高炉本体设计
第3章高炉本体设计

炉腹高度由下式计算 :
h2
D 2
d
• tg
炉腹角一般为79º~83º,过大不利于煤气
分布并破坏稳定的渣皮保护层,过小则增
大对炉料下降的阻力,不利于高炉顺行。
4. 炉身: 炉身呈正截圆锥形。
作用:
(1)适应炉料受热后体积的膨胀,有利于 减小炉料下降的摩擦阻力,避免形成料拱。
(2)适应煤气流冷却后体积的收缩,保证 一定的煤气流速。
D——炉腰直径;
d1——炉喉直径; α——炉腹角;
β——炉身角;
hf hz
d1
β D
α 风口中心线
渣口中心线 d
铁口中心线
图3-1 五段式高炉内型图
h0 h1 h2 h3
h4
h5
Hu
1. 高炉有效容积和有效高度
1)有效高度:
高炉大钟下降位置的下缘到铁口 中心线间的距离称为高炉有效高度 (Hu),对于无钟炉顶为旋转溜槽最 低位置的下缘到铁口中心线之间的距 离。
铁口中心线到炉底砌砖表面之间的 距离称为死铁层厚度。
作用:
(1)残留的铁水可隔绝铁水和煤气对炉底 的冲刷侵蚀,保护炉底; (2)热容量可使炉底温度均匀稳定,消除 热应力的影响; (3)稳定渣铁温度。
死铁层厚度: 新设计高炉的死铁层厚度h0=0.2d。
3.1.3 炉型设计与计算
名词概念:
(1)设计炉型:按照设计尺寸砌筑的炉型; (2)操作炉型:指高炉投产后,工作一段时 间,炉衬被侵蚀,高炉内型发生变化后的炉型;
Vu'
P
V
4035 2018(m3 ) 2.0
(3)炉缸尺寸: ①炉缸直径:
选定冶炼强度:
I
0.9 5
2000m3高炉本体设计

攀枝花学院本科毕业设计(论文)2000m3高炉本体设计学生姓名:学生学号:200611103117院(系):材料工程学院年级专业:冶金工程指导教师:教授助理指导教师:二〇一一年五月摘要高炉炼铁的历史悠久,炼铁技术日臻成熟,是当今主要的炼铁方式。
高炉作为炼铁工艺的主体设备,其结构的合理性对炼铁的工艺操作、生产技术指标以及自身的寿命都有十分重要的影响。
根据攀枝花钒钛磁铁矿的高炉冶炼特点,通过进行配料计算和物料平衡计算,设计了2000m3高炉本体。
设计过程除考虑通常的高炉设计方案外,还考虑了攀枝花钒钛磁铁矿多年高炉冶炼的一些生产实践经验。
所设计完成的高炉本体炉缸直径为9.88m、炉腰直径为10.97m、高径比为2.55、有效高度为27.97m;高炉基础的基墩高1.9m、直径13.53m、基座高2m;采用碳砖加高铝砖综合炉底、全碳砖炉缸;冷却设备的设计为水冷炉底、炉缸和炉底采用三段光面冷却壁、炉身采用镶砖冷却壁;高炉钢结构采用炉体框架式结构,最后采用CAD绘制出高炉本体图。
关键词高炉,高炉本体,炉型,钒钛磁铁矿ABSTRACTThe blast furnace iron-making has a long history which has become the main way of iron manufacture. As the main equipment of ironmaking, the blast furnace plays the most important role. The rationality of the blast furnace’s structural design has great influence on the process operations and technique level of ironmaking and it will decide the useful life of the blast furnace itself. According to the characteristics of the vanadic titanomagnetite smelted in BF in Panzhihua, the 2000m3blast furnace body was designed in this subject based on the calculations of the burden control and the material balance. Besides common design plans of the blast furnace, some practical experiences of the vanadic titanomagnetite smelted in BF was considered in this subject. The basic information of the blast furnace which has been designed is as following: the diameter hearth is 9.88m, the belly diameter is 10.97m, the aspect ratio of the furnace is 2.55, the effective height is 27.97m. As to the blast furnace foundation, the height of under hearth is 1.9m, the diameter of the under hearth is 13.53m, the furnace pad or foundation is 2 m. The hearth bottom adopts carbon bricks and high alumina bricks synthesize technic, the hearth just builds up with carbon bricks. The cooling device is designed to water-cooled hearth bottom, three segments mill finish stave is used for the hearth and hearth bottom, the stack uses inlaid brick stave to make it cool down. The steel structure of the BF adopts frame-type for the furnace body. Finally, the diagram of BF body was gained by using the CAD drawing tools.Key words blast furnace,BF body,furnace type,V-Ti magnetite目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 课题背景 (1)1.2 攀枝花钒钛磁铁矿特点 (2)1.3 课题设计的内容及意义 (2)2 高炉设计原始数据 (4)2.1 矿石原料成分 (4)2.2 配矿比 (4)2.3 焦炭成分 (4)2.4 喷吹煤粉成分 (4)2.5 生铁成分 (4)2.6 元素分配比 (5)2.7 炉渣碱度 (5)2.8 工艺技术指标 (5)3 高炉设计工艺计算 (6)3.1 配料计算 (6)3.1.1 根据铁平衡求铁矿石需求量 (6)3.1.2 根据碱度平衡计算石灰石用量 (6)3.1.3 终渣成分 (6)3.1.4 生铁成分校核 (7)3.2 物料平衡计算 (8)3.2.1 需要补充的原始条件 (8)3.2.2 根据碳平衡计算风量 (8)3.2.3 计算煤气成分及数量 (9)3.2.4 编制物料平衡表 (11)4 高炉内型设计计算 (12)4.1 高炉炉型 (12)4.2 高炉炉型设计原则 (13)4.3 高炉内型尺寸确定 (13)4.3.1 炉缸直径 (14)4.3.2 炉腰直径 (14)4.3.3 炉喉直径 (15)4.3.4 铁口中心线到炉底砌砖之间的距离 (15)4.3.5 炉缸高度 (15)4.3.6 炉腹角与炉腹高度 (15)4.3.7 炉身角与炉身高度 (16)4.3.8 有效高度、炉喉高度、炉腰高度 (16)4.3.9 风口、渣口、铁口数 (17)4.3.10 炉容校核 (17)5 高炉本体及主要设备选择 (19)5.1 高炉基础 (19)5.1.1 高炉基础设计条件 (20)5.1.2 基墩设计计算 (20)5.1.3 基座设计 (20)5.2 高炉内衬结构 (21)5.2.1 炉底 (21)5.2.2 炉缸 (22)5.2.3 炉腹 (22)5.2.4 炉腰 (23)5.2.5 炉身 (23)5.2.6 炉喉 (23)5.3 高炉冷却设备设计 (24)5.3.1 冷却设备的作用 (24)5.3.2 冷却介质 (24)5.3.3 高炉各部位冷却设备设计 (24)6 高炉钢结构设计 (26)6.1 炉壳 (26)6.1.1 炉壳厚度的计算 (26)6.1.2 炉壳折点的确定 (27)6.2 炉体平台及走梯 (27)6.3 高炉本体钢结构类型 (28)6.4 高炉主要热工检测仪表 (29)结论 (30)参考文献 (32)致谢 (34)1 绪论1.1课题背景尽管21世纪是一个信息的时代。
毕业设计 高炉本体设计

内蒙古科技大学毕业设计说明书.内蒙古科技大学本科生毕业设计说明书题目:包头地区原料条件下1500m3高炉本体设计学生姓名:学号:专业:冶金工程班级:冶金09-1指导教师:摘要高炉炼铁是获得生铁的主要手段,高炉是炼铁的主要设备,高炉本体设计是炼铁厂设计的基础。
本着优质、高产、低耗和对环境污染小的方针,长寿与高效是高炉设计与生产所追求的目标。
本设计说明书进行的详细的设计及计算,同时结合国内外一些大型高炉的先进生产操作经验及相关的数据。
力求设计的高炉做到高度机械化、自动化和大型化。
以期达到最佳的生产效益。
本设计为1500m3高炉本体设计,所设计的炼铁高炉采用的高径比为2.78,高炉的有效利用系数为2.3t/(m3٠d)。
车间采用岛式布置,出铁场采用圆形出铁场。
其炉底和炉缸采用的先进的“陶瓷杯”技术来砌筑,从而达到了隔热保温、减少热损、保护炭砖的目的。
炉腹部位用耐火度较高的铝碳转,炉腰和炉身下部用抗渣和防震较好的碳化硅砖,而炉身上部和炉喉用抗刷和抗侵蚀较好的高铝砖。
高炉冷却方法采用了炉壳喷水冷却,和板壁结合的方式达到冷却效果,其中板壁结合中用到的冷却壁有光面冷却壁、第三代和第四代冷却壁。
合适的钢结构和高炉基础设计保证了高炉的正常冶炼。
关键词高炉;炉衬;冷却系统;钢结构AbstractBlast furnace iron making is the main means for pig iron, the main equipment of iron making is blast furnace, blast furnace design of ontology is the foundation of the iron mill design. In line with high quality, high yield, low consumption and pollution to the environment policy of small, long life and high efficiency is the goal of the design and production of the blast furnace. This design manual for detailed design and calculation, at the same time, combined with some large blast furnace at home and abroad advanced production operation experience and related data. Strive to design blast furnace of high mechanization, automation and large. In order to achieve the best production efficiency.This design for 1500 m3 blast furnace body design, The design of the blast furnace high aspect ratio of 2.78,the effective utilization of blast furnace coefficient of 2.3t/(m3٠d).Workshop uses the island type layout cast house using circular cast house Blast furnace bottom and hearth uses advanced technology to building "ceramic cup", so as to achieve the heat insulation heat preservation, reduce heat loss and protect the carbon brick. Furnace belly with high refractoriness of aluminum carbon, bosh and furnace body with good slag resistance and shock-proof carborundum brick, The furnace body and brush with resistance and erosion resistance furnace throat good high alumina brick.Blast furnace cooling method USES a furnace shell water spray cooling, cooling effect and partition way, combined with the wooden partition used in cooling stave cooling wall has smooth surface, the third and fourth generation of cooling stave.Appropriate steel structure and foundation design guarantees the normal of the blast furnace smelting blast furnace.Key word: blast furnace body;the lining;of blast furnace cooling system;steel structure目录摘要 (I)Abstract (II)目录 (III)第一章文献综述 (1)1.1高炉炉型概述 (1)1.1.1高炉炉型的发展 (1)1.1.2高炉炉龄及其影响因素 (2)1.2高炉炉衬的发展 (2)1.2.1高炉各部分耐火材料的选择 (2)1.2.2我国最新对耐火材料的选择 (4)1.3高炉的冷却设备 (4)1.3.1高炉冷却的必要性 (4)1.3.2高炉冷却的目的 (5)1.3.3高炉冷却的方式 (5)1.3.4高炉各个冷却方式的发展以及优缺点 (6)1.4高炉钢结构以及高炉基础的概述 (10)1.4.1高炉的钢结构以及影响因素 (10)1.4.2我国高炉钢结构设计的基本现状 (11)1.4.3我国在高炉钢结构设计上的差距 (12)1.4.4高炉基础的概述 (13)1.5高炉设计方案 (15)第二章炼铁工艺计算 (17)2.1原料成分及参数选择 (17)2.1.1原料成分 (17)2.1.2参数选择 (18)2.2原料成分的整理计算 (19)2.2.1矿石成分补齐计算 (19)2.2.2矿石成分的平衡计算 (20)2.2.3燃料成分的整理计算 (22)2.3配料计算 (23)2.3.1吨铁矿石用量 (23)2.3.2生铁成分计算 (23)2.3.3熔剂用量计算 (24)2.3.4炉料及炉渣成分计算 (24)2.4物料平衡计算 (25)2.5热平衡计算 (29)2.5.1热收入 (29)2.5.2热支出 (30)2.6高温区热平衡计算 (34)2.6.1高温区热收入 (34)2.6.2高温区热支出 (34)2.7炼铁焦比的计算 (36)第三章高炉炉型设计 (38)3.1炉型的计算 (38)3.1.1铁口 (38)3.1.2渣口 (39)3.1.3风口 (39)3.1.4日产铁量的计算 (40)3.1.5炉缸尺寸计算 (40)3.1.6死铁层厚度 (41)3.1.7炉腰直径、炉腹角、炉腹高度的计算 (41)3.1.8炉喉直径、炉喉高度、炉身高度、炉腰高度 (41)3.2炉容的校核 (42)3.3出铁场布置 (42)第四章高炉炉衬设计 (44)4.1各部位砖衬的选择 (44)4.1.1炉底、炉缸部位的选择 (44)4.1.2炉腹部位的选择 (44)4.1.3炉身中下部及炉腰部位的选择 (44)4.1.4炉身上部及炉喉部位的选择 (45)4.2各部位砖量计算 (45)4.2.1炉底、炉缸的砌筑 (46)4.2.2炉腹的砌筑 (46)4.2.3炉腰的砌筑 (47)4.2.4炉身部位的砌筑 (48)第五章高炉冷却系统设计 (52)5.1高炉冷却设备 (52)5.1.1高炉冷却目的及方法 (52)5.1.2冷却设备 (52)5.2冷却器的工作机制 (53)5.3合理的冷却结构 (54)5.4高炉冷却系统的维护 (57)第六章高炉钢结构及基础 (60)6.1高炉钢结构 (60)6.1.1高炉本体钢结构 (60)6.1.2炉壳 (61)6.1.3炉体平台 (61)6.1.4炉体框架 (61)6.1.5热风围管 (62)6.2高炉基础 (62)参考文献 (63)致谢 (65)第一章文献综述1.1高炉炉型概述1.1.1高炉炉型的发展高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。
高炉本体设计

2.高炉本体设计2.1高炉内型设计本例为新建年产200万吨炼钢生铁的高炉炼铁车间的工艺设计。
2.1.1高炉有效容积的确定年产200万吨生铁,炼钢生铁占80%,铸造生铁占20% 200×20%=40万吨,按1吨铸造生铁相当于1.15吨的炼钢生铁 40×1.15=46万吨,200×80%+46=206万吨高炉日产量,设休风率为2% P=()吨51.2879%983652060000%21365=⨯=-⨯p (2)确定高炉设计有效容积Vu=n p =I pk =2.15.0*51.2879=1200m 3选取: 每吨生铁的焦比k=0.5t/t ,冶炼强度I=1.2t/m 3·d2.1.2高炉内型尺寸确定(1)炉缸① 炉缸直径:d=0.32Vu 0.45=0.32×12000.45=7.78m 取d=7.8m ② 炉缸高度1h :a 、渣口高度 2z h =1.272d r C N b T p ⋅⋅⋅ =278.73.758.0951.28792.127.1⨯⨯⨯⨯⨯ =1.84m式中:b -生铁产量波动系数,一般b=1.2p -生铁日产量,吨N -日出铁次数,次C -下部炉缸容积(渣口以下)利用系数,一般c=0.55~0.6炉容大,渣量大时选用较低值d -炉缸直径,米V T -铁水比重,一般V T =7.3t/3m取:h z =1.8mb.风口高度: f h = k hz =1.8/0.55=3.27mK-渣口高度与风口高度之比取h z =3.3m风口数n=2(d+1)=2(7.8+1)=17.6取n=18取风口结构尺寸f==0.37mc.炉缸高度1h =f h +f=3.3+0.37=3.67m 取 3.7m③死铁层高度h 0=0.2*炉喉高度=0.2*h 5=0.2*2.7=0.54m(2)炉腰取 D/d=1.15则 D=1.15×7.8=8.95m取D=8.9m(3)炉腹取'3079︒=α h 2=tan *2d D -α=28.79.8-*tan 3079︒=2.96 取2h =3校核α αd D h -2278.76.932-⨯'2879︒=α(4)炉喉①炉喉直径取d 1/D=0.73d 1=0.73D=0.73*8.9=6.49m取d 1=6.5m②炉喉高度取h 5=2.7m(5)炉身、炉腰高度①炉身角β取β=84.5°②炉身高度h 4h 4=21(D-d 1)tan β=21 *(8.9-6.5)tan84.5°=12.46m 取12.5 校核β tan β=6.6946.12*2-=10.38 β=84.5°炉腰高度h 3H u =2.7*D=3.0*8.9=24.6mh 3 =H u -h 1-h 2-h 4-h 5=24.6-3.7-3-12.5-3=2.4m(6)校核炉容炉缸容积: 1V =41πd 21h =41×3.14×28.7×3.7 =176.73m炉顶容积:2V =( d 2+2D +Dd)122h π =(8.92+8.9*7.8+28.7)123⨯π=164.433m 炉腰容积:3V =41π3D 3h =41×3.14×29.8 *2.4 =149.233m炉身容积:4V =(1212Dd d D ++)124h π =(8.92+ 6.52+ 8.9×6.5) 125.12⨯π =586.493m炉喉容积:5V =41π21d 5h =41×3.14×6.52×3 =99.493mV u =1V +2V +3V +4V +5V =1176.34m3相对误差为:|34.117634 .11761200 |×100%=2%约为2%,设计较为合理.。
《高炉本体设计》课件

高炉本体设计流程
1
高炉结构分析
2
通过结构分析,评估高炉本体的承载能
力和稳定性,并确定设计参数。
3
结构优化和方案选择
4
进一步优化高炉本体设计,选择最合适 的方案以实现高炉的高效运行。
设计流程概述
设计高炉本体的流程包括需求分析、结 构分析、设计和方案选择等多个阶段。
高炉本体结构设计
根据结构分析的结果,设计高炉本体的 具体细节和构造方式。
关键技术及应用
壳体结构材料选择
钢铁高炉壳体由特殊耐火材料构 成,能够抵御高温和化学腐蚀。
高炉内部构件设计
高炉内部构件的设计需要考虑耐 磨、耐高温和保护钢铁质量等因 素。
高炉维护与检修
高炉维护和检修是确保高炉长期 稳定运行的关键,需要定期进行。
总结
1 设计的重要性
高炉本体设计对于钢铁生产具有重要意义, 直接关系到工艺效率和产品质量。
பைடு நூலகம்
2 总结与展望
本课件详细介绍了高炉本体设计的内容和流 程,并展望了未来的发展方向。
参考文献
1. 钢铁行业标准化委员会. 高炉本体设计技术规范[M]. 北京:中国标准出版社, 2018。
2. Smith, John. Blast Furnace Design: Principles and Practice[M]. London: Steel Publishing, 2019.
高炉本体设计案例分享
1 国内案例
中国在高炉本体设计领域取得了丰硕成果,例如某钢铁集团的高炉本体设计。
2 国外案例
国外也有很多优秀的高炉本体设计案例,比如日本的某钢铁公司的高炉。
第三章高炉本体设计3

5.
负荷称为冷却强度。
第三章高炉本体设计3
•热负荷:
•式中: Q ——热负荷,kJ/h;
•
M——冷却水消耗量,t/h;
•
c——水的比热容,kJ/(kg•℃);
•
t——冷却水出水温度,℃;
•
t0——冷却水进水温度,℃。
第三章高炉本体设计3
• 通过提高冷却水温度差,可以 降低冷却水消耗量。 •提高冷却水温度差的方法: •①降低流速; •②增加冷却设备串联个数。
六. 炉身冷却模块技术
•1. 结构: • 炉身冷却模块是指将厚壁(14~16mm) 把手型无缝钢管作为冷却元件直接焊接在炉 壳上,在炉壳及钢管间浇注耐热混凝土,混 凝土层高出水管110~130mm,构成大型预 制冷却模块。
• 简单地说就是由炉壳——厚壁钢管— —耐热混凝土构成的大型冷却模块组成。
• 唐钢炉身冷却模块结构示意图:
第三章高炉本体设计3
3.3.6 高炉冷却系统
•高炉冷却系统方式: • 汽化冷却 • 开式工业水循环冷却系统 • 软(纯)水密闭循环冷却系统
第三章高炉本体设计3
•一. 高炉汽化冷却 •1. 概念: • 高炉汽化冷却是把接近饱和温度的 软化水送入冷却设备内,热水在冷却设 备中吸热汽化并排出,从而达到冷却设 备的目的。 • 分为自然循环汽化冷却和强制循环 汽化冷却两种。
第三章高炉本体设计3
•3. 冷却壁的优点: •①冷却壁安装在炉壳内部,密封性好; •②冷却均匀,侵蚀后炉衬内壁光滑。 •4. 缺点: • 消费金属多、笨重、冷却壁损坏后 不能更换。
第三章高炉本体设计3
三. 冷却板(又称扁水箱)
• 冷却板厚度 70~110mm,内部铸有 φ44.5×6mm无缝钢管。 •1. 冷却部位: • 用在炉腰和炉身部位。
高炉本体设计高炉冷却设备

,a click to unlimited possibilities
高炉本体设计及高炉冷却设备
CONTENTS
目录
输入目录文本
高炉本体设计
设计优化建议
未来发展趋势
高炉冷却设备
添加章节标题
高炉本体设计
结构特点
炉壳:高炉炉壳由钢板焊接而成,分为炉喉、炉身和炉腰三个部分。
炉衬:高炉炉衬由耐火材料砌筑而成,分为工作层、永久层和填充层。
冷却设备:高炉冷却设备包括冷却壁、风冷管和汽化冷却器等,用于控制炉衬温度和保护炉壳。
风口装置:高炉风口装置包括风口小套、大套和十字测温装置等,用于向炉内鼓入空气和测量炉温。
材质选择
耐火材料:高炉炉衬的主要材料,要求具有高温强度、耐腐蚀性和良好的热稳定性
碳化硅砖:具有高导热率和高电子饱和迁移率,是高炉出铁口用砖的理想材料
新型冷却材料类型:陶瓷、金属基复合材料等
绿色环保理念融入设计
减少能源消耗:采用高效节能技术,降低高炉本体及冷却设备的能源消耗。
降低污染物排放:优化燃烧过程,减少废气、废渣等污染物的排放,提高环保性能。
循环利用资源:对高炉本体及冷却设备产生的废弃物进行回收利用,实现资源循环利用。
智能化控制:采用先进的智能化控制技术,提高设备的运行效率,减少人工干预,降低对环境的影响。
定期对高炉本体和冷却设备进行检查和维修
未来发展趋势
智能化控制技术应用
智能化控制技术概述
高炉冷却设备中的智能化控制技术应用
未来发展趋势及展望
高炉本体设计中的智能化控制技术应用
新型冷却材料研发
研发背景:高炉冷却设备在钢铁生产中的重要性
新型冷却材料特点:高效、耐高温、耐腐蚀等
高炉本体毕业设计完整版

内蒙古科技大学本科生毕业设计说明书题目:内蒙古包头地区条件下2500m³高炉炉体系统设计学生姓名:张瑜学号:1176803442专业:冶金工程班级:4班指导教师:宋萍包头地区条件下2500m³高炉炉体系统设计摘要高炉炼铁的历史悠久,炼铁技术日益成熟,是当今主要的炼铁方式,随着炼铁技术的不断发展,高炉一代炉役寿命的不断提高,长寿高炉技术应用越来越广泛。
它是降低炼铁成本,提高钢铁企业经济效益的重要手段。
在大型高炉设计中,通过优化炉型、采用合理炉缸内衬结构、铜冷却壁、软水密闭循环冷却系统、薄壁内衬等技术为高炉长寿创造条件,提出了长寿高炉的基本设计思想。
为了适应这一发展趋势,.在本次长寿高炉设计中,对高炉合理内型、合理内衬结构和不同部位耐火材料的选择、冷却方式和冷却系统(包括冷却器的结构、材质与水质等)及其它有关方面作了综合考虑。
关键词:高炉长寿高炉内衬炉体冷却Design of Long Life BFABSTRACTHas a long history of BF ironmaking, is the main way of ironmaking,BF campaign life is continuously increased as unceasing development of iron making technology.It is being used more and more abroad. The long campaign technologies of blast furnace is one of the most important measures which reduce the iron making production cost and improve the economic profits of Iron and Steel Company. In the design of large BF,the technologies like optimized BF profile,reasonable hearth lining,copper stave,soft water closed circulating cooling system and thin-walled lining etc. were applied to prolong BF campaign life. The basic concept of designing long campaign blast furnace was put forward.In order to adapt to the trend,during designing long campaign blast furnace,the rational; furnace profile,rational furnace lining structure and selection of different refractories for various areas,cooling method and system (including cooler structure and material,cooling water and so on) and concerned aspects must be comprehensively considered.Key Words:Blast furnace life .Blast furnace lining. Furnace cooling目录摘要 (I)ABSTRACT (II)第一章文献综述 01.1我国高炉炼铁发展现状 01.2高炉概述 (2)1.2.1高炉本体概括 01.2.2高炉冶炼用的原料 (1)1.2.3高炉本体及附属设备 (1)1.2.4高炉炉型的发展现状 (2)1.3高炉炉底、炉缸对高炉长寿的影响 (3)1.3.1高炉长寿概述 (3)1.3.2 炉缸、炉底侵蚀的特征及原因 (3)1.3.3 炉腹、炉腰侵蚀的原因 (4)1.3.4 减少炉缸炉底侵蚀措施 (4)1.3.5 减少炉腹炉身侵蚀措施 (5)1.3.6陶瓷杯与热压小炭块的比较 (6)1.4高炉冷却设备对高炉长寿的影响 (6)1. 4. 1高炉冷却 (6)第二章高炉物料平衡计算 (9)2.1.原料条件 (10)2.2 矿石成分的补齐计算 (13)2.2.1烧结矿中成分的补齐计算 (13)2.2.2 球团矿中成分的补齐计算 (13)2.2.3 生矿成分的补齐计算 (14)2.3 矿石成分的平衡计算 (15)2.3.1 烧结矿平衡计算 (15)2.3.2 球团矿平衡计算 (16)2.3.3 生矿平衡计算 (17)2.4 配料计算 (18)2.4.2 使用熔剂时的配料计算 (19)2.5物料平衡计算 (23)2.5.1 鼓风量的计算 (23)2.5.2 煤气组分及煤气量的计算 (24)2.5.3煤气中水量计算 (26)2.5.4考虑炉料的机械损失后的实际入炉量 (26)2.6 高炉热平横计算 (27)2.6.1全炉热平衡计算(第二种) (27)2.6.2 高温区热平衡 (31)2.7 炼铁焦比计算 (33)第三章2500m3高炉炉体设计 (36)3.1 高炉内型设计 (36)3.1.1炉形设计 (37)3.1.2炉容校核,高径比校核Hu/D及h4/Hu (39)3.2高炉耐火材料 (41)3.2.1 高炉各部位耐火材料的选择 (41)3.3 高炉炉体设备设计 (42)3.3.1 炉体冷却设备设计 (42)3.3.1.1 高炉炉底及炉缸 (42)3.3.1.2 炉腹至炉身中下部 (42)3.3.1.3 炉身中上部 (43)3.3.2高炉冷却水设计 (45)3.3.3风口、铁口及炉底冷却设备的设计 (48)3.3.3.1风口设计 (48)3.3.3.3 炉底冷却设备 (50)3.4 炉壳设计 (50)3.5 高炉附属设备 (53)参考文献 (58)附表 (59)致谢 (67)第一章文献综述1.1我国高炉炼铁发展现状在经济发展的“新常态”下,钢铁行业正处于适应新常态之中转型升级、提质增效的重要阶段,技术创新对产业发展的支撑和引领作用日益突出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国部分高炉炉型尺寸
国外部分高炉炉型尺寸
炉型设计例题
设计年产制钢生铁 280万吨的高炉车间
(1)确定年工作日:
369 5% 534(天 7)
日产量:
P 总28 30 4 17 0 4 806 .2(9 t)
(2)定容积: 选定高炉座数为2座,利用系数
V
2.0
t m3
d
每座高炉日产量:
PP总 403(5 t) 2
Dd 2
•tg
炉腹角一般为79º~83º,过大不利于煤气
分布并破坏稳定的渣皮保护层,过小则增
大对炉料下降的阻力,不利于高炉顺行。
4. 炉身:
炉身呈正截圆锥形。
作用:
(1)适应炉料受热后体积的膨胀,有利于 减小炉料下降的摩擦阻力,避免形成料拱。
(2)适应煤气流冷却后体积的收缩,保证 一定的煤气流速。
b hz h铁 c
式中:
hz
4bP
nc铁d2
p——日产生铁量,t;
b ——生铁产量波动系数,一般取1.2;
n ——昼夜出铁次数,一般2h出一次铁;
r铁——铁水密度,7.1t/m3; c——渣口以下炉缸容积利用系数,一般取0.55~0.60,
炉容大、渣量大时取低值;
d ——炉缸直径,m;
(4)风口高度:
有效高度的意义: Hu和煤气利用及高炉顺行有关
2)高炉有效容积 : 在有效高度范围内,炉型所包括
的容积称为高炉有效容积(Vu)。
<100m3 小型高炉 100-1000m3 中型高炉 Vu 1000-4000m3 大型高炉 >4000m3 巨型高炉
3)高径比Hu/D:
定义:有效高度与炉腰直径的比值
Dd1 2
•tg
d1(炉喉直径),由d1/D确定。
5. 炉腰:
炉腹上部的圆柱形空间为炉腰, 是高炉炉型中直径最大的部位。
作用:
(1)炉腰处恰是冶炼的软熔带,透气性 变差,炉腰的存在扩大了该部位的横向空 间,改善了透气条件。
(2)在炉型结构上,起承上启下的作用, 使炉腹向炉身的过渡变得平缓,减小死角。
意义:①是表示高炉炉型形状,“矮胖”或 “细长”的一个重要设计指标;②与煤气利用 和炉况顺行有关。高径比大,利于煤气利用不 利于炉况顺行。
不同炉型的高炉,其比值的范围是:
巨型高炉 大型高炉 中型高炉 小型高炉
~2.0 2.5~3.1 2.9~3.5 3.7~4.5
Vu与Hu关系
有效高度的确定
d(炉缸直径) →选定D/d →选定Hu/D →Hu 统计公式计算:
炉腹体积:
V2 12h2(D2Ddd2) 3.5(112119.89.82)29.675m3
12
炉腰体积:
V 34D 2 h 24 12 1 2 .2 2.0m 9 8 3
炉身体积:
V4 12h4(D2D1dd12)
17(1
12 1
17.57.52)1
15.064m3
12
炉喉体积:
V 54d 1 2 h 54 7 .5 2 2 .0 8.3 8 m 6 3
大型高炉 Hu 6.4V 4u0.2
中型高炉 Hu 4.05Vu0.265
2. 炉缸
作用: 燃烧焦炭、 盛放渣铁、 炉缸的 上、中、下部位分别设置有 风口、渣口与铁口。
(1)炉缸直径d
炉缸截面燃烧强度:指每小时每平方 米炉缸截面积所燃烧的焦炭的数量, 一般为1.0~1.25t/m2·h。
d 0.23 I •Vu i燃
(9)绘制高炉炉型图:
风口中心线 铁口中心线
2018m3高炉炉型图
炉型的设计方法
经验法:以炉建炉。 计算法:
统计公式法(拉姆、项钟庸、高清志) 经验法与统计公式相结合
目标:设计炉型接近合理炉型
设计过程
①参考已有炉型计算方法,初步确定内型各部尺 寸及基本比例关系;
②研究国内外炉型发展的趋势,重点调整局部尺 寸;
③收集国内外炉型资料,以炉容相近、原燃料条 件相似、指标先进的炉型为参考,对炉型尺寸 进行适当调整。
重要性:合理的炉型对获得良好的 技术经济指标和延长高炉寿命具有 重要意义。
3.1.1 炉型的发展过程
1.无型阶段 2.大腰阶段——炉腰尺寸过大的炉型。
炉缸和炉喉直径小,有效高度低, 而炉腰直径很大。
3. 五段式高炉:瘦长型、肥胖型
原始高炉炉型 1-中国;2-德国;3-英国(P75)
近代高炉炉型(1:500)
风口中心线与铁口中心线间距离称 风口高度(hf)。
风口高度可参照下式计算:
hf
hZ k
式中:
k ——渣口高度与风口高度之比,一般
取0.5~ 0.6,渣量大取低值。
(5)风口结构尺寸(a): 根据经验直接选定,一般0.35~0.5m
(6)炉缸高度:
h1 hf a
(7)风口数目(n): 主要取决于炉容大小,与炉缸直径
26.75 合理
4
②炉缸高度:
渣口高度:
hz
1.27
bP
NC 铁d
2
1.271.204035 100.557.19.82
1.64
取 hz 1.7m
风口高度:
hf
hz k
1.7 3.03 0.56
取 hf 3.0m
风口数目:
n 2 (d 2 ) 2 (9 .8 2 ) 2.6 3
取 n24个
炉喉直径与炉腰直径比值 d1/D取值在 0.64~0.73之间。
7. 死铁层厚度(h0)
铁口中心线到炉底砌砖表面之间的 距离称为死铁层厚度。
作用:
(1)残留的铁水可隔绝铁水和煤气对炉底 的冲刷侵蚀,保护炉底; (2)热容量可使炉底温度均匀稳定,消除 热应力的影响; (3)稳定渣铁温度。
死铁层厚度: 新设计高炉的死铁层厚度h0=0.2d。
风口结构尺寸: 选取: a=0.5m 则炉缸高度:
h 1hfa3.00.53.5 (m )
(4)死铁层厚度
选取: h0 1.5m
(5)炉腰直径、炉腹角、炉腹高度
选取:
D d
1.13
则: D 1 .1 3 9 .8 1.0 17
取
D1m 1
选取: 8030'
则: h2D2 dtg803'03.58
D——炉腰直径;
d1——炉喉直径; α——炉腹角;
β——炉身角;
hf hz
d1
β D
α 风口中心线
渣口中心线 d
铁口中心线
图3-1 五段式高炉内型图
h0 h1 h2 h3
h4
h5
Hu
1. 高炉有效容积和有效高度
1)有效高度(Hu) :料线零位到铁口中 心线之间的高度。 料线零位: 钟式高炉:大钟下降位置的下缘线标高; 无钟高炉:无钟炉顶为旋转溜槽最低位置 的下缘线标高。
取
h4 17m
校核
tg 2h4 2179.71
Dd1 11 7.5
847'2'1'
选取: Hu D 2.56
则: Hu2.561 12.186
取 Hu 28.2m
求得: h3H uh1h2h4h5 2.2 83.53.51 72.02.2m
校核炉容:
炉缸体积:
V 14d 2 h 14 9 .8 2 3 .5 2.6 0m 4 1 3
1-攀钢高炉,V有1000m3,H有/D=3.05; 2-本钢高炉,V有2000m3,H有/D=2.68;
3-日本鹿岛,V有5050m3,H有/D=1.95
3.1.2 五段式高炉炉型
Hu——有效高度; h0——死铁层厚度; h1——炉缸高度; h2——炉腹高度; h3——炉腰高度; h4——炉身高度; h5——炉喉高度; hf——风口高度; hz——渣口高度; d——炉缸直径;
(3)炉身高度占高炉有效高度的50~60%, 保障了煤气与炉料之间传热和传质过程的 进行。
炉身角:
一般取值为81.5º~85.5º之间。大高 炉取小值,中小型高炉取大值。 4000~5000m3高炉β角取值为81.5º左右, 前苏联5580m3高炉β角取值 79 42 '17 ''
炉身高度 :
h4
式中:
I——冶炼強度, t/m3·d,(1.0-1.25)
i燃——燃烧強度,t/m2·h,(1.0-1.5)
Vu——高炉有效容积,m3 d——高炉炉缸直径,m
计算得到的炉缸直径再用Vu/A进 行校核,不同炉容的Vu/A取值为:
大型高炉:22~27 中型高炉:15~22 小型高炉:11~15
(2)铁口高度h铁
取
h2 3.5m
: 校核
tg 2h2 23.55.83
Dd 11 9.8
80 1'1 6 ''
(6)炉喉直径、炉喉高度
选取: d1 D 0.68
则: d10.6 81 17.48
取 选取:
d1 7.5m
h5 2.0m
(7)炉身角、炉身高度、炉腰高度
选取:
84
则:
h4D 2d1t g1 2 1 7.5t8 g4 1.6 65
炉腰高度(h3): 一般取值1~3m,炉容大取上限,设计 时可通过调整炉腰高度修定炉容。
一般炉腰直径(D)与炉缸直径(d) 有一定比例关系,D/d取值:
大型高炉1.10~1.15 中型高炉1.15~1.25 小型高炉1.25~1.50
6. 炉喉(d1、h5):
炉喉呈圆柱形。
作用: 承接炉料,稳定料面,保证炉料合理分布。
h铁
P
n铁
A
式中:
p——日产生铁量,t;