有直流分量 输出,而这些奇次谐波输出的幅度为基波幅度的 (2n+1)分之1。当输入信号的频率与参考信号 的偶次谐波频率(2n)相同时,经低通滤波器将
物理学实验教学示范中心 近代物理实验
实验原理
当待测信号与参考信号同频率时,相关器输出的 信号与待测信号的幅度Vs有关,也与待测信号与 参考信号的相位差有关。调整参考信号的相位, 当时,相关器的输出信号与待测信号的幅度成正 比,因而实现了幅度的检测目的。
物理学实教学示范中心
近代物理实验
实验原理
微弱信号检测技术(一) 相关器的研究及其主要参数测量
指导教师:赖发春
物理学实验教学示范中心
近代物理实验
实验目的
1.了解相关器的原理 2.了解锁定放大器的工作原理 3.学习锁定放大器测量微弱信号的特点 4.测量相关器的输出特性
物理学实验教学示范中心
近代物理实验
实验仪器
ND—501型微弱信号检测实验综合装置
物理学实验教学示范中心 近代物理实验
思考题
1.锁定放大器与一般含义的放大器有什么主要的 区别? 2.相关器和同步积分器是依据什么原理来检测微 弱信号的? 3.输入信号频率与参考信号的频率不同则锁定放 大器就不会有输出,对否?

cv测量的基本原理(一)

cv测量的基本原理(一)

cv测量的基本原理(一)CV测量的基本原理1. 什么是CV测量?CV测量是指通过电流-电压(Current-Voltage)曲线来分析材料或器件的电学特性的一种方法。

这种方法广泛应用于半导体器件的研究和生产过程中,以评估其性能和可靠性。

2. CV测量的目的CV测量可以提供以下信息: - 材料或器件的载流子浓度(Carrier concentration) - 材料或器件的载流子迁移率(Carrier mobility) - 材料或器件的电荷规模(Charge density)3. CV测量的基本原理CV测量是通过在材料或器件的两个电极之间施加不同电压,并测量电流来进行的。

测试过程中,我们会在不同的电压下测量电流,以绘制出电流-电压曲线。

CV曲线的基本原理可以通过以下步骤进行说明: 1. 施加电压:首先,在待测材料或器件的电极上施加一个小电压(称为交流偏置电压)。

2. 测量电流:通过电流表测量在不同电压下通过材料或器件的电流值。

3. 绘制CV曲线:将测得的电流和施加的电压进行绘制,得到一条CV曲线。

4. CV测量中的常用参数分析CV测量得到的曲线可以提供多个参数用于分析材料或器件的电学特性。

以下是常用的参数分析: - 激活能(Activation Energy):用来描述能带结构和载流子能级的能量差异。

- 掺杂浓度(Doping Concentration):评估材料或器件中掺入杂质的浓度。

- 载流子迁移率(Carrier Mobility):评估材料或器件中载流子的迁移能力。

- 电阻率(Resistivity):衡量材料对电流的阻抗能力。

- 电容率(Capacitance):描述材料或器件的电容性质。

5. 应用领域CV测量广泛应用于各种材料和器件的研究和生产领域: - 半导体器件制造:通过CV测量来评估器件性能和可靠性。

- 太阳能电池研究:CV测量可以用来分析太阳能电池的性能和效率。

锁相放大器的原理实验报告

锁相放大器的原理实验报告

锁相放大器的原理实验报告The manuscript was revised on the evening of 2021锁相放大器的原理实验报告摘要:随着科学技术的发展,微弱信号的检测越来越重要。

微弱信号检测是利用电子学、信息论、物理学和电子计算机的综合技术。

它是在认识噪声与信号的物理特性和相关性的基础上,把被噪声淹没的有用信号提取出来的一门新兴技术学科。

锁相放大器就是检测淹没在噪声中微弱信号的仪器。

它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号。

锁相放大器可以理解为用噪声频带压缩的方法,将微弱信号从噪声中提取出来。

本实验通过测量锁相放大器的工作参数和特性,掌握相关检测原理以及锁相放大器的正确使用方法。

关键词:锁相放大器;微弱信号放大;PSD输出波形;谐波响应一、引言随着科学技术的发展,科学研究领域向宏观和微观不断深入,常常需要检测极微弱的信号,如物理学中的表面物理特性,光学中的拉曼光谱、光声光谱、脉冲瞬态光谱,生物学中的细胞发光特性、生物电的测量等。

在这些测量过程中,待测的微弱信号常常淹没在强大的背景噪声之中,使用常规的检测手段就无法达到目的。

而且随着科学的发展,对实验数据的可靠性、准确性、精确性的要求也越来越高,因此,微弱信号的检测就越来越重要,自60年代初开始,关于信号检测与处理的技术开始产生并迅速发展,现已逐渐形成一专门的边缘科学,在物理、化学、生物、天文、地质、医学、材料等学科领域得到广泛应用。

锁相放大器(Lock-In Amplifier,简写为LIA)就是检测淹没在噪声中微弱信号的仪器。

它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号,能测量到输入信噪比低至10-5的微弱正弦量。

自1962年第一台锁相放大器商品问世以来,锁相放大器有了迅速发展,性能指标有了很大提高,现已被广泛应用于科学技术的很多领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验9-3 相关器的研究及其主要参数测量微弱信号检测是利用电子学、信息论、计算机、物理学的方法从噪声中提取出有用信号的一门技术学科。

“微弱信号”并不是单纯的信号幅度很小,而主要是指信号被噪声淹没,“微弱”是相对于噪声而言的。

因此,微弱信号检测是专门与噪声作斗争的技术,其主要任务是提高信噪比。

为此,就需要研究噪声的来源和性质,分析噪声产生的原因和规律,噪声的传播路径,有针对性地采取有效措施抑制噪声。

研究被测信号和噪声的特性及其差别,以寻找出从噪声中检测出有用信号的理论和方法。

微弱信号检测基本原理:频域的窄带化、时域信号的平均处理、离散量的计数统计、并行检测、自适应噪声抵消等。

微弱信号检测常见技术:相关检测、锁定放大、取样积分(多点平均)、光学多道分析仪、光子计数、自适应噪声抵消等。

【实验目的】1、了解相关器的原理2、测量相关器的输出特性3、测量相关器的抑制干扰能力和抑制白噪声能力【实验仪器】1、ND-501C型微弱信号检测实验综合装置包括:相关器实验盒、宽频带相移器实验盒、同步积分器实验盒、多点信号平均器实验盒、选频放大器实验盒、多功能信号源实验盒、有源高通-低通滤波器实验盒、低噪声前置放大器实验盒、交流-直流-噪声电压表实验盒、频率计实验盒、跟踪滤波器实验盒、相位计实验盒、双相相关器实验盒、PA级电流前置放大器实验盒、电压源-电流源实验盒、V X,V Y→V K,Vφ运算电路实验盒。

2、数字存储示波器【实验原理】相关器是锁定(相)放大器的核心部件。

相关器就是实现求参考信号和被测信号两者互相关函数的电子线路。

由相关函数的数学表达式可知,需要一个乘法器和积分器实现这一数学运算。

从理论上讲用一个模拟乘法器和一个积分时间为无穷长的积分器,就可以把深埋在任意大噪声中的微弱信号检测出来。

通常在锁定放大器中不采用模拟乘法器,也不采用积分时间为无穷长的积分器。

因为模拟乘法器要保证动态范围大,线性好将是困难的。

由于被测信号是正弦波或方波,乘法器就可以采用动态范围大、线性好、电路简单的开关乘法器。

国内外大部分的锁定放大器都是采用这种乘法器,本实验只讨论采用这种乘法器的相关器。

3.1 相关器的数学解锁定放大器中常采用的相关器原理方框图如图1-1所示。

被测信号V A和参考信号V B在乘法器中相乘,两者之积V1为乘法器的输出信号。

同时也是低通滤波器的输入信号。

低通滤波器是采用运算放大器的有源滤波器,电阻R1、R0、C0为图中所示,V o为低通滤波器的输出信号。

图中的乘法器用开关来实现,可以等效成被测输入信号与单位幅度的方波相乘的乘法器。

若参考信号为占空比1:1的对称方波,V B就能用单位幅度的对称方波函数表示(或称单位幅度开关函数记为X K)。

因此有:V B=X k=4π∑12n+1sin(2n+1)ωR tn=0,1,2…={+1 正半周−1 负半周(1-1)式中ωR 为参考信号的角频率。

图1-1、相关器原理图设输入被测信号V A =U A sin (ωt +φ),ω为信号角频率,φ为相位差,U A 为正弦波的振幅。

乘法器的输出为V 1,可以表示为:V 1=V A ∙V B =4 πU A sin (ωt +φ)∑12n +1sin (2n +1)ωR t n=0,1,2…对于低通滤波器,输入电压V 1,输出电压V 0满足大家熟知的微分方程。

用运放虚地点:I C 0+I R 0+I R 1=0 有C 0dV 0dt +V 0R 0+V 1R 1=0 即dV 0dt+1C0R 0V 0=−V 1C0R 1(1-2)式(1-2)为一次线性非齐次微分方程。

其通解为:V 0=e−∫1R 0C 0dt [∫(−V 1R1C 0)e∫1R0C 0dtdt +C] (1-3)C 为起始条件,令C=0,把V 1代入(1-3)式,对三角函数积化和差后,可以求得:V 0=−2R 0U AπR 1∑12n +1{{[()R ]2n+1−}√1+{[ω−(2n +1)ωR ]R 0C 0}2n=0,1,2…{[()R ]2n+1+}√1+{[ω+(2n +1)ωR ]R 0C 0}2−e −t R 0C 0[cos (φ+θ2n+1−)√1+{[ω−(2n +1)ωR ]R 0C 0}2cos (φ+θ2n+1+)√1+{[ω+(2n +1)ωR ]R 0C 0}2]} (1-4)式中: θ2n+1−=−arctg [ω−(2n +1)ωR ]R 0C 0 (1-5)θ2n+1+=−arctg [ω+(2n +1)ωR ]R 0C 0 (1-6)3.2 相关器的传输函数及性能由(1-4)式对不同频率进行讨论,了解相关器的性能与物理意义。

3.2.1 基波当ω=ωR ,输入信号频率等于参考信号频率,记输出电压为V 010,(1-4)式可写成:V 010=−2R 0U A1πR 1{(1−e−1R 0C 0t )cos φ10+∑12n+1[cos (−2nωR t+φ1+θ2n+1−)√1+(2nωR R 0C 0)2−cos[(2n+1)ωR t+φ1+θ2n+1+]√1+[(2n+1)ωR R 0C 0]2−∞n=1e −tR 0C 0(cos (φ1+θ2n+1−)√1+(2nωR R 0C 0)2−cos(φ1+θ2n+1+)√1+[(2n+1)ωR R 0C 0]2)]−cos(2ωR t+φ1+θ1+)√1+(2ωR R 0C 0)2+e−t R 0C 0cos(φ1+θ1+)√1+(2ωR R 0C 0)2} (1-7)式中U A10,φ10,V 010,θ1+,θ1−分别表示输入信号频率为参考信号的基波频率时的振幅、相位、输出电压、及对应的相位。

当ωR R o C o >>1时,略去(1-7)式中的小项,得:V 010=−2R 0U A1πR 1(1−e−t R 0C 0)cos φ10(1-8)时间常数T e =R o C o ,为低通滤波器的时间常数,由电容C o 和电阻R o 决定。

当t ≫T e 时,由(1-8)式可得到稳态解:V 010=−2R 0U A1πR 1cos φ10(1-9)输出为直流电压,大小正比于输入信号的振幅U A10,并和信号与参考信号之间的相位差φ10的余弦成正比。

-R 0/R 1为低通滤波器的直流放大倍数,负号表示由反相输入端输入。

3.2.2 偶次谐波图1-3、相关器输入波形为二次谐波时的波形图当输入信号为参考信号的偶次谐波时,即ω=2(n+1)ωR ,并时间常数T e = R o C o 取足够大,使R o C o ωR >>1,由(4)式可得:V 02(n+1)0=0 (1-10)上式表明,当参考信号是占空比为1:1的对称方波时,相关器抑制参考信号频率的偶次谐波。

为了方便理解,图1-3为输入信号为二次谐波时的各点波形图。

3.2.3 奇次谐波当输入信号为参考信号的奇次谐波时,即ω=(2n+1)ωR ,同样,当T e 较大,有ωR R o C o >>1,略去小项,由(1-4)式可得:V 02n+1=−2R 0U A2n+1π(2n+1)R 1(1−e−t R 0C 0)cos φ2n+10(1-11)式中U A2n+10,φ2n+10,V 02n+10分别是输入信号频率为参考信号频率的奇数倍时的信号振幅、相位和输出电压。

时间常数T e =R o C o ,当t ≫T e ,由(1-11)式得到:V 02n+10=−2R 0U A2n+10π(2n+1)R 1cos φ2n+10(1-12)图1-5、相关器奇次谐波输出电压的频率响应信号频率为参考信号频率的奇次谐波时,相关器的输出直流电压幅值为基波频率的1/(2n+1),相关器奇次谐波输出和直流电压的频率响应如图1-5所示。

3.2.4 偏离奇次谐波一个小量Δω当输入频率偏离奇次谐波一个小量Δω,即ω=(2n +1)ωR +Δω, n=0、1、2、…当ωR R o C o >>1,t>>T e ,由(1-4)式可得:V 02n+1=−2R 0U A2n+1π(2n+1)R 1∙cos (Δωt+φ2n+1+θ2n+1−)√1+(ΔωR 0C 0)2(1-13)式中U A2n+1,φ2n+1,θ2n+1−,V 02n+1分别为输入信号频率在(2n+1)ωR 附近信号幅值、相位、输出相位和输出电压。

(1-13)式表明,这时相关器的输出电压不再是直流电压,而是以Δω为角频率的交流电压,当Δω=0时(1-13)式即为(1-12)式。

这两式相比可知,当输入频率偏离奇次谐波一个小量Δω,相关器的输出电压的幅值为同一奇次谐波频率响应电压的1/√1+(ΔωR 0C 0)2,Δω越大,输出电压幅值越小。

这一因子是每倍频程6分贝衰减的低通滤波器传输函数的模。

这里的Δω可以为正也可以为负。

表明在(2n+1)ωR 这一频率两边都是按每倍频程6分贝衰减。

因此,相关器在各奇次谐波附近相当于带通滤波器,传输函数的幅频特性如图1-6所示。

图1-6、相关器传输函数的幅频特性由公式(1-13)和图1-6表明,相关器是以参考信号频率为参数的梳状滤波器,滤波器的通带在各奇次谐波处。

由于相关器的传输函数和对称方波的频谱一样,也可以说以对称方波为参考信号的相关器是同频对称方波的匹配滤波器。

它只允许对称方波的各奇次谐波通过,而抑制其它频率的干扰和噪声。

当T e = R o C o 越大,在各奇次谐波处的通带越窄,就越接近于理想匹配滤波器。

3.2.5 方波对输入信号为方波的情况,相关器的输出特性与上述讨论相似,本实验没有涉及,限于篇幅,在此不作讨论。

具体内容可参阅相关文献。

3.3 相关器的等效噪声带宽由上述讨论可知,用相关器传输函数讨论和计算相关器的性能可以得到需要的结果。

用上述的那些公式,可以很方便地计算相关器对不相干信号的抑制能力。

但对于白噪声的抑制能力,采用等效噪声带宽更方便,处理更简单。

根据(1-13)式求出(2n+1)次谐波附近,相对于基波响应的归一化传输函数K 2n+1为K 2n+1=12n+1√1+(R 0C 0∆ω)2(1-21)根据等效噪声带宽的定义,等效噪声带宽∆f N(2n+1)为∆f N(2n+1)=∫K 2n+12∞0d∆f (1-22)式中∆f N(2n+1)的下标(2n+1),表示在(2n+1)次谐波处的等效噪声带宽。

∆f 为相对于(2n +1)f R 的频差。

K 2n+1为(2n+1)次谐波的传输函数。

把(1-21)式代入(1-22)式,由于输入噪声的频率有些比(2n+1)f R 高,有些比(2n+1)f R 低,并都将在输出端产生噪声贡献。

相关文档
最新文档