数学文化之旅------神奇的斐波那契数列与黄金分割

数学文化之旅------神奇的斐波那契数列与黄金分割
数学文化之旅------神奇的斐波那契数列与黄金分割

神奇的斐波那契数列与黄金分割

石家庄二中南校区孟柳

比萨的列奥纳多,又称斐波那契(Leonardo Pisano ,Fibonacci, Leonardo Bigollo,1175年-1250年),中世纪意大利数学家,是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲。

列奥纳多的父亲Guilielmo(威廉),外号Bonacci.因此列奥纳多就得到了外号斐波那契(Fibonacci,意即filius Bonacci,Bonacci之子)。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,当时仍是小伙子的列奥纳多已经开始协助父亲工作,因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。于是他就学会了阿拉伯数字。

他是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲。主要著作有《算盘书》《几何实践》《花朵》《平方数书》

斐波那契在《算盘书》中提出了一个有趣的兔子问题:一般而言,兔子在出生两个月后就具有了繁殖能力,一对兔子每个月能生出一对兔子,如果兔子都不死,那么一年后能有多少对兔子?

拿新出生的一对兔子研究:

第一个月兔子没有繁殖能力,

两个月后生下一对小兔总数共有两对;

三个月后,老兔子生下又一对,因为上一轮的小兔没有繁殖能力,所以总数是三对;

…………..

1,1,2,3,5,8,13,21,34,55,89,144……

依次类推下去,你会发现,它后一个数等于前面两个数的和。在这个数列中的数字,就被称为斐波那契数。2是第3个斐波那契数。

斐波那契数列还满足一下特点:

1.任一项的平方数都等于与它相邻的两项乘积相差1

2.相邻的4个数,内积与外积相差1

3.前一项与后一项的比大约是0.618

4.后一项比前一项大约是1.618

经研究发现,相邻两个斐波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即

f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。

由此可见斐波那契数列与黄金分割有着密不可分的联系。

在生活中随处可见的斐波那契与黄金分割。

生物:自然界中的斐波那契数列斐波那契数列在自然科学的其他分支,有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……

许多植物萌生的叶片、枝杈或瓣都按黄金分割的角度伸展:从上往下看时,它们把水平面360°角分为约222.5°和137.5°。(360×0.168=225)。即任意两相邻叶片(枝头或花瓣)都沿这两个角度伸展;这样,它们虽不断轮生,却互不重叠,有利于光合作用。例如蓟草和一些蔬菜的叶片,以及梨树枝、玫瑰花瓣等就是如此。以致有人将此戏称为“生仿”(生物仿人类智慧做黄金分割),这不能不说是生物进化的结果。有的建筑学家还按车前草叶子的排列设计螺旋状大厦,以使每个房间得到充足的阳光照射。

斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。

这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是222.5度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是黄金分割数0.618033989……

而这种生长方式就决定了斐波那契螺旋的产生。

地理: 地球表面的纬度范围是0——90°,对其进行黄金分割,则34.38°——55.62°正是地球的黄金地带。在平均气温、年日照时数、年降水量、相对湿度等方面都是适于人类生活的最佳地区。这一地区几乎囊括了世界上所有的发达国家。

在地球的北回归线附近有一条神秘地带,以盛产自然之谜著称。如著名的金字塔之谜、死海形成之谜、百慕大三角之谜、圣塔柯斯镇斜立之谜等等在地图上进行一下简单的测量就可以发现,这条地带正好落在地球的黄金分割点处

好茶产地大多位于北纬30度左右。红茶中的极品“祁红”,产地在安徽的祁门,恰好在此纬度上。黄山,庐山,九寨沟等等,及中国三大淡水湖也恰好在这黄金分割的纬度上。

太阳系就处在银河系半径的"黄金分割"处,这是否是地球上产生智能生命的原因呢?

生命:生命及生命能量的周期也遵循黄金分割线的规律。也就是说,所有这些在“斐波那契数列”中出现的数字,都是人生中的大事年份。8岁开始接受学校的熏陶;13岁青春期;21岁开始探索人生,走向社会;34岁前后可以渐渐掌控自我,成家立业;55岁时则已经积累了人生大部分的经验和智慧……这一切看似随机,冥冥中都受着自然规律的引导和限制。

而在组织行为学中,当一个组织人数超过144人左右时,其结构就不再稳定可靠,不便于单一的管理,需要另行成立分支机构,这一点也特别体现在军队的编制上。

医学:医学与0.618有着千丝万缕的联系,它可解释人为什么在环境22至24℃时感觉最舒适。因为人的体温为37℃与0.618的乘积为22.8℃,而且这一温度中机体的新陈代谢、生理节奏和生理功能均处于最佳状态。人在精神愉快时,测出的人脑电波频率下降(8赫兹)与上限(12.9赫兹)的比例,恰好为“黄金

比率”。如果这时去参加竞技或考试,则更能发挥出自身的水平。科学家们还发现,当外界环境温度为人体温度的0.618倍时,人会感到最舒服.现代医学研究还表明,0.618与养生之道息息相关,动与静是一个0.618的比例关系,大致四分动六分静,才是最佳的养生之道。医学分析还发现,饭吃六七成饱的几乎不生胃病。

武器:在冷兵器时代,虽然人们还根本不知道黄金分割率这个概念,但人们在制造宝剑、大刀、长矛等武器时,黄金分割率的法则也早已处处体现了出来,因为按这样的比例制造出来的兵器,用起来会更加得心应手。

当发射子弹的步枪刚刚制造出来的时候,它的枪把和枪身的长度比例很不科学合理,很不方便于抓握和瞄准。到了1918年,一个名叫阿尔文·约克的美远征军下士,对这种步枪进行了改造,改进后的枪型枪身和枪把的比例恰恰符合0.618的比例。

实际上,从锋利的马刀刃口的弧度,到子弹、炮弹、弹道导弹沿弹道飞行的顶点;从飞机进入俯冲轰炸状态的最佳投弹高度和角度,到坦克外壳设计时的最佳避弹坡度,我们也都能很容易地发现黄金分割率无处不在。

战略战役:0.618不仅在武器和一时一地的战场布阵上体现出来,而且在区域广阔、时间跨度长的宏观的战争中,也无不得到充分地展现。

一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。1941年6月22日,纳粹德国启动了针对苏联的"巴巴罗萨"计划,实行闪电战,在极短的时间里,就迅速占领了的苏联广袤的领土,并继续向该国的纵深推进。在长达两年多的时间里,德军一直保持着进攻的势头,直到1943年8月,"巴巴罗萨"行动结束,德军从此转入守势,再也没能力对苏军发起一次可以称之为战役行动的进攻。被所有战争史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点。

音乐:钢琴的键盘吧,其上也恰好与斐波那契数列有关. 我们知道在钢琴的键盘上,从一个C 键到下一个 C 键就是音乐中的一个八度音程(如图1) . 其中共包括13 个键,有8 个白键和5 个黑键,而5 个黑键分成 2 组,一组有2 个黑键,一组有3 个黑键.2、3、5、8、13 恰好就是著名的斐波那契数列中的前几个数.

斐波那契螺旋线,也称"黄金螺旋",是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例。作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个90度的扇形,连起来的弧线就是斐波那契螺旋线,生活中也常见。

无论是自然界中的美,还是人类文明所造就的美,总会发现斐波那契之美的蛛丝马迹,生活中不缺少数学,缺少一双发现数学的眼睛!

黄金分割与斐波那契数列

第八讲 黄金分割与斐波那契数列 一、 黄金分割 1. 黄金分割的概念 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5-1):2,取其小数点后三位的近似值是0.618。由于按此比例设计的造型十分美丽柔和,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字。 德国天文学家开普勒(J.Kepler )曾说“几何学有两大宝藏,其一为毕氏定理,其二为将一线段分成外内比。前者如黄金,后者如珍珠。” 所谓将一线段分成“中外比(或称中末比或外内比)”,这是欧几里得在《几何原本》(公元前三世纪前后)里的说法: A straight line is said to have been cut in extreme and mean radio when, as the whole line is to the greater segment, so is the greater to the less. 分一线段为二线段,当整体线段比大线段等于大线段比小线段时,则称此线段被分为中外比。 关于黄金分割的历史,可以追溯到公元前6世纪古希腊的毕达哥拉斯学派,他们已经研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。而《几何原本》是吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。中世纪后,黄金分割被披上神秘的外衣,意大利数学帕乔利称之为神圣比例,并专门为此著书立说。德国天文学家开普勒称之为神圣分割。当时,人们都还是称之为“中外比”,直到19世纪初,黄金分割这个名称才出现。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们常说的比例方法。 其实有关“黄金分割”,中国也有记载。虽然没有古希腊的早,但它是中国古代数学家独立创造的,后来传入了印度。经考证,欧洲的比例算法是源于中国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 2. 黄金分割的尺规作图 设线段为AB 。作BD ⊥AB ,且 ,连AD 。以D 为圆心,DB 为半径作圆弧,交AB BD 2 1

大自然中的黄金分割

初中数学综合实践课题设计—— 大自然中的黄金分割 龙翔学校 周福兰 ◆ 黄金分割的由来 一天,毕达哥拉斯从一家铁匠铺路过,被铺子中那有节奏的叮叮当当的打铁声所吸引,他走进作坊,拿出一把尺量了一下铁锤和铁砧的寸,发现它们之间存在着一种十分和谐的关系。回到家里,毕达哥拉斯拿出一根线,想将它分为两段。经过反复比较,他最后确定了 0.618:1的比例截断最优美。后来古希腊美学家柏拉图将这比例称为黄金分割律。中世纪的数学家开普勒对黄金分割作了很高的评价。他说:几何学有两大宝藏:一个是勾股定理,另一个是黄金分割。 那么,什么是黄金分割? ◆ 黄金分割自述 点C 把线段AB 分成两条线段AC 和CB ,如果AB AC AC CB =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。 那么,黄金比又是多少呢?如何计算呢? 分析:设线段AB 的长度为1个单位,AC 的长度为x 个单位,则CB 为 ()x -1个单位,根据题意列出方程: 11x x x =- 由比例的基本性质得: 21x x =- 即 012=-+x x 解这个方程求得:AC= 21 5- 所以,求出黄金比为 ≈-=215AB AC 618.0

◆你知道为什么女性爱穿高跟鞋吗? 中世纪意大利的数学家菲波那契测定了大量的人体后得知,人体肚脐以下的长度与身高之比接近0.618,其中少数人的比值等于0.618的被称为:“标准美人”。因此,艺术家们在创作艺术人体时,都以黄金比为标准进行创作。 周老师的身高为162cm,肚脐眼以上的长度为70cm,你能帮周老师挑一双最适合她身高的鞋子吗?试试吧! ◆趣味问答 (问题一):报幕员应站在舞台的什么地方报幕最佳? (问题二):人的正常体温是37℃,对大多数人来说,体感最舒适的温度是22 ℃~23 ℃。你能解释吗? ◆动动脑,画一画 你能利用黄金分割的数学知识设计一幅图案,送给老师吗?动动脑,画一画

斐波那契数列与黄金分割的应用研究

斐波那契数列与黄金分割 应用研究 作者姓名 院系6系 学号

摘要 “斐波那契数列(Fibonacci)”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。斐波那契数列是一个古老而有趣的问题,由于其所具有的各种特殊属性,它与最优美的黄金分割有这密不可分的关系。在数学领域以及自然界中随处可见,而且正逐渐被应用在人们的日常生活与娱乐中。 关键词:斐波那契,黄金分割,应用 1 引言 斐波那契数列又称“斐波那契神奇数列”,是由13世纪的意大利数学家斐波那契提出的,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。假设一对成年兔子放于围栏中,每月可生下一对一雌一雄的小兔,而小兔出生一个月后便可以生育小兔,且每月都生下一对一雌一雄的小兔.问把这样一对初生的小兔置于围栏中,一年后围栏中共有多少对兔子(假定兔子没有死亡)?据此,可得月份与兔子对数之间的对应关系如下: 月份0 1 2 3 4 5 6 7 ? 大兔对数0 1 1 2 3 5 8 13 ? 小兔对数 1 0 1 1 2 3 5 8 ? 兔子总对数 1 1 2 3 5 8 13 21 ? 如果用F n 表示第n个月兔子的总对数,那么F n能构成一个数列:1,1,2,3,5,8,13,21,34,55,89?.这个数列显然有如下的递推关系: F n =F n-1 +F n-2 (n>1,n为正整数),F0 =0,F1 =1 (1) 满足(1)式的数列就叫做斐波那契数列,这是一个带有初值的用递推关系表示的数列。这个数列一问世就吸引了无数数学家的兴趣,以下是费氏数列的定义及通项公式。 费氏数列是是由一连串的数字所组成的(1、1、2、3、5、8、13、…),而且这串数字之间具有一定的规则,就是每一个数字必须是前两个数字的和( an =

“三庭五眼”和“四高三低”(重要)

三庭五眼 “三庭五眼”是中国古代关于面容的比例关系的一种概括,也称“三横五竖”,可作为化妆的着色定位的参照尺度 “三庭五眼”是人的脸长与脸宽的一般标准比例,不符合此比例,就会与理想的脸型产生距离。眼睛的宽度,应为同一水平脸部宽度的3/10;下巴长度应为脸长的1/5;眼球中心到眉毛底部的距离,应为脸长的1/10;眼球应为脸长的1/14;鼻子的表面积,要小于脸部总面积的5/100;理想嘴巴宽度应为同一水平脸部宽度的1/2。 怎样确定“三庭五眼”和“四高三低” 三庭和五眼的位置: 1、脸部的长度(三庭)从额头发际线倒下颚为脸的长度,将其分为三等分:由发际线到眉毛,眉毛到鼻尖,鼻尖到下颚为三庭。 2、脸的宽度(五眼)理想脸型的宽度为五个眼睛的长度,就是以一个眼睛的长度为标准,从发际线到眼尾(外眼角)为一眼,从外眼角到内眼角为二眼,两个内眼角的距离为三眼,从内眼角到外眼角,又一个眼睛的长度为四眼,从外眼角再到发际线称为五眼。 三庭:指脸的长度比例,把脸的长度分为三个等分,从前额发际线至眉骨,从眉骨至鼻底,从鼻底至下颏,各占脸长的1/3。 五眼:指脸的宽度比例,以眼形长度为单位,把脸的宽度分成五个等分,从左侧发际至右侧发际,为五只眼形。两只眼睛之间有一只眼睛的间距,两眼外侧至侧发际各为一只眼睛的间距,各占比例的1/5。 凹面:面部的凹面包括眼窝即眼球与眉骨之间的凹面、眼球与鼻梁之间的凹面、鼻梁两侧、颧弓下陷、颏沟和人中沟。 凸面:面部的凸面包括额、眉骨、鼻梁、颧骨、下颏和下颌骨。 由于人们的骨骼大小不同,脂肪薄厚不同及肌肉质感的差异,使人们的面部形成了千差万别的个体特征。面部的凹凸层次主要取决于面、颅骨和皮肤的脂肪层。当骨骼小,转折角度大,脂肪层厚时,凹凸结构就不明显,层次也不很分明。当骨骼大,转折角度小,脂肪层薄时,凹凸结构明显,层次分明。凹凸结构过于明显时,则显得棱角分明,缺少女性的柔和感。凹凸结构不明显时,则显得不够生动甚至有肿胀感。因此,化妆时要用色彩的明暗来调整面部的凹凸层次。 我们再看,在垂直轴上,一定要有“四高三低”。

数学之美——黄金分割(图形相似)汇总

数学之美——黄金分割 前 言 数学可以说是各学科的灵魂,数学中蕴涵着文化价值、美学价值、以及经济价值,而这些价值究竟是如何体现的?随着我国教育水平的逐步提高,我们对数学这门科学的学习更加透彻,我们就以数学中的两大宝藏之一“黄金分割”为例,黄金分割是我们最常见的一种和谐比例关系,即是毕达哥拉斯学派提出的“黄金分割”又称“黄金段”或“黄金率”。在初中教学中对黄金分割的了解还不是很深,只是对黄金分割的定义做了简单的说明和简单的练习。随着我们数学能力水平的提升,我们了解到了许多重要的与黄金分割相关联的数学知识,本节主要解决杨辉三角形等数学量与黄金分割的关系,以及与黄金分割有关的一些概念,最后,将进一步阐述黄金分割的实际应用,可见黄金分割用途之广泛,影响之深远。 另外,我真诚的希望通过本节学习,能够让学生更多的了解黄金分割的实质和内涵,对以后的学习有进一步的帮助。 一、黄金分割的起源与发展 1.1 黄金分割的定义 古希腊雅典学派的第三大数学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L 的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。证明方法为: 设有一根长为1的线段AB 在靠近B 端的地方取点C ,)(CB AC >使AC AB CB AC ::= 则点C 为AB 的黄金分割点。 设x AC =,则x BC -=1 代入定义式AC AB CB AC ::= 可得 x x x :1)1(:=- 即 012 =-+x x 解该二次方程:2151--= x 2 152-=x 其中1x 为负值舍掉。 所以 2 15-=AC 约为618.0.

黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数学0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618处。艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美。 1.2黄金分割的发展史 据记载黄金分割是在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。 其实有关“黄金分割”,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边 形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《帕乔利》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 其实,黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多

人体美学中的黄金分割.

人体美学中的黄金分割 人体美学观察受到种族、社会、个人各方面因素的影响,牵涉到形体与精神、局部与整体的辩证统一,只有整体的和谐、比例协调,才能称得上一种完整的美。本次讨论的问题主要为美学观察的一些定律。 (一)黄金分割律这是公元前六世纪古希腊数学家毕达哥拉斯所发现,后来古希腊美学家柏拉图将此称为黄金分割。这其实是一个数字的比例关系,即把一条线分为两部分,此时长段与短段之比恰恰等于整条线与长段之比,其数值比为1.618 : 1或1 : 0.618,也就是说长段的平方等于全长与短段的乘积。0.618,以严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。为什么人们对这样的比例,会本能地感到美的存在?其实这与人类的演化和人体正常发育密切相关。据研究,从猿到人的进化过程中,骨骼方面以头骨和腿骨变化最大,躯体外形由于近似黄金而矩形变化最小,人体结构中有许多比例关系接近0.618,从而使人体美在几十万年的历史积淀中固定下来。人类最熟悉自己,势必将人体美作为最高的审美标准,由物及人,由人及物,推而广之,凡是与人体相似的物体就喜欢它,就觉得美。于是黄金分割律作为一种重要形式美法则,成为世代相传的审美经典规律,至今不衰!近年来,在研究黄金分割与人体关系时,发现了人体结构中有14个“黄金点”(物体短段与长段之比值为 0.618),12个“黄金矩形”(宽与长比值为 0.618的长方形)和2个“黄金指数”(两物体间的比例关系为 0.618)。黄金点:(1)肚脐:头顶-足底之分割点;(2)咽喉:头顶-肚脐之分割点;(3)、(4)膝关节:肚脐-足底之分割点;(5)、(6)肘关节:肩关节-中指尖之分割点;(7)、(8)乳头:躯干乳头纵轴上这分割点;(9)眉间点:发际-颏底间距上1/3与中下2/3之分割点;(10)鼻下点:发际-颏底间距下1/3与上中2/3之分割点;(11)唇珠点:鼻底-颏底间距上1/3与中下2/3之分割点;(12)颏唇沟正路点:鼻底-颏底间距下1/3与上中2/3之分割点;(13)左口角点:口裂水平线左1/3与右2/3之分割点; (14) 右口角点:口裂水平线右1/3与左2/3之分割点。面部黄金分割律面部三庭五眼黄金矩形:(1)躯体轮廓:肩宽与臀宽的平均数为宽,肩峰至臀底的高度为长;(2)面部轮廓:眼水平线的面宽为宽,发际至颏底间距为长;(3)鼻部轮廓:鼻翼为宽,鼻根至鼻底间距为长;(4)唇部轮廓:静止状态时上下唇峰间距为宽,口角间距为长;(5)、(6)手部轮廓:手的横径为宽,五指并拢时取平均数为长;(7)、(8)、(9)、(10)、(11)、(12)上颌切牙、侧切牙、尖牙(左右各三个)轮廓:最大的近远中径为宽,齿龈径为长。 黄金指数:(1)反映鼻口关系的鼻唇指数:鼻翼宽与口角间距之比近似黄金数;(2)反映眼口关系的目唇指数:口角间距与两眼外眦间距之比近似黄金数。 0.618,作为一个人体健美的标准尺度之一,是无可非议的,但不能忽视其存在着“模糊特性”,它同其它美学参数一样,都有一个允许变化的幅度,受种族、地域、个体差异的制约。 (二)比例关系是用数字来表示人体美,并根据一定的基准进行比较。用同一人体的某一部位作为基准,来判定它与人体的比例关系的方法被称为同身方法(见中图)。分为三组:系数法,常指头高身长指数,如画人体有坐五、立七,即身高在坐位时为头高的五倍、立位时为7或7.5倍;百分数法,将身长视为100%,身体各部位在其中的比例;两分法:即把人体分成大小两部分,大的部分从脚到脐,小的部分为脐到头顶。标准的面型,其长

高中数学史集黄金分割素材

黄金分割 (浙江省宁波市镇海区外语实验学校 315200)余满龙 在初中数学的相似形这一章中有“黄金分割”的简单介绍:把一条线段(PQ )分成两条线段,使其 中较大的线段(PC )是原线段(PQ )与较小线段(CQ )的比例中项,这种分法用途广泛,且美观,所以人们把它称为黄金分割也称“中外比”或“中末比”。(如图1) 世界上最早接触黄金分割的是古希腊的毕达哥拉斯学派。公元前4世纪(二千多年前),古希腊数学家欧多克斯(约公元前408~公元前355)第一个系统研究了这一问题,并建立起比例理论。他发现: 在这个几何问题里,若CQ 与PC 之比等于PC 与PQ 之比, 那么这一比值就等于…,用式子表示就是: 618.0215=-==PQ PC PC CQ 这个神奇的数字已经让我们着迷了几千年但实际上,这个黄金分割很早就存在了,我们 从 Andros 神庙(公元前10000年)就可以看出,而Kheops (公元前2800年)金字塔(如右图)表现的尤为明显。几何学家,哲学家和建筑师都认为黄金分割是一组非常奇特的比例,是一种空间的和谐,能够组成精确的比例。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克斯的工作,系统论述了黄金分割,成为最早的有证论着。欧多克斯就是从整个比例论的角度考虑黄金分割,他还把上述的C 点分PQ 所成的比PC:CQ 叫做“中外比”。欧多克斯发现这种线段之间的中外比关系存在于许多图形中。如正五边形中, Kheops (公元前Q C P 图1

莱奥纳多·达·芬奇 相邻顶角的两条对角线互相将对方分成中外比,而较长的一段等于正五边形的边。如果将有理线段分成中外比,那末被分成的两个线段长是无理数。 文艺复兴时期的欧洲,由于绘画艺术的发展,促进了对黄金分割的研究。当时,出现了好几个身兼几何学家的画家,着名的有帕奇欧里、丢勒、达芬奇等人。他们反几何学上图形的定量分析用到一般绘画艺术,从而给绘画艺术确立了科学的理论基础。 1228年,意大利数学家斐波那契在《算盘书》的修订本中提出“兔子问题”,导致斐波那契数列:1,1 ,2,3,5,8,13,21,34,55,89,……,它的每一项与后一项比值的极限就是黄金分割数,即黄金分割形成的线段与全线段的比值。(即设F 1 =1,F 2 =1,F n = F n-2 + F n-1,n ≥3,则) 1525年丢勒制定了充分吸收黄金分割几何意义的比例法则,揭示了黄金分割在绘画中的重要地位。丢勒以为,在所有矩形中,黄金分割的矩形,即短边与长边之比为2 15 的矩形最美观。因为这样的矩形,“以短边为边,在这个矩形中分出一个 正方形后,余下的矩形与原来的矩形相似,仍是 一个黄金分割形的矩形”,这使人们产生一种 “和谐”的感觉。 后来意大利伟大画家达·芬奇(1452-1519)(如右图)把欣赏的重点转到使线段构成中外比的分割,而不是中外比本身,提出了“黄金分割”这一名称。这一命名一直延用至今。 欧洲中世纪的物理学家和天文学家开普勒(J .Kepler1571—1630),曾经说过:“几何学里有二个宝库:一个是毕达哥拉斯定理(我们称为“商

趣谈黄金分割

趣 谈 黄 金 分 割 邻水县九龙中学 任贤德 2006.6 物体的形体之美有两种,对称美和不对称美。对称是一种美,稳定、庄重、和谐;不对称更是 一种美,奇异、变化、多样。对称美中最美的平面图形是圆,最美的立体图形是球。不对称现象中,最美的是符合“黄金分割律”的形体。古希腊以来的美学家有一条公认的美学定律:符合黄金分割的平面图形或几何体最美。例如:底边和腰长之比等于黄金比的三角形是最美的三角形,称为黄金三角形;宽与长之比为黄金比的矩形是最美的矩形,称为黄金矩形。 黄金分割是公元前六世纪古希腊数学家、哲学家毕达哥拉斯所发现,后来古希腊哲学家、美学 家柏拉图将此称为黄金分割。 黄金分割实际上是一个数学比例关系。把长为一的线段分成两部分,使较长一部分恰好是全长 与较短部分的比例中项即:1:x = x :1- x ,x 2 + x +1 = 0,解得:x =() 512 1+-618.0≈,0.618:1称为黄金分割比,0.618称为黄金分割数,c 点称为黄金分割点,一条线段上有两个黄金分割点。此分割在课本上被称为黄金分割。 传说有一次毕达哥拉斯路过一个铁匠铺,听到叮叮当当的悦耳敲击声,简直把他给迷住了,似 乎这声音中隐藏着什么秘密,他走进作坊,东听听,西量量,发现铁锤和铁砧之间有一种神秘的比例关系,就是0.618,这令他惊叹不已。当铁锤和铁砧达到这一和谐的比例关系时,发出的声音就最优美。用琴弦演奏音乐时,把琴弦的千斤放在0.618处,这时它发出的声音就悦耳动听,也是这个道理。 黄金分割是一个古老的数学问题,它的神秘莫测,令人们不断地研究它,发现它,并在实践中 运用其服务于我们的生活。它的各种神奇的作用和魔力,至今还没有明确的解释。但随着黄金分割奇妙性质逐渐被发现,它在实际生活中发挥着越来越多的甚至是我们意想不到的作用。 黄金分割在数学、建筑、艺术、科学技术、工农业生产、军事、日常生活及社会的各个方面都 有广泛的应用,让我们大开眼界,哇!它真是太神奇了。下面我们来归纳它的一些奇妙的性质和它的一些重要应用。 一.黄金分割与数学 1. 黄金分割数的性质:黄金分割数G (G=() 512 1+-618.0≈)的倒数是1+G ,1+G 的倒数是G 。 黄金分割数是一个无理数,取其前三位数字的近似值是0.618,这是一个十分有趣的数字,我

黄金分割法、斐波那契法求极值

function y=fx(x) if nargin==1 y=x+20/x; end end %a为区间下限,b为区间上限,e为精度; %fx(x)为原方程函数; function [xj,yj]=huangjin(a,b,e) a=input('Please enter the value of a:'); b=input('Please enter the value of b:'); e=input('Please enter the value of e:'); while b-a>e x1=a+*(b-a); x2=a+*(b-a); if fx(x1)

fn=y(n); end end %求解应计算次数的函数; %s为(b-a)/e的值,其中(a,b)为单峰区间,e为精度; function n=cishu(s) if nargin==1 n=1; while F(n)e if fx(x2)>=fx(x1) b=x2; x2=x1; x1=a+b-x2; else a=x1; x1=x2; x2=a+b-x1; end end xj=(a+b)/2; yj=fx(xj); end 此题中,a=-10,b=10,e=,程序运行结果为:xj =, yj =,若原方程改变,只需改变原方程函数即可。

黄金分割中的数学文化

黄金分割中的数学文化 姓名:邱秀林班级:工业工程121 学号:5404312093 摘要:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学中蕴涵的文化价值是客观存在的,数学的本质是一种文化,数学不仅闪烁着理性智慧的光芒,更有艺术审美的享受以及厚重的文化意向。“黄金分割”被誉为数学的两大宝藏之一,它来源于实际生活,并在实际生活中得到应用,只要留心,到处都可发现这位美的“使者”的足迹。黄金分割对我们的审美、思维方式、价值观念以及世界观等方面将产生重要的影响。 关键词:文化价值黄金分割数学美思想方法 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数学0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618处。艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美。 一、黄金分割的起源 人们认为,黄金分割作图与正五边形、正十边形和五角星形的作图有关——特别是由五角星形作图的需要引起的。五角星形是一种很耐人寻味的图案,世界许多国家国旗上的“星”都画成五角形。现今有将近40个国家(如中国、美国、朝鲜、土耳其、古巴等等)的国旗上有五角星。为什么是五角而不是其他数目的角?也许是古代留下来的习惯。 五角星形的起源甚早,现在发现最早的五角星形图案是在幼发拉底河下游马鲁克地方(现属伊拉克)发现的一块公元前3200年左右制成的泥板上。 古希腊的毕达哥拉斯学派用五角星形作为他们的徽章或标志,称之为“健康”。可以认为毕达哥拉斯已熟知五角星形的作法,由此可知他已掌握了黄金分

生活中的黄金分割

研究性活动之生活中的黄金分割 一、课题的提出: 0.618,一个极为迷人而神秘的数字,而且它还有着一个很动听的名字———黄金分割率,它是古希腊著名哲学家、数学家毕达哥拉斯于2500多年前发现的。古往今来,这个数字一直被后人奉为科学和美学的金科玉律。 在艺术史上,几乎所有的杰出作品都不谋而合地验证了这一著名的黄金分割率,无论是古希腊帕特农神庙,还是中国古代的兵马俑,它们的垂直线与水平线之间竟然完全符合1比0.618的比例。 那你有没有听说过,在生活上它也显示出它巨大而神秘的力量?那到底黄金分割在生活上的作用如何体现呢? 二、分组探讨: 环节一:居你所知,黄金分割在生活上的应用有哪些?请举出例子。 [附件]:自从有了黄金分割至今,它就广泛地应用在建筑、绘画艺术等方面。宇宙万物凡是符合黄金分割律的就是最美的形体。凡以此为例的物体都具有一种和谐美和自然美。埃及的金字塔、巴黎圣母院、印度的泰姬陵、埃菲尔铁塔等名建筑中都有黄金分割的应用。画家画画的中心位置,二胡、笛子、五角星等的设计都运用于黄金分割。另外,咱们的书本、杂志、报纸、纸张、照片、黑板和标语牌等,其长与宽之比都是0.168,显得格外美观大方。在舞台上演出的独唱演员、报幕员,也往往是站在舞台的黄金分割之处,颇有艺术美感,给人视觉和听觉上都达到最佳效果。人体在其漫长的进化过程中,也逐渐趋向于“0.618黄金分割”,而且日臻完善。人的面部结构符合“三庭五眼”称为五管端正,现代学者定义人体身形等于“八个头长”即为最标准的身材,就因其符合黄金分割律。人的形体就是一个很美的实体,肚脐刚好就是整个人体的黄金分割点,肚脐以上与肚脐以下的比值是0.618。喉头刚好是头顶到肚脐的黄金分割点,膝关节是肚脐到脚底的黄金分割点,肘关节是手指到肩部的黄金分割点。 长发讲究外轮廓美感,发长应与身材协调,应用黄金分割比例设计,会使发型创作美感更易于把握。通常身材矮小者,易留短发或中长发,显得身材高桃挺拔,身材高大者,留中长发或长发,对身材比例上起到互补作用。刘海设计在发型创作中起着画龙点睛的作用,刘海可以赋予发型生命力与时尚感,不管是分区的设计还是发长的设定,都与黄金分割律有着密不可分的关系。刘海区域占顶区1/3面积,较能有效控制脸型的宽窄。用此区域对掌握脸型变大变小起着决定作手用。难怪天文学家开普勒把这种分割线段的方法称为神圣分割,并指出勾股定理和黄金分割是“几何中的双宝,前者好比黄金,后者堪称珠玉。”黄金分割数0.618,它不仅仅是一个小数,它却是生活中和谐美的代言人, 环节二:请研究讨论以下问题: 1、报幕员应站在舞台的什么地方报幕最佳? 答:根据黄金分割,应站在舞台宽度的0.618处。 2、高清晰度电视的屏幕为什么要设计成16:9? 答:因为若将屏幕的长与宽组成一条线段,取这条线段的黄金分割点,将线段分

奇妙的裴波那契数列和黄金分割

膀薁羆莅袈蒀芅奇妙的裴波那契数列和黄金分割 莀膂蒇艿薂蒂肈“斐波那契数列”的发明者,是意大利数学家列昂纳多斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。 蚃莆螀蒁羃袇蒇斐波那契数列指的是这样一个数列:0,1,1,2,3,5,8,13,21 膅芀莀蒄螆袈薂这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/ 5)*{[(1+ 5)/2]^n - [(1- 5)/2]^n}(又叫“比内公式”,是用无理数表示有理数的一个范例。)【 5表示根号5】 蒇蒃羄袈荿莁膄很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。 芁莅螇衿芀蚅芈【该数列有很多奇妙的属性】比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.87 袆薆莀莃膅膆羈还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积少(请自己验证后自己确定)1,每个偶数项的平方都比前后两项之积多(请自己验证后自己确定)1。 蒅薇膁莂肅蒈膀如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。肈肀袃膈罿芃膃如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6 等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。如果所有的数都要求是自然数,能找出被任意正整数整除的项的此类数列,必然是斐波那契数列的某项开始每一项的倍数,如4,6,10,16,26 (从2开始每个数的两倍)。 膃莄羇蒀膂薃薇斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。 袄袅羁羀肄蒆薈斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2 )的其他性质: 羈膇肃薅芅聿肂 1.f(0)+f(1)+f(2)+ +f(n)=f(n+2)-1 蚈羂肆莈薀袀莅 2.f(1)+f(3)+f(5)+ +f(2n-1)=f(2n)-1 螁节芆肁羃薂袇 3.f(0)+f(2)+f(4)+ +f(2n)=f(2n+1)-1 螃肅芇袂肃蚆腿 4.[f(0)]^2+[f(1)]^2+ +[f(n)]^2=f(n) f(n+1) 芈螈螁薃薄蚀羃 5.f(0)-f(1)+f(2)- +(-1)^n f(n)=(-1)^n [f(n+1)-f(n)]+1 艿蕿羄蚇膁螂芄 6.f(m+n)=f(m-1) f(n-1)+f(m) f(n) 蚂蒅蒆莇蚁螅肇7.[f(n)]^2=(-1)^(n-1)+f(n-1) f(n+1) 羆莅袈蒀芅羅蚀8.f(2n-1)=[f(n)]^2-[f(n-2)]^2 蒇艿薂蒂肈膀薁(1)细察下列各种花,它们的花瓣的数目具有斐波那契数:延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花。 螀蒁羃袇蒇莀膂(2)细察以下花的类似花瓣部分,它们也具有斐波那契数:紫宛、大波斯菊、雏菊。 莀蒄螆袈薂蚃莆斐波那契数经常与花瓣的数目相结合: 羄袈荿莁膄膅芀 3 百合和蝴蝶花 螇衿芀蚅芈蒇蒃 5 蓝花耧斗菜、金凤花、飞燕草 莀莃膅膆羈芁莅8 翠雀花 膁莂肅蒈膀袆薆13 金盏草

初二数学知识点归纳:黄金分割数1

初二数学知识点归纳:黄金分割数1 初二数学知识点归纳:黄金分割数1 黄金分割数: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。 黄金分割: 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0618或1618∶1,即长段为全段的0618。0618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 黄金分割线: 黄金分割线是一种古老的数学方法。黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条下大胆断言: 一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0618,那么,这样比例会给人一种美感。

后,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。黄金分割线的神奇和魔力,在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。 黄金分割线的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点: (1)数列中任一数字都是由前两个数字之和构成。 (2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。(3)后一数字与前一数字之比例,趋近于1.618。 (4)1.618与0.618互为倒数,其乘积则约等于1。 ()任一数字如与前面第二个数字相比,其值趋近于2.618;如与后面第二个数字相比,其值则趋近于0.382。 理顺下,上列奇异数字组合除能反映黄金分割的两个基本比值0.618和0.382以外,尚存在下列两组神秘比值。 即:(1)0.191、0.382、0.、0.618、0.809 (2)1、1.382、1.、1.618、2、2.382、2.618 黄金分割点: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√-1)/2,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点(gldensetinrati通常用φ表示)这是一个十分有趣的数字,我们以0618近似表示,通过简单的计算就可以发现:(1-0618)/0618=06一条线段

生活中的黄金分割

生活中的黄金分割 有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数字0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618…处。艺术家们认为弦乐器的琴马放在琴弦的0.618…处,能使琴声更加柔和甜美。 数字0.618…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间,为了求得最恰当的加入量,需要在1000克与2000克这个区间中进行试验。通常是取区间的中点(即1500克)作试验。然后将试验结果分别与1000克和2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做试验,再比较端点,依次下去,直到取得最理想的结果。这种实验法称为对分法。但这种方法并不是最快的实验方法,如果将实验点取在区间的0.618处,那么实验的次数将大大减

少。这种取区间的0.618处作为试验点的方法就是一维的优选法,也称0.618法。实践证明,对于一个因素的问题,用“0.618法”做16次试验就可以完成“对分法”做2500次试验所达到的效果。因此大画家达·芬奇把0.618…称为黄金数。 黄金分割与人的关系相当密切。地球表面的纬度范围是0—90°,对其进行黄金分割,则34.38°—55.62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。 人体美学中的黄金分割 人体美学观察受到种族、社会、个人各方面因素的影响,牵涉到形体与精神、局部与整体的辩证统一,只有整体的和谐、比例协调,才能称得上一种完整的美。本文主要讨论美学观察的一些定律。 (一)黄金分割律这是公元前六世纪古希腊数学家毕达哥拉斯所发现,后来古希腊美学家柏拉图将此称为黄金分割。这其实是一个数字的比例关系,即把一条线分为两部分,此时长段与短段之比恰恰等于整条线与长段之比,其数值比为1.618 : 1或1 : 0.618,也就是说长段的平方等于全长与短段的乘积。0.618,以严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。为什么人们对这样的比例,会本能地感到美的存在?其实这与人类的演化和人体正常发育密切相关。据研究,从猿到人的进化过程中,人体结构中有许多比例关系接近0.618,从而使人体美在几十万年的历史积淀中固定下来。人类

初二数学知识点归纳:黄金分割数1

初二数学知识点归纳:黄金分割数1 黄金分割数: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。 黄金分割: 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0618或1618∶1,即长段为全段的0618。0618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 黄金分割线: 黄金分割线是一种古老的数学方法。黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条下大胆断言: 一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0618,那么,这样比例会给人一种美感。 后来,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。黄金分割线的神奇和魔力,

在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。 黄金分割线的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点: (1)数列中任一数字都是由前两个数字之和构成。 (2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。 (3)后一数字与前一数字之比例,趋近于1.618。 (4)1.618与0.618互为倒数,其乘积则约等于1。 ()任一数字如与前面第二个数字相比,其值趋近于2.618;如与后面第二个数字相比,其值则趋近于0.382。 理顺下来,上列奇异数字组合除能反映黄金分割的两个基本比值0.618和0.382以外,尚存在下列两组神秘比值。 即:(1)0.191、0.382、0.、0.618、0.809(2)1、1.382、1.、1.618、2、2.382、2.618 黄金分割点: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为/2,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点(gldensetinrati通常用φ表示)这是一个十分有趣的数字,我们以0618来近似表示,通过

简论中国古代数学中的“黄金分割率”

简论中国古代数学中的“黄金分割率” 黄金分割,被誉为数学上的“黄金”与“宝石”。 古代希腊毕达哥拉斯学派以及大几何学家欧几里德 等都曾深入研究过黄金分割问题。中世纪时,这一 数学命题又与著名的斐波那契数列联系起来,从而 获得许多新的性质。在西方数学传入中国之前,中 国人不曾直接论述黄金分割问题。但是,中国古代 数学中实际上也蕴含着黄金分割问题,只是其表达 方式有所不同。中国古代数学中的黄金分割率不像 欧几里德几何那样演绎得清楚明白,需要我们去发现。我们无法确证中国古代数学家是否明确意识到“黄金分割率”,但仍可以从许多中国古代数学问题 中推导和演绎出“黄金分割率”,这有助于充分认识 中国古代数学的价值。 1 勾股术与黄金分割率 明末清初西方数学传入中国,中国数学家知道 了黄金分割率,开始有人试图论证黄金分割率在中 国是“古已有之”。例如,清代数学家梅文鼎(公元 1633 - 1721 年) 曾在《几何通解》自序中说:“惟理分中末线(即黄金分割率———引者注) 似与勾股异源,. . . . . . 而仍出于勾股。信古九章之义包举无方。”他是这样推导的:假如一直角三角形的股长是 其勾长的二倍,则这个直角三角形的勾弦之和等于 勾弦之差再加上股,其勾弦之和就被勾弦之差和股 分成中末比。他还说:“《几何原本》理分中末线,但 求作之法而莫知所用。今依法求得十二等面体及二 十等面体之体积,因得其各体中棱线及轴心、对角诸线之比例,又两体互相容及两体与立方、立圆诸体相容各比例, 并以理分中末为法, 乃知此线原非徒设。”〔1〕 按照梅文鼎的观点,中西数学虽然形式上有所 不同,理论上是可以会通的;西方的几何学,无非是 中国的勾股术,中末线也可以从勾股术中导出。应 当说,梅文鼎在中西数学比较中看出了两者的异中 之同,以及黄金分割率与勾股术的联系(现在中学教 科书通常用代数法解作图题,其中运用勾股定理) , 但中国古代数学毕竟没有明确作出“中末线”,梅文 鼎还是夸大了中西数学的异中之同,他没有看到欧 几里德给黄金分割率严格而清晰的证明的独特价 值。欧几里德在其《几何原本》卷Ⅱ第11 题中表述: “分已知线段为两部分,使全线段与一小线段构成的

相关文档
最新文档