抗弯强度第三节规范强度计算公式第四节梁的整体稳定计算

合集下载

(整理)钢梁稳定性计算步骤

(整理)钢梁稳定性计算步骤

钢梁整体稳定性验算步骤1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。

2. 如需要计算2.1 等截面焊接工字形和轧制H 型钢简支梁xyxy(a)双轴对称焊接工字形截面(b)加强受压翼缘的单轴对称焊接工字形截面y (c)加强受拉翼缘的单轴对称焊接工字形截面y (d)轧制H 型钢截面1)根据表B.1注1,求ξ。

ξl 1——H 型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l 1为其跨度;对跨中有侧向支撑点的梁,l 1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b 1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

7)根据公式4.2.2,验算稳定性。

2.2 轧制普通工字钢简支梁1)根据表B.2选取φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.3 轧制槽钢简支梁1)根据公式B.3,计算φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.4 双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。

ξl1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

5)根据公式4.2.2,验算稳定性。

2.5 受弯构件整体稳定系数的近似计算(均匀弯曲,)2.5.1 工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b 代替φb,当φb>1.0,取φb=1.0。

第4章结构构件的强度刚度稳定性

第4章结构构件的强度刚度稳定性
查P52表4-4
2、许用应力
查P12表2-2, 得:
查P45表3-11载荷组合B得:安全系数n=1.34
3、稳定性校核
由于 ,故只需按 计算整体稳定性
查P50表4-2截面属于b类,查P228附表4-2得
所以构件整体稳定性满足要求。
4.2
主要承受横向载荷的构件称为受弯构件,实腹式受弯构件简称梁,格构式受弯构件简称桁架。桁架将在后续介绍,本节仅介绍实腹受弯构件的强度、刚度及整体稳定性。
(4-2)
式中: —构件的计算长度,mm;
—许用长细比,《起重机设计规范》GB/T3811-2008规定结构构件容许长细比见表4-1;
—构件截面的最小回转半径,mm。
(4-3)
式中: —构件毛截面面积,mm2;
-构件截面惯性矩,mm4;
表4-1结构构件容许长细比
构件名称
受拉构件
受压构件
主要承载结构件
5
缀条
-缀条所在平面和x-x轴的夹角
注:1、斜腹杆与构件轴线间的倾角应保持在400~700范围内。
2、缀板组合构件的单肢长细比 不应大于40。
例题4-1
已知如图4-6所示工字形截面轴心压杆,翼缘:2-200×10 ,腹板:1-180×6,杆长 ,两端铰支,按载荷组合B求得构件轴心压力 ,钢材为Q235B钢,焊条为E43型,试验算构件强度、刚度及整体稳定性。
(2)
在起重机械结构中,理想构件是不存在的,构件或多或少存在初始缺陷。如:初变形(包括初弯曲和初扭曲)、初偏心(压力作用点与截面型心存在偏离的情况)等等。这些因素,都使轴心压杆在载荷一开始作用时就发生弯曲,不存在由直线平衡到曲线平衡的分歧点。实际轴心压杆的工作情况犹如小偏心受压构件,其临界力要比理想轴心压杆低(图4-4),当压力不断增加时,压杆的变形也不断增加,直至破坏。载荷和挠度的关系曲线,由稳定平衡的上升和不稳定平衡的下降段组成。在上升段OA,增加载荷才能使挠度加大,内外力处于平衡状态;而在下降阶段AB,由于截面上塑性的发展,挠度不断增加,为了保持内外力的平衡,必须减小载荷。因此,上升阶段是稳定的,下降阶段是不稳定的,上升和下降阶段的分界点A,就是压杆的临界点,所对应的载荷也是压杆稳定的极限承载力 (即压溃力)。

抗弯强度的计算公式

抗弯强度的计算公式

抗弯强度的计算公式抗弯强度(Bending Strength)是指材料在受弯作用下发生破坏之前能承受的最大应力值,也是衡量材料抵抗弯曲变形和断裂的能力的重要参数之一、在工程设计和材料选择中,抗弯强度常常是一个关键的考虑因素。

弹性理论是计算抗弯强度的常用方法之一,它可以应用于弹性材料,如金属、混凝土等。

在弹性理论中,抗弯强度的计算公式可以通过应用梁理论中的弯曲应力公式得到。

假设梁的跨度为L,弯曲力矩为M。

根据梁理论,梁的弯曲应力σ可以表示为:σ=M/(W*y)其中,W是梁的截面模量(Section Modulus),y是梁截面上任意一点到中性轴的距离。

对于矩形截面梁,截面模量可以由下式计算:W=(b*h^2)/6其中,b是梁的宽度,h是梁的高度。

对于圆形截面梁,截面模量可以由下式计算:W=(π*d^3)/32其中,d是梁的直径。

这些公式可以用于计算梁的抗弯强度。

但需要注意的是,这些公式是在假设材料的应力应变关系服从线弹性的条件下得到的,对于非线性材料(如混凝土)或者具有大变形的材料,这些公式可能不适用。

除了基于弹性理论的计算方法外,还可以根据材料的破裂力学性质来计算抗弯强度。

破裂力学是研究材料在破裂前后力学性质变化的科学,通过分析材料的断裂行为和裂纹扩展来计算材料的抗弯强度。

破裂力学计算抗弯强度的方法有许多,常见的方法包括线弹性断裂力学(Linear Elastic Fracture Mechanics,LEFM)和非线性断裂力学(Nonlinear Fracture Mechanics,NLFM)等。

这些方法是基于裂纹尖端处的应力场和应变场的计算,通过计算裂纹尖端处的应力强度因子(Stress Intensity Factor,SIF)来确定材料的抗弯强度。

总之,计算抗弯强度的公式主要有两类:基于材料的弹性理论和基于材料的破裂力学。

这些公式可以帮助工程师和设计师选择合适的材料和设计结构,以满足抗弯强度的要求。

轴抗弯强度计算公式12则

轴抗弯强度计算公式12则

轴抗弯强度计算公式12 则抗弯强度计算公式(一)工字钢抗弯强度计算方法一、梁的静力计算概况1、单跨梁形式: 简支梁2、荷载受力形式: 简支梁中间受集中载荷3、计算模型基本参数: 长L =6 M4、集中力: 标准值Pk=Pg+Pq =40+40=80 KN设计值Pd=Pg*丫G+Pq*丫Q =40*1.2+40*1.4=104 KN工字钢抗弯强度计算方法二、选择受荷截面11 、截面类型: 工字钢:I40c2、截面特性: Ix= 23850cm4 Wx= 1190cm3 Sx= 711.2cm3G= 80.1kg/m翼缘厚度tf= 16.5mm 腹板厚度tw= 14.5mm 工字钢抗弯强度计算方法三、相关参数1 、材质:Q2352、x轴塑性发展系数丫x:1.053、梁的挠度控制〔v〕:L/250 工字钢抗弯强度计算方法四、内力计算结果1、支座反力RA = RB =52 KN2、支座反力RB = Pd / 2 =52 KN3、最大弯矩Mmax = Pd * L / 4 =156 KN.M 工字钢抗弯强度计算方法五、强度及刚度验算结果21、弯曲正应力Z max = Mmax / ( 丫x * Wx),124.85 N/mm22、A处剪应力n A = RA * Sx / (Ix * tw),10.69 N/mm23、B处剪应力n B = RB * Sx / (lx * tw),10.69 N/ 毫米为单位,直接把数值代入上述公式,得出即为每米方管的重量,以克为单位。

如30x30x2.5 毫米的方管,按上述公式即可算出其每米重量为:4x2.5x(30-2.5)x7.85=275x7.85=2158.75 克,即约2.16 公斤矩管抗弯强度计算公式1 、先计算截面模量WX=(a四次方-b四次方)/6a2、再根据所选材料的强度,计算所能承受的弯矩3、与梁上载荷所形成的弯矩比对,看看是否在安全范围内参见《机械设计手册》机械工业出版社2007年12月版第一卷第1-59 页玻璃的抗弯强度计算公式锦泰特种玻璃生产的玻璃的抗弯强度一般在60~220Mpa之间,玻璃样品的形式和表面状态对测试的结果影响较大,3通常采用万能压力测试仪测试。

梁的整体稳定

梁的整体稳定

三、腹板的局部稳定计算
1、加劲肋的种类和作用 设计时常用设加劲肋来提高 腹板的稳定性。横向加劲肋用 于防止由剪应力和局部压应力 作用引起的腹板失稳,纵向加 劲肋用于防止由弯曲应力引起 的腹板失稳,短加劲肋防止由 局部压应力引起的腹板失稳。 当集中荷载作用处设有支承加 劲肋时,该加劲肋既要起加强 腹板局部稳定性的一般横向加 劲肋的作用,又要承受集中荷 载并把它传给梁腹板,称该加 劲肋为支承加劲肋。
上式已为国内外许多实验研究所证实,并为许 多国家制定设计规范时所参考采用。系数C1、 C2、C3 与荷载的分布形式、作用高度和作用位 置有关。
三、梁的整体稳定计算 Mx≤ Mcr/γR 应力表达式为
σ cr σ cr f y Mx M cr 1 σ = ≤ = = = ϕb f γR Wx Wx γ R fy γ R
组合梁分为焊接组合梁(简称为焊接梁)、 异种钢组合梁(在梁受力大处的翼缘板采用强度 较高的钢材,而腹板采用强度稍低的钢材;按弯 矩图的变化,沿跨长方向分段采用不同强度等级 的钢材,既可更充分地发挥钢材强度的作用,又 可保持梁截面尺寸沿跨长不变)、钢与混凝土组 合梁(可以充分发挥两种材料的优势,收到较好 的经济效果)。
t ≤ 75 . 8
w
f
y
3、在局部压应力作用下的临界应力 理论分析得临界应力表 达式为:
σ
c . cr
100 t w = C1 h0

2
由σc.cr≥fy,可得当 σ a/h0≤2.0时,腹板应满足
h0 ≤ 75 . 2 tw 235 f y
4、在几种应力共同作用下腹板屈曲的临界条件
1、腹板在纯弯曲状态的临界应力 弹性阶段纯弯曲状态下的四边支承板的σcr计 算公式同前,但χ和k值不同。根据试验可取χ =1.61, kmin=23.9。可得 σcr=715(100tw/h0)2 。 h0对σcr影响很大, a的大小随影响屈曲的半 波数,但对σcr 影响不大。故合理的方法常采用 设纵向加劲肋的办法来提高σcr。

5.4 梁的整体稳定1

5.4 梁的整体稳定1

5.4 梁的整体稳定5.4.1 梁的整体失稳现象梁主要是用于承受弯距,为了提高梁的抗弯强度,节省钢材,梁的截面一般做成高而窄的形式。

如图5.18所示的工字形截面梁,荷载作用在其最大刚度平面内,当荷载较小时,梁的弯曲平衡状态是稳定的。

虽然外界各种因素会使梁产生微小的侧向弯曲和扭转变形,但外界影响消失后,梁仍能恢复原来的弯曲平衡状态。

然而,当荷载增大到某一数值后,梁在弯矩作用平面内弯曲的同时,将突然发生侧向的弯曲和扭转变形,并丧失继续承载的能力,这种现象称为梁的整体失稳或弯扭屈曲。

梁维持其稳定平衡状态所承担的最大荷载或最大弯矩,称为临界荷载或临界弯矩。

图5.18 梁的整体失稳横向荷载的临界值和它沿梁高的作用位置有关。

当荷载作用在上翼缘时,如图5-19(a)所示,在梁产生微小侧向位移和扭转的情况下,荷载F将产生绕剪力中心的附加扭矩Fe,它将对梁侧向弯曲和扭转起促进作用,会加速梁丧失整体稳定。

但当荷载F作用在梁的下翼缘时,如图5-19(b)所示,它将产生反方向的附加扭矩Fe,有利于阻止梁的侧向弯曲扭转,延缓梁丧失整体稳定。

因此,后者的临界荷载(或临界弯矩)将高于前者。

图5.19 荷载位置对整体失稳的影响5.4.2 梁的临界荷载图5-12(a)所示为一两端简支双轴对称工字形截面纯弯曲梁,梁两端均受弯矩M作用,弯矩沿梁长均分布。

这里所指的“简支”符合夹支条件,即支座处截面可自由翘曲,能绕x轴和y轴转动,但不能绕z轴转动,也不能侧向移第动。

图5-12 梁的侧向弯扭屈曲设固定坐标为x、y、z,弯矩M达到一定数值屈曲变形后,相应的移动坐标为'x、'y、'z,截面形心在x、y轴方向的位移u、v,截面扭转角为 。

在图5-12(b)和图5-12(d)中,弯矩用双箭头向量表示,其方向按向量的右手规则确定。

梁在最大刚度平面内(z y ''平面)发生弯曲(图5-12(c )),平衡方程M dzvd EI =-22x (5-20)梁在z x ''平面内发生侧向弯曲(图5-12(d )),平衡方程ϕM dzud EI =-22y (5-21)式中:y x I I ,——梁对x 轴和y 轴的毛截面惯性矩。

型钢抗弯强度计算共42页PPT资料

型钢抗弯强度计算共42页PPT资料

二、单轴对称截面简支梁临界弯矩计算公式:
M c rC 1 2 lE 2y C I2 a C 3yC 2 a C 3y2 I I y 1 l2 2 G E t II4.48
yfydA
y
fy Ae yy0dAApydAfy Ie/y0Wp fy WeWp
矩形截面:
(1)弹性阶段:y 0 h /2 ,W e b h 2 /6 W n ,W p 0 ,M y W n fy
(2)塑性阶段:y 0 0 ,W p b h 2 /4 W p n ,W e 0 ,M p W p n fy
llzz — —— —集 集中 中荷 荷载 载在 在腹 腹板 板计 计算 算高 高度 度处 处的 的假 假定 定分 分布 布长 长度 度, ,对 对跨 跨中 中集 集中 中荷 荷载 载, , llzz==aa++55hhyy++22hhRR; ;梁 梁端 端支 支反 反力 力, ,llzz==aa++22..55hhyy++aa11; ;
梁板共同作用: (1)共同工作:组合楼板 (2)不共同工作:一般的钢筋混凝土楼板
第二节 抗弯强度
截面正应力发展三个阶段: (1)弹性阶段:承受动力荷载 (2)弹塑性阶段:静力荷载或者间接动荷载 (3)塑性阶段:
截面弹塑性阶段抗弯承载力:
M ydA
Ae
Ap
yfydAAe yfyy0ydAAp
aa— —— —集 集中 中荷 荷载 载沿 沿跨 跨度 度方 方向 向的 的支 支承 承长 长度 度, ,对 对吊 吊车 车轮 轮压 压, ,无 无资 资料 料时 时可 可取 取 5500mmmm; ; hhyy— —— —自 自梁 梁顶 顶至 至腹 腹板 板计 计算 算高 高度 度处 处的 的距 距离 离; ; hhRR— —— —轨 轨道 道高 高度 度, ,梁 梁顶 顶无 无轨 轨道 道时 时取 取 hhRR==00; ; aa11— —— —梁 梁端 端至 至支 支座 座板 板外 外边 边缘 缘的 的距 距离 离, ,取 取值 值不 不得 得大 大于 于 22..55 hhyy。 。 当 当计 计算 算不 不能 能满 满足 足时 时, ,对 对承 承受 受固 固定 定集 集中 中荷 荷载 载处 处或 或支 支座 座处 处, ,可 可通 通过 过设 设置 置横 横向 向加 加劲 劲

材料抗弯强度计算公式

材料抗弯强度计算公式

材料抗弯强度计算公式
材料的抗弯强度,英文为Flexural Strength或Bend Strength,与试件受力情况、截面形状及支撑条件有关。

抗弯强度的计算公式如下:
•三点弯曲:σ = (3FL) / (2wd^2)
•四点弯曲:σ = (FL) / (wd^2)
其中:
•σ 代表材料强度,单位为Pa或者N/m^2。

• F 代表施加的最大力。

•L 代表样品的长度。

•w 代表样品的宽度。

• d 代表样品的深度。

请注意,上述公式仅供参考,具体的计算公式可能会因材料类型、试验条件和加载方式等因素而有所不同。

在进行抗弯强度计算时,建议参考相关标准或咨询专业人士以获取准确的计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

边 缘 的 局 部 承 压 强 度 。 假 定 集 中 荷 载 从 作 用 处 在 h y 高 度 范 围 内 以 1 :2 .5 扩 散 , 在
h R 高 度 范 围 内 以 1 :1 扩 散 , 均 匀 分 布 于 腹 板 高 度 计 算 边 缘 。 这 样 得 到 的 c 与 理 论
的局部压力的最大值十分接近。局部承压强度可按下式计算
第五章 受弯构件
第一节 绪论 第二节 抗弯强度 第三节 规范强度计算公式 第四节 梁的整体稳定计算 第五节 焊接组合梁的局部稳定和加劲肋设计 第六节 薄板屈曲后强度 第七节 考虑腹板屈曲后强度的梁设计 第八节 型钢梁的截面设计 第九节 焊接组合梁的截面设计 第十节 梁的拼接
第一节 绪 论
概念:承受横向荷载,楼盖梁、吊车梁、檩条、桥梁等;
c
F
twlz
f
移动集中吊车轮压
固定集中荷载(支座反力)
当 梁 的 翼 缘 承 受 较 大 的 固 定 集 中 荷 载( 包 括 支 座 )而 又 未 设 支 承 加 劲 肋 [ 图 5 - 5
( a) ]或 受 有 移 动 的 集 中 荷 载 ( 如 吊 车 轮 压 ) [图 5-5( b) ]时 , 应 计 算 腹 板 高 度
矩形截面:
(1)弹性阶段:y 0 h /2 ,W e b h 2 /6 W n ,W p 0 ,M y W n fy
(2)塑性阶段:y 0 0 ,W p b h 2 /4 W p n ,W e 0 ,M p W p n fy
(3)弹塑性阶段: My Mpy Mp My MySfMy
aa— —— —集 集中 中荷 荷载 载沿 沿跨 跨度 度方 方向 向的 的支 支承 承长 长度 度, ,对 对吊 吊车 车轮 轮压 压, ,无 无资 资料 料时 时可 可取 取 5500mmmm; ; hhyy— —— —自 自梁 梁顶 顶至 至腹 腹板 板计 计算 算高 高度 度处 处的 的距 距离 离; ; hhRR— —— —轨 轨道 道高 高度 度, ,梁 梁顶 顶无 无轨 轨道 道时 时取 取 hhRR==00; ; aa11— —— —梁 梁端 端至 至支 支座 座板 板外 外边 边缘 缘的 的距 距离 离, ,取 取值 值不 不得 得大 大于 于 22..55 hhyy。 。 当 当计 计算 算不 不能 能满 满足 足时 时, ,对 对承 承受 受固 固定 定集 集中 中荷 荷载 载处 处或 或支 支座 座处 处, ,可 可通 通过 过设 设置 置横 横向 向加 加劲 劲
截面形状系数: Sf Mp /Mn MMyW nfy
第三节 规范采用强度计算公式
一、弯曲正应力
部分截面发展塑性(1/4截面,a=h/8)为极限状态:
x(y)
Mx(y) f W x(y) xn(yn)
式中:
γ为塑性发展系数,按P172,表5.1;
有两种情况下塑性发展系数取γ=1.0;
二、抗剪强度
llzz — —— —集 集中 中荷 荷载 载在 在腹 腹板 板计 计算 算高 高度 度处 处的 的假 假定 定分 分布 布长 长度 度, ,对 对跨 跨中 中集 集中 中荷 荷载 载, , llzz==aa++55hhyy++22hhRR; ;梁 梁端 端支 支反 反力 力, ,llzz==aa++22..55hhyy++aa11; ;
eq 2c 2c 3 21f
(4)复杂应力作用下的强度计算 当腹板计算高度处同时承受较大的正应力、剪应力或局部压应力时,需计算
该处的折算应力
2 c2 c 32 1f
(5-8)
式中 、、c——腹板计算高度处同一点的弯曲正应力、剪应力和局部压应力,
=(Mx/Wnx)×(h0/h) ,以拉应力为正,压应力为负;
1——局部承压强度设计值增大系数,当与c 同号或c=0 时,
1=1.1,当与c 异号时取1=1.2。
第四节 梁的整体稳定计算
一、基本概念 整体失稳现象:
机理分析:梁受弯变形后,上翼缘受压,由于梁侧向 刚度不够,就会发生梁的侧向弯曲失稳变形;梁截面从上 至下弯曲量不等,就形成截面的扭转变形,同时还有弯矩 作用平面内的弯曲变形,故梁的整体失稳为弯扭失稳形式, 完整的说应为:侧向弯曲扭转失稳。
c
F twlz
f
( 5-7)
式 式中 中 FF— —— —集 集中 中荷 荷载 载, ,对 对动 动力 力荷 荷载 载应 应乘 乘以 以动 动力 力系 系数 数; ;
— —— —集 集中 中荷 荷载 载增 增大 大系 系数 数, ,对 对重 重级 级工 工作 作制 制吊 吊车 车轮 轮压 压, ,==11..3355; ;对 对其 其它 它荷 荷载 载, , ==11..00; ;
肋 肋予 予以 以加 加强 强, ,也 也可 可修 修改 改截 截面 面尺 尺寸 寸; ;当 当承 承受 受移 移动 动集 集中 中荷 荷载 载时 时, ,则 则只 只能 能修 修改 改截 截面 面尺 尺寸 寸。 。
四、复杂应力状态下折算应力
0 1 2 xy2 yz2 zx2 3x 2 y y 2 z z 2 x
分类: 实腹式
型钢截面:加工方便、制造简单、成本低; 组合截面:型钢没法满足强度和刚度要求时;
格构式:当跨度超过40m时,最好采用格构桁架
第一节 绪 论
梁格:纵横交错的主次梁组成的平面体系 (1)简式梁格:单一主梁 (2)普通梁格:分主、次梁 (3)复式梁格:分主梁及横、纵次梁
梁板共同作用: (1)共同工作:组合楼板 (2)不共同工作:一般的钢筋混凝土楼板
第二节 抗弯强度
截面正应力发展三个阶段: (1)弹性阶段:承受动力荷载 (2)弹塑性阶段:静力荷载或者间接动荷载 (3)塑性阶段:
截面弹塑性阶段抗弯承载力:
ቤተ መጻሕፍቲ ባይዱ
M ydA
Ae
Ap
yfydAAe yfyy0ydAAp
yfydA
y
fy Ae yy0dAApydAfy Ie/y0Wp fy WeWp
VS I xtw
fV
方法:剪力流理论分析,假定沿薄壁厚度方向均匀分布;
S : (1) 当计算腹板上任一点竖向剪应力时:为计算剪应
力处以上或以下毛截面对中和轴x的面积矩;
(2) 当计算翼缘上任一点的水平剪应力时:以左或右 毛截面对中和轴x的面积矩;
t w 为计算剪应力处截面厚度;
三、腹板局部压应力
相关文档
最新文档