数学文化之旅------神奇的斐波那契数列与黄金分割
斐波那契数列与黄金分割 ppt课件

F1 1 F2 1
第三个月兔子数
F 3F 1F 2 1 12
随着时间不断流逝。。。。。。
第n个月兔子 数
Fn Fn1Fn2
按照递推公式计算,得到 1,1,2,3,5,8,13,21,34,55,89,144,• • •
从第三项起每一项都等于前两项之和。19世纪法国数 学家路卡斯给这个数列起了一个颇适合的名字:“斐波那契数 列”,数列中的每一个数称为斐波那契数.
数学家们已经发现了许多关于斐波那契数列的特性。例如:
1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144 , …
• 从第二项开始,每个奇数项的平方都比前后两项之积多1, 每个偶数项的平方都比前后两项之积少1
• 第3、第6、第9、第12项的数字,能夠被 2整除
古希腊的数学家不必说了,中世纪的意 大利数学家裴波那契(Fibonacci, 约1170— 1240), 文艺复兴时代的德国天文学家开普勒 (Kepler, 1571—1630),以及当代的一些著名 科学家都对它十分关注,并投入了大量的精 力。
意大利的数学家列昂 那多·斐波那契在1202 年提出这样一个问题
1,1,2,3,5,8,13,21,34,55,89,144,• • •
21个花瓣的紫菀
34个花瓣的雏菊 1,1,2,3,5,8,13,21,34,55,89,144,• • •
斐波那契数有时也称松果数,因为连续的 斐波那契数会出现在松果的左和右的两种 螺旋形走向的数目之中
1,1,2,3,5,8,13,21,34,55,89,144,• • •
斐波那契(Leonardo Pisano
F ibonacci ; 1170 1250 )
自然界中的神奇数学

自然界中的神奇数学自然界是一个充满了奥秘和神奇的地方,我们可以从不同的角度去理解它。
而其中一种角度是数学。
数学作为一门学科,不仅存在于我们的日常生活中,也深深地植根于自然界中。
自然界中的各种现象和规律都可以用数学来解释和描述。
本文将带您探索自然界中的神奇数学,揭示数学在自然界中的妙用。
1. 斐波那契数列(Fibonacci Sequence)斐波那契数列是自然界中最著名的数学现象之一。
它的特点是每个数字都是前两个数之和。
例如,从0和1开始的斐波那契数列为0、1、1、2、3、5、8、13、21、34,依此类推。
很多物种的生长模式都符合斐波那契数列,例如植物的叶子排列、鱼类的繁殖规律等。
这种规律背后的数学原理对于理解自然界中的生态系统和物种演化过程具有重要意义。
2. 黄金分割(Golden Ratio)黄金分割是数学中一种神秘而美丽的比例关系。
它定义为两个数量之和与较大数量之比等于较大数量与较小数量之比的比值。
这个比值约等于1.618,常被表示为φ(phi)。
黄金分割在自然界中广泛存在,例如植物的枝干分布、贝壳的螺旋形状、动物的身体比例等。
黄金分割可以让我们更好地欣赏自然界中的美,也被广泛运用在建筑、艺术和设计中。
3. 汉诺塔(Tower of Hanoi)汉诺塔是一种经典的数学谜题,它反映了数学中的递归思想。
汉诺塔由三个柱子和一些盘子组成,盘子大小各不相同,从小到大依次叠放在某个柱子上。
游戏的目标是将所有盘子从一个柱子移动到另一个柱子上,但是规则是每次只能移动一个盘子,且较大的盘子不能放在较小的盘子上面。
汉诺塔问题可以用递归算法求解,同时也反映了自然界中的某些现象,例如大气环流、物种繁衍等,都存在着递归的规律。
4. 黑洞(Black Hole)黑洞是宇宙中最神秘和奇特的现象之一,同时也与数学有着密切的关联。
黑洞的形成是由恒星在引力作用下塌缩而成,形成一个非常密集的物体。
然而,黑洞的特殊之处在于其具有无穷大的密度和极强的引力场,使其吞噬周围的物质。
神奇的斐波那契兔子----黄金分割率

神奇的斐波那契兔子----黄金分割率同学们,假设学校的数学兴趣小组在校园围墙里饲养了一对兔子,如果它们每个月生一对小兔子,新生的小兔子在第二个月后长大了,也开始每个月生一对小兔子,你知道一年后校园中一共有多少对兔子吗?下面,我们先用穷举法先来尝试一下吧:第一个月是最初的一对兔子生下一对小兔子,校园中共有2对兔子。
第二个月最初的一对兔子又生下一对小兔子,上个月刚出生的小兔子还没有长大,所以校园中共有3对兔子。
第三个月除最初的兔子新生一对兔子外,第一个月生的兔子也开始生兔子,因此共有5对兔子。
继续推下去,第12个月时最终共有377对兔子。
我们把这一年中,兔子数量填入下表,不难看出,每个月的兔子总数可由前两个月的兔子数相加而得。
该问题记载于公元前13世纪意大利数学家斐波那契的名著《算盘书》(1202-1228年修订本)中,感兴趣的同学可以接着计算一下第24个月、第36个月校园中兔子的数量,看看什么时候校园里会挤满了兔子,呵呵……同学们,千万不要小看这个数列,它不仅仅只是用来做数学游戏的,它的作用可大咧!这个数列后来被命名为“斐波那契级数”,它是一种特殊的线性递归数列,在数学的许多分支中有着广泛的应用。
美国数学会从1960年代起出版了《斐波纳契数列》季刊,用来专门研究斐波那契数列。
这个级数与大自然动植物的关系极为密切。
科学家发现,一些植物的花瓣、萼片、果实的数目以及排列的方式上,都非常符合著名的斐波那契数列这一个神奇的规律,几乎所有花朵的花瓣数都来自这个级数中的一项数字:蓟的头部几乎呈球状。
在下图中,你可以看到两条不同方向的螺旋。
我们可以数一下,顺时针旋转的(和左边那条旋转方向相同)螺旋一共有13条,而逆时针旋转的则有21条。
此外还有菊花、向日葵、松果、菠萝等都是按这种方式生长的。
仔细观察向日葵花盘,你会发现2组螺旋线,一组顺时针方向盘绕,另一组则逆时针方向盘绕,并且彼此相嵌。
虽然不同的向日葵品种中,种子顺、逆时针方向和螺旋线的数量有所不同,但往往不会超出34和55、55和89或者89和144这三组数字,这每组数字都是斐波那契数列中相邻的2个数。
斐波那契数列与黄金分割的联系

斐波那契数列与黄金分割的联系
斐波那契数列是一个以递归方式定义的数列,其中每个数是前两个数的和。
斐波那契数列是一个无限序列,以0和1作为开始,然后每个后续数字都是前两个数字的和。
具体来说,斐波那契数列的前几个数是0、1、1、2、3、5、8、13、21等等。
黄金分割是一种特殊的比例关系,常用符号φ(phi)表示,它的数值大约等于1.618。
在黄金分割中,整体被分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例。
这种比例关系在自然界、艺术和建筑中广泛出现,并被认为是一种美学上的理想比例。
斐波那契数列与黄金分割之间存在着密切的联系。
事实上,当我们计算斐波那契数列中连续两个数的比值时,它接近于黄金分割的比例值。
具体来说,随着数列的不断增长,相邻两个斐波那契数之间的比值会逐渐接近黄金分割的数值。
这个接近的趋势是逐渐加强的,越往后差距越小。
这种联系使得斐波那契数列与黄金分割在数学中有很多有趣的应用。
黄金分割比例在美术作品和设计中被广泛应用,而斐波那契数列的递增特性则在金融市场、自然科学和计算机科学中发挥重要作用。
斐波那契数列与黄金分割的联系揭示了它们的相似之处,展示了数学与自然之间的深刻关联。
虽然无法提及真实名字和引用,但以上介绍了斐波那契数列与黄金分割之间的联系,并描述了它们的一些应用领域。
数学文化第四讲斐波那契数列与黄金分割52页PPT

46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
数学文化第四讲斐波那契数列与黄金 分割
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行பைடு நூலகம், 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
数学与自然界的奥秘斐波那契数列和黄金分割

数学与自然界的奥秘斐波那契数列和黄金分割数学与自然界的奥秘:斐波那契数列和黄金分割数学作为一门精确而又抽象的科学,被广泛应用于自然界的解释和描述。
其中,斐波那契数列和黄金分割作为数学与自然界奥秘的具体例子,引人入胜。
它们不仅在数学领域有着重要的意义,而且在生物学、物理学、艺术等多个领域中都有着广泛的应用。
本文将为你揭示这两个数学奥秘的魅力。
一、斐波那契数列的魅力斐波那契数列是一个起源于12世纪的数列,由意大利数学家斐波那契首次提出。
它的定义方式非常简单,即从第三项开始,每一项都是前两项的和。
数列的前几项为0、1、1、2、3、5、8、13……1. 自然界中的斐波那契数列斐波那契数列在自然界中广泛存在,它们出现在很多自然物体的生长和排列中。
树枝、花瓣、蜂窝等都呈现出斐波那契数列的特性。
例如,一棵树的主干会在第一个分支处分为两个分支,之后每一个分支都会以斐波那契数列的规律逐渐生长。
这种规律不仅让我们惊叹于自然的智慧,也让我们深入理解数学与自然的奥秘。
2. 黄金比例与斐波那契数列斐波那契数列与黄金比例之间有着紧密的联系。
黄金比例是指一段线段分成两部分,其中较大部分与整体的比值等于较小部分与较大部分的比值。
这个比例约等于1:1.618。
而斐波那契数列的相邻两项接近黄金比例,当数列项数越往后推进,这种趋势就越明显。
二、黄金分割的神秘之处黄金分割作为一种比例,被广泛应用于数学、美术、建筑等领域。
它被认为是一种最具美感和完美比例的存在。
1. 黄金分割与艺术许多著名的艺术品都采用了黄金分割的设计原则。
画家们在构图时往往按照黄金分割比例来分割画面空间,以达到视觉上的平衡和和谐。
同时,建筑师们也常常运用黄金分割来设计建筑物的比例和布局,使其具有更加美感和舒适感。
2. 黄金分割在自然界中的体现黄金分割比例也在自然界中随处可见。
例如,我们身体的比例就在一定程度上符合黄金分割。
人脸的眼睛、耳朵、嘴巴的布局和大小关系往往符合黄金分割比例。
数学文化第四讲斐波那契数列与黄金分割

2、兔子数列 如果每对兔子(一雄一雌)每月能生殖一对小兔 子(也是一雄一雌,下同),每对兔子第一个月没有 生育能力,但从第二个月以后便能每月生一对小兔子。 假定这些兔子都不发生死亡现象,那么从一对刚出生 的兔子开始,一年之后会有多少对兔子呢?
解答
1 月 1 对
解答
1 月 1 对 2 月 1 对
斐波那契数列: 1,1,2,3,5,8,13,21,34,55,89, 144,• • • 上述数列中的每一个数称为斐波那契数. 此数列有下述递推公式: u1 = 1, u2 = 1,un = un-1 + un-2 ,n > 2 . 用数学归纳法,可推得斐波那契数列的通项公式:
1 1 5 n 1 5 n , un 5 2 2
二、黄金分割
著名天文学家开普勒说:几何学里有两个 宝库,一个是毕达哥拉斯定理,一个是黄金分 割。前者可以比作金矿,后者可以比作珍贵的 钻石矿。
数学之美
德国天文学家开普勒曾说:“几何学有两大宝 藏,其一为毕氏定理,其二为将一线段分成外内比。 前者如黄金,后者如珍珠。”
A straight line is said to have been cut in extreme and mean radio when,as the whole line is to the greater segment,so is the greater to the less.
+
1 2 3 5 8 13 21 34 55 89 ??
十秒钟加数
请用十秒,计算出 左边一列数的和。
时间到!
答案是 231。
+
34 55 89 144 233 377 610 987 1597 2584 ????
斐波那契数列与黄金分割

我们可以在鹦鹉螺的外壳发现这样的螺线
所谓黄金三角形是一个 等腰三角形其底与腰的长 度比为黄金比值。我们若 以底边为一腰作一等腰三 角形则此三角形亦为一黄 金三角形,如下图。图中 三种不同长度的线段,其 中次长的线段(蓝色)与 最长的线段(红色)比是 黄金比例,最短的线段 (绿色)与次长线段(蓝 色)也是黄金比例。
1 5 ,其正根为 x 2
5 1 x 0.6180339 0.618 2 A B
小段 大段
3.黄金矩形
定义:一个矩形,如果从中裁去 一个最大的正方形,剩下的矩形的宽与长 之比,与原矩形的一样(即剩下的矩形与 原矩形相似),则称具有这种宽与长之比 的矩形为黄金矩形。黄金矩形可以用上述 方法无限地分割下去。
Fn Fn1 Fn2 , n 2.
每月大兔对数 Fn 排成数列为: 0,1,1,2,3,5,8,13,21,34,55,89,144,
•••
4
定义:若一个数列,前两项均等于1,而从 第三项起每一项是其前两项之和,则称该数列
为斐波那契数列。即:
1 , 1 , 2 , 3 , 5 , 8 , 13 , … …
(1)人体各部分的比Fra bibliotek肚 脐:
印堂穴:
(头—脚)
(口—头顶)
肘关节: (肩—中指尖) 膝 盖: (髋关节—足尖)
(2)著名建筑物中各部分的比
如埃及的金字塔,高(137米)与底边长 (227米)之比为0.629
雅典的帕德侬神庙 (Parthenon at Athens) 庄严、宏伟,被认为 是古希腊最伟大的建筑之一。有 人认为它之所以显得那么和谐, 是因为这个建筑符合黄金比。
Field daisies have 34 petals
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神奇的斐波那契数列与黄金分割石家庄二中南校区孟柳比萨的列奥纳多,又称斐波那契(Leonardo Pisano ,Fibonacci, Leonardo Bigollo,1175年-1250年),中世纪意大利数学家,是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲。
列奥纳多的父亲Guilielmo(威廉),外号Bonacci.因此列奥纳多就得到了外号斐波那契(Fibonacci,意即filius Bonacci,Bonacci之子)。
1202年,他撰写了《算盘全书》(Liber Abacci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,当时仍是小伙子的列奥纳多已经开始协助父亲工作,因此得以在一个阿拉伯老师的指导下研究数学。
他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。
于是他就学会了阿拉伯数字。
他是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲。
主要著作有《算盘书》《几何实践》《花朵》《平方数书》斐波那契在《算盘书》中提出了一个有趣的兔子问题:一般而言,兔子在出生两个月后就具有了繁殖能力,一对兔子每个月能生出一对兔子,如果兔子都不死,那么一年后能有多少对兔子?拿新出生的一对兔子研究:第一个月兔子没有繁殖能力,两个月后生下一对小兔总数共有两对;三个月后,老兔子生下又一对,因为上一轮的小兔没有繁殖能力,所以总数是三对;…………..1,1,2,3,5,8,13,21,34,55,89,144……依次类推下去,你会发现,它后一个数等于前面两个数的和。
在这个数列中的数字,就被称为斐波那契数。
2是第3个斐波那契数。
斐波那契数列还满足一下特点:1.任一项的平方数都等于与它相邻的两项乘积相差12.相邻的4个数,内积与外积相差13.前一项与后一项的比大约是0.6184.后一项比前一项大约是1.618经研究发现,相邻两个斐波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。
即f(n)/f(n-1)-→0.618…。
由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。
但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
由此可见斐波那契数列与黄金分割有着密不可分的联系。
在生活中随处可见的斐波那契与黄金分割。
生物:自然界中的斐波那契数列斐波那契数列在自然科学的其他分支,有许多应用。
例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。
所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。
这样,一株树木各个年份的枝桠数,便构成斐波那契数列。
这个规律,就是生物学上著名的“鲁德维格定律”。
另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……许多植物萌生的叶片、枝杈或瓣都按黄金分割的角度伸展:从上往下看时,它们把水平面360°角分为约222.5°和137.5°。
(360×0.168=225)。
即任意两相邻叶片(枝头或花瓣)都沿这两个角度伸展;这样,它们虽不断轮生,却互不重叠,有利于光合作用。
例如蓟草和一些蔬菜的叶片,以及梨树枝、玫瑰花瓣等就是如此。
以致有人将此戏称为“生仿”(生物仿人类智慧做黄金分割),这不能不说是生物进化的结果。
有的建筑学家还按车前草叶子的排列设计螺旋状大厦,以使每个房间得到充足的阳光照射。
斐波那契数还可以在植物的叶、枝、茎等排列中发现。
例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。
叶子从一个位置到达下一个正对的位置称为一个循回。
叶子在一个循回中旋转的圈数也是斐波那契数。
在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。
多数的叶序比呈现为斐波那契数的比。
这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。
这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。
叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是222.5度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是黄金分割数0.618033989……而这种生长方式就决定了斐波那契螺旋的产生。
地理: 地球表面的纬度范围是0——90°,对其进行黄金分割,则34.38°——55.62°正是地球的黄金地带。
在平均气温、年日照时数、年降水量、相对湿度等方面都是适于人类生活的最佳地区。
这一地区几乎囊括了世界上所有的发达国家。
在地球的北回归线附近有一条神秘地带,以盛产自然之谜著称。
如著名的金字塔之谜、死海形成之谜、百慕大三角之谜、圣塔柯斯镇斜立之谜等等在地图上进行一下简单的测量就可以发现,这条地带正好落在地球的黄金分割点处好茶产地大多位于北纬30度左右。
红茶中的极品“祁红”,产地在安徽的祁门,恰好在此纬度上。
黄山,庐山,九寨沟等等,及中国三大淡水湖也恰好在这黄金分割的纬度上。
太阳系就处在银河系半径的"黄金分割"处,这是否是地球上产生智能生命的原因呢?生命:生命及生命能量的周期也遵循黄金分割线的规律。
也就是说,所有这些在“斐波那契数列”中出现的数字,都是人生中的大事年份。
8岁开始接受学校的熏陶;13岁青春期;21岁开始探索人生,走向社会;34岁前后可以渐渐掌控自我,成家立业;55岁时则已经积累了人生大部分的经验和智慧……这一切看似随机,冥冥中都受着自然规律的引导和限制。
而在组织行为学中,当一个组织人数超过144人左右时,其结构就不再稳定可靠,不便于单一的管理,需要另行成立分支机构,这一点也特别体现在军队的编制上。
医学:医学与0.618有着千丝万缕的联系,它可解释人为什么在环境22至24℃时感觉最舒适。
因为人的体温为37℃与0.618的乘积为22.8℃,而且这一温度中机体的新陈代谢、生理节奏和生理功能均处于最佳状态。
人在精神愉快时,测出的人脑电波频率下降(8赫兹)与上限(12.9赫兹)的比例,恰好为“黄金比率”。
如果这时去参加竞技或考试,则更能发挥出自身的水平。
科学家们还发现,当外界环境温度为人体温度的0.618倍时,人会感到最舒服.现代医学研究还表明,0.618与养生之道息息相关,动与静是一个0.618的比例关系,大致四分动六分静,才是最佳的养生之道。
医学分析还发现,饭吃六七成饱的几乎不生胃病。
武器:在冷兵器时代,虽然人们还根本不知道黄金分割率这个概念,但人们在制造宝剑、大刀、长矛等武器时,黄金分割率的法则也早已处处体现了出来,因为按这样的比例制造出来的兵器,用起来会更加得心应手。
当发射子弹的步枪刚刚制造出来的时候,它的枪把和枪身的长度比例很不科学合理,很不方便于抓握和瞄准。
到了1918年,一个名叫阿尔文·约克的美远征军下士,对这种步枪进行了改造,改进后的枪型枪身和枪把的比例恰恰符合0.618的比例。
实际上,从锋利的马刀刃口的弧度,到子弹、炮弹、弹道导弹沿弹道飞行的顶点;从飞机进入俯冲轰炸状态的最佳投弹高度和角度,到坦克外壳设计时的最佳避弹坡度,我们也都能很容易地发现黄金分割率无处不在。
战略战役:0.618不仅在武器和一时一地的战场布阵上体现出来,而且在区域广阔、时间跨度长的宏观的战争中,也无不得到充分地展现。
一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。
1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。
1941年6月22日,纳粹德国启动了针对苏联的"巴巴罗萨"计划,实行闪电战,在极短的时间里,就迅速占领了的苏联广袤的领土,并继续向该国的纵深推进。
在长达两年多的时间里,德军一直保持着进攻的势头,直到1943年8月,"巴巴罗萨"行动结束,德军从此转入守势,再也没能力对苏军发起一次可以称之为战役行动的进攻。
被所有战争史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点。
音乐:钢琴的键盘吧,其上也恰好与斐波那契数列有关. 我们知道在钢琴的键盘上,从一个C 键到下一个 C 键就是音乐中的一个八度音程(如图1) . 其中共包括13 个键,有8 个白键和5 个黑键,而5 个黑键分成 2 组,一组有2 个黑键,一组有3 个黑键.2、3、5、8、13 恰好就是著名的斐波那契数列中的前几个数.斐波那契螺旋线,也称"黄金螺旋",是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例。
作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个90度的扇形,连起来的弧线就是斐波那契螺旋线,生活中也常见。
无论是自然界中的美,还是人类文明所造就的美,总会发现斐波那契之美的蛛丝马迹,生活中不缺少数学,缺少一双发现数学的眼睛!。