大数据基础技术概述

合集下载

大数据基本介绍ppt课件(2024)

大数据基本介绍ppt课件(2024)
数据预处理
包括数据清洗、数据集成、数据 变换和数据规约等步骤,为后续 的数据分析和挖掘提供高质量的
数据。
2024/1/30
数据挖掘算法
如分类、聚类、关联规则挖掘、时 间序列分析等,用于发现数据中的 潜在规律和模式。
数据可视化技术
将数据以图形或图像的形式展现出 来,帮助用户更直观地理解数据和 分析结果。
11
2024/1/30
03
大数据基础设施建设
12
云计算平台构建
2024/1/30
云计算平台架构
包括IaaS、PaaS、SaaS等层次,提供弹 性可扩展的计算、存储、网络等资源。
虚拟化技术应用
通过虚拟化技术实现资源的池化、动态分 配和高效利用。
容器化技术
采用Docker等容器化技术,实现轻量级 、快速部署的应用运行环境。
15
2024/1/30
04
大数据在各行业应用案例
16
金融行业应用案例
2024/1/30
风险管理与合规
利用大数据分析技术,金融机构可以更有效地识别、评估和监控 风险,确保合规经营。
客户洞察
通过分析客户行为、偏好和交易数据,金融机构可以提供更个性 化的产品和服务,提高客户满意度。
信贷评估
大数据可以帮助金融机构更准确地评估借款人的信用状况,降低 信贷风险。
13
数据中心建设与运维
数据中心选址与设计
考虑地质、气候、能源等因素,进行 科学合理的选址和设计。
智能化运维管理
运用人工智能、大数据等技术,实现 数据中心的智能化运维管理,提高运 维效率和质量。
高可用性与容灾备份
采用冗余设计、负载均衡等技术手段 ,确保数据中心的高可用性和容灾备 份能力。

大数据基础技术概述

大数据基础技术概述

大数据基础技术概述
随着新一代信息技术的发展和发展,大数据技术迅速深入改变着企业
管理和行业发展的方式,被越来越多的企业和行业应用到自身的系统中,
大数据的崛起以及大数据技术的发展已经给企业和行业带来了巨大的变革。

简而言之,大数据技术是指将有效管理结构化数据和非结构化数据以
及实现对数据的分析和可视化等功能,以实现数据的可视性、多维度的分
析和决策支持。

大数据技术涉及多个技术领域,包括网络技术、存储技术、数据建模技术、可视化技术、媒体技术、数据挖掘技术、数据库技术、决
策分析技术等等。

大数据技术的核心技术包括数据采集、数据获取、数据存储和数据分析。

数据采集对大数据技术而言至关重要,而数据采集的有效性则是大数
据技术的关键因素,因此数据采集技术的改进和发展对数据采集的准确性
具有重要意义。

此外,数据获取技术广泛应用于收集结构化数据和非结构
化数据,而其中数据获取技术的改进也是影响大数据技术效果的重要因素。

《大数据技术基础》教案 第1课 大数据概述(一)

《大数据技术基础》教案   第1课  大数据概述(一)

《大数据技术基础》教案课时分配表章序课程内容课时备注1 大数据概述 42 大数据处理平台Hadoop 43 数据采集与预处理 44 数据存储与管理 45 数据处理与分析 66 数据可视化 47 大数据思维与安全 28 城市空气质量大数据分析实战 4合计32课题大数据概述(一)课时2课时(90 min)教学目标知识技能目标:(1)理解大数据的概念和主要特征。

(2)了解大数据的发展现状与趋势。

(3)了解我国的大数据发展战略(4)理解大数据的处理流程思政育人目标:深刻理解大数据作为国家基础性战略资源的重要意义,如推动经济发展、完善社会治理、提升政府服务和监管能力等,进一步加强对信息化新阶段和数字经济的认识,不断提升自身的信息素养。

教学重难点教学重点:大数据的概念和特征教学难点:大数据的处理流程教学方法案例分析法、问答法、讨论法、讲授法教学用具电脑、投影仪、多媒体课件、教材教学设计第1节课:考勤(2 min)→新课预热(10 min)→问题导入(5 min)→传授新知(18 min)→课堂讨论(10 min)第2节课:问题导入(5 min)→传授新知(20 min)→课堂互动(15 min)→课堂小结(3 min)→作业布置(2 min)教学过程主要教学内容及步骤设计意图第一节课考勤(2 min)⏹【教师】使用APP进行签到⏹【学生】按照老师要求签到培养学生的组织纪律性,掌握学生的出勤情况新课预热(10 min)⏹【教师】自我介绍,与学生简单互动,介绍课程内容、考核标准等⏹【学生】聆听、互动⏹【教师】利用多媒体课件展示大数据的广泛应用,并和学生互动,询问学生对于大数据的印象随着信息技术的飞速发展和计算机教育的普及,社会对大数据的依赖越来越大,大数据应用也随处可见,我们经常使用的各类软件都有大数据应用的痕迹,例如抖音,淘宝,微博,微信等等。

通过老师自我介绍,与学生相互熟悉,并让学生了解这门课的大致要求2⏹【学生】聆听、记录、互动、理解问题导入(5 min)⏹【教师】提出以下问题:你认为什么是大数据?它的优缺点各是什么?⏹【学生】思考、举手回答⏹【教师】通过学生的回答引入要讲的知识通过问题导入的方法,引导学生主动思考,激发学生的学习兴趣传授新知(18 min)⏹【教师】通过学生的回答引入要讲的知识,介绍大数据的概念、特征和发展一、什么是大数据✈【教师】通过多媒体展示数据的基本概念和对于生活的重要作用数据是用来记录客观事物或事件的符号,具体来说,是对客观事物或事件的性质、状态及相互关系等信息进行记录的物理符号。

大数据的基础技术和应用常识

大数据的基础技术和应用常识

大数据的基础技术和应用常识随着信息技术的飞速发展,大数据已经成为了一个热门的话题,越来越多的企业和政府机构开始重视大数据的应用。

在这个过程中,大数据的基础技术和应用常识成为了很多人感兴趣的问题。

本文将介绍大数据的基础技术和应用常识。

一、大数据的概念大数据是指规模巨大、类型多样、数据处理能力有限的数据集。

它通常具有三个特点:数据量大、数据种类多、数据处理速度快。

大数据产生的主要原因是互联网的普及和移动设备的广泛使用,导致数据的产生速度和数量急剧增加。

二、大数据的基础技术大数据的基础技术有数据采集、数据存储、数据处理和数据分析。

其中,数据采集是指从多个数据源中获取数据;数据存储是指将数据存储到适当的数据仓库或数据中心;数据处理是指对数据进行清洗、转换和计算等操作;数据分析是指利用统计学、机器学习、数据挖掘等技术对数据进行分析。

1. 数据采集数据采集是大数据处理的第一步,它决定了后续数据处理的可行性和效率。

常用的数据采集方式包括爬虫、API、传感器等。

其中,爬虫是指通过模仿人类浏览器行为来抓取网页数据,API是指通过调用第三方接口获取数据,传感器是指感测环境中不同物体或自然现象的变化,从而获得数据。

数据采集的质量直接影响了后续的数据分析和建模。

2. 数据存储数据存储是指将采集的数据存储到适当的数据仓库或数据中心。

常见的数据存储方式包括关系型数据库、非关系型数据库、数据仓库和云存储等。

其中,关系型数据库基于表格存储数据,其具有事务处理、数据一致性和数据完整性等特点;非关系型数据库则基于键值存储数据,其具有高速存储和读取、数据自由性和数据扩展性等特点;数据仓库则是一种专业存储和管理企业数据的系统,其可以将数据从多个数据源中汇聚到一个地方进行分析;云存储则是指将数据存储在云平台上,其具有高可用性、高可扩展性和低成本等特点。

3. 数据处理数据处理是指对采集的数据进行清洗、转换和计算等操作。

常用的数据处理技术包括ETL、Hadoop和Spark。

大数据的基础知识

大数据的基础知识

大数据的基础知识大数据是指规模庞大,传统数据库处理能力无法胜任的数据集合。

随着互联网和移动设备的普及,全球每天都在产生大量的数据,这就需要一种全新的技术和方法来处理这些大规模的数据集合。

在这篇文章中,我们将深入探讨大数据的基础知识,包括大数据的定义、特征、处理技术、应用领域以及未来发展趋势等方面。

一、大数据的定义和特征1.定义:大数据可以简单地理解为规模庞大的数据集合。

通常情况下,大数据是指由传感器、移动设备、社交媒体等各种渠道采集得到的数据,这些数据可能包含结构化数据、半结构化数据和非结构化数据。

大数据的特点在于数据量大、数据来源复杂、数据类型多样等。

2.特征:大数据的特征主要包括四个方面:即量大、速度快、多样化和价值密度低。

量大指的是数据集合的规模非常庞大,常常是以亿计或甚至更多;速度快指的是数据的产生速度很快,需要实时或近实时的处理能力;多样化指的是大数据可能包含结构化、半结构化和非结构化数据,这些数据类型可能会混合在一起;价值密度低则表示数据中包含很多无用的信息,需要进行筛选和加工才能提取有用的信息。

二、大数据的处理技术1.存储技术:传统的关系型数据库在处理大数据时会遇到存储能力不足的问题,因此出现了一系列新的存储技术,比如分布式文件系统(HDFS)、NoSQL数据库(MongoDB、Cassandra等)和内存数据库(Redis、Memcached等)等。

2.处理技术:由于大数据的处理需要大规模的并行计算和分布式处理,因此出现了一系列用于大数据处理的技术和框架,比如MapReduce、Spark、Hadoop等。

3.分析技术:大数据分析通常涉及数据挖掘、机器学习、统计分析等技术,这些技术需要用到各种算法和工具,比如K-means、支持向量机、随机森林等。

三、大数据的应用领域1.金融行业:金融行业是大数据应用的一个典型领域,在金融行业,大数据可以应用于风险管理、反欺诈、智能投资、智能营销等方面。

大数据技术概述

大数据技术概述

大量的不相关信息 对未来趋势与模式的可预测分析 深度复杂分析(机器学习、人工智能Vs传统商务智能(咨 询、报告等)

速度Velocity
实时分析而非批量式分析 数据输入、处理与丢弃 立竿见影而非事后见效
大数据要解决的问题
Streams Real time Near time
Batch
Velocity 快速的数据流转
高级算法 神经网络 支持向量机 ……
预测
回归预测 时间序列预测 ……
孤立点(Outlier)挖掘
数据库中可能包含一些数据对象,它们 与数据的一般行为或模型很不一致,这 些对象称作孤立点
孤立点包括很多潜在的知识,如分类中 的反常实例、不满足规则的特例、观测 结果与模型预测值的偏差、量值随时间 的变化等
你是E、Z又怎样? 价值才是王道!中移动的教训 对大数据要宽容,容错性是大 数据重要特征!准确率与召回率 大数据不是万能的,没有大数 据也不是万万不能的!移动互联 网最赚钱的是谁? 懂点技术当然更好,但不要迷 失在不靠谱的技术中! 知道自己想要什么更重要!
目录
大数据概述 大数据平台架构 数据平台功能规划 大数据核心技术——Data Ming 案例展示
或者聚集
➢ 有监督学习 (分类)
➢ 训练集是带有类标签的 ➢ 新的数据是基于训练集进行分类的
分类的两个步骤
➢ 模型创建: 对一个类别已经确定的训练集创建模型
➢ 用于创建模型的数据集叫做训练集 ➢ 每一条记录都属于一个确定的类别,使用类标签属性记录类别 ➢ 模型可用分类规则、决策树或者神经网络的形式来表达
聚类挖掘的应用
➢ 用户细分与市场营销: 帮助市场人员发现客户中的不同群体, 然后用这些知识来开展一个目标明确的市场计划;

大数据的基本技术

大数据的基本技术

大数据的基本技术
大数据的基本技术包括以下方面:
1.数据采集:数据采集主要有4种来源,分别是管理信息系统、Web信息系统、物理信息系统、科学实验系统。

2.数据存取:大数据的存取采用不同的技术路线,大致可以分为3类。

第1类主要面对的是大规模的结构化数据。

第2类主要面对的是半结构化和非结构化数据。

第3类面对的是结构化和非结构化混合的大数据。

3.基础架构:云存储、分布式文件存储等。

4.数据处理:对于采集到的不同的数据集,可能存在不同的结构和模式,如文件、XML树、关系表等,表现为数据的异构性。

5.数据挖掘算法:大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。

6.模型预测:例如预测模型、机器学习、建模仿真等。

7.结果呈现:例如云计算、标签云、关系图等。

8.语义引擎:大数据广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。

9.数据质量和数据管理:包括数据清洗、数据转换、数据整合等
方面的技术。

这些技术能够支持对大规模数据的采集、存储、处理和呈现,同时也能够通过数据挖掘算法和模型预测等方法来分析和利用这些数据,从而为决策提供支持和参考。

大数据基础介绍课件

大数据基础介绍课件

智能化发展
人工智能与大数据的结合:AI技术在大数据分析中 的应用,提高数据分析效率
自动化决策:利用大数据进行自动化决策,提高决 策效率和准确性
物联网与大数据的融合:物联网设备产生的大量数 据,为智能化发展提供数据支持
隐私保护与数据安全:智能化发展过程中,需要关 注数据安全和隐私保护问题,确保数据安全可靠。
5
度大:需要采用先
进的数据处理和分
析技术,如机器学
习、深度学习等。
大数据的应用领域
01
医疗保健:疾病预测、 诊断和治疗
02
金融:风险评估、投 资决策和客户服务
04
交通:交通流量预测、 路线规划和自动驾驶
05
教育:个性化教学、学 生成绩预测和资源优化
03
零售:商品推荐、库 存管理和供应链优化
06
政府:公共安全、城 市规划和政策制定
06
区块链技术:如Hyperledger、 Ethereum等,适用于数据安全 和去中心化存储
数包括互 联网、传感器、数据 库等
数据分析:利用各种数 据分析方法和工具,如 统计分析、数据挖掘、 机器学习等,对数据进 行深入分析和挖掘,以 发现数据背后的规律和 价值
02
非关系型数据库:如MongoDB、 Cassandra等,适用于半结构化 和非结构化数据存储
03
分布式文件系统:如HDFS、 GFS等,适用于大规模数据存储
04
数据仓库技术:如Hive、Spark 等,适用于数据分析和处理
05
云计算技术:如AWS、Azure等, 适用于数据存储和计算资源的弹 性扩展
数据清洗:对数据进行 清洗、去噪、缺失值处 理等,以保证数据的质 量和可用性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Hadoop的作用和功能
Hadoop采用了分布式存储方式,提高了读写速度,并扩 大了存储容量。采用MapReduce来整合分布式文件系统 上的数据,可保证分析和处理数据的高效。与此同时, Hadoop还采用存储冗余数据的方式保证了数据的安全性。
Hadoop中HDFS的高容错特性,以及它是基于Java 语言 开发的,这使得Hadoop可以部署在低廉的计算机集群中, 同时不限于某个操作系统。Hadoop中HDFS的数据管理能 力,MapReduce处理任务时的高效率,以及它的开源特 性,使其在同类的分布式系统中大放异彩,并在众多行 业和科研领域中被广泛采用。
大数据基础技术概述
夏飞 03621
日期:2020年1月 杭州华三通信技术有限公司
大数据基础技术概述
大数据处理的基本流程 大数据关键技术 Hadoop介绍 流计算介绍 图计算介绍 NoSQL介绍 大数据面临的其他问题
大数据处理的基本流程
整个大数据的处理流 程可以定义为:在合 适工具的辅助下,对 广泛异构的数据源进 行抽取和集成,结果 按照一定的标准进行 统一存储,并利用合 适的数据分析技术对 存储的数据进行分析,
数据解释
数据分析是大数据处理的核心,但是用户往往更关心结果的展示。如果分析的 结果正确但是没有采用适当的解释方法,则所得到的结果很可能让用户难以理 解,极端情况下甚至会误导用户。
大数据时代的数据分析结果往往也是海量的,同时结果之间的关联关系极其 复杂,采用传统的解释方法基本不可行
可以考虑从下面两个方面提升数据解释能力: -- 引入可视化技术 -- 让用户能够在一定程度上了解和参与具体的分析过程
(1) 数据整合(Data Consolidation):不同数据源的数据被物理地集成到数据目标。利用ETL工具把数据源中的数据批量地 加载到数据仓库,就属于数据整合的方式。 (2)数据联邦(Data Federation):在多个数据源的基础上建立一个统一的逻辑视图,对外界应用屏蔽数据在各个数据 源的分布细节。对于这些应用而言,只有一个统一的数据访问入口,但是实际上,被请求的数据只是逻辑意义上的集中, 在物理上仍然分布在各个数据源中,只有被请求时,才临时从不同数据源获取相关数据,进行集成后提交给数据请求者。 当数据整合方式代价太大或者为了满足一些突发的实时数据需求时,可以考虑采用数据联邦的方式建立企业范围内的全局 统一数据视图。 (3)数据传播(Data Propagation):数据在多个应用之间的传播。比如,在企业应用集成(EAI)解决方案中,不同应 用之间可以通过传播消息进行交互。 (4)混合方式(A Hybrid Approach):在这种方式中,对于那些不同应用都使用的数据采用数据整合的方式进行集成,
大数据基础技术概述
大数据处理的基本流程 大数据Байду номын сангаас键技术 Hadoop介绍 流计算介绍 图计算介绍 NoSQL介绍 大数据面临的其他问题
大数据技术分类
存储
分布式缓存、基于 MPP的分布式数据库、 分布式文件系统、各 种NoSQL分布式存储 方案,内存数据库等
计算
Map Reduce 流计算 图计算 ………
应用
HIVE,pig,maho ut,Sqoop以及 ETL工具,统计与 报告工具等
Google的技术演进
Google 于2006 年首先提出了云计算的概念,并研发了一系列云计算技术和工具。 难能可贵的是Google 并未将这些技术完全封闭,而是以论文的形式逐步公开其实现。正是 这些公开的论文,使得以GFS、MapReduce、Bigtable 为代表的一系列大数据处理技术被广 泛了解并得到应用,同时还催生出以Hadoop为代表的一系列云计算开源工具。 下图展示了Google的技术演化过程:
而对那些只有特定应用才使用的数据则采用数据联邦的方式进行集成。
数据分析
传统的分析技术如数据挖掘、机器学习、统计分析等在大数据时代需要做出调 整,因为这些技术在大数据时代面临着一些新的挑战,主要有: 数据量大并不一定意味着数据价值的增加,相反这往往意味着数据噪音的增多 大数据时代的算法需要进行调整(邦弗朗尼原理) 数据结果好坏的衡量
Hadoop的优点
可扩展:不论是存储的可扩展还是计算的可扩展都是Hadoop的设计 根本。
经济:框架可以运行在任何普通的PC上。 可靠:分布式文件系统的备份恢复机制以及MapReduce的任务监控
Hadoop简介
Hadoop 一个分布式系统基础架构,由Apache基金会开 发。
Hadoop是一个开源的可运行于大规模集群上的分布式并 行编程框架,借助于Hadoop,程序员可以轻松地编写分 布式并行程序,将其运行于计算机集群上,完成海量数 据的计算。
Hadoop已经发展成为目前最流行的大数据处理平台
从中提取有益的知识 并利用恰当的方式将 结果展现给终端用户。 具体来说,可以分为 数据抽取与集成、数 据分析以及数据解释。
数据抽取与集成
大数据的一个重要特点就是多样性,这就意味着数据来源极其广泛,数据类型极为繁杂。
这种复杂的数据环境给大数据的处理带来极大的挑战。 要想处理大数据,首先必须对所需数据源的数据进行抽取和集成,从中提取出关系和实 体,经过关联和聚合之后采用统一定义的结构来存储这些数据。 在数据集成和提取时需要对数据进行清洗,保证数据质量及可信性。 现有的数据抽取与集成方式可以大致分为以下四种类型:数据整合、数据联邦、数据传播 和混合方法等。
大数据处理工具
Hadoop 是目前最为流行的大数据处理平台。除了Hadoop,还有很多针对大数据 的处理工具。这些工具有些是完整的处理平台,有些则是专门针对特定的大数据处理应用。 下表归纳总结了现今一些主流的处理平台和工具。
大数据基础技术概述
大数据处理的基本流程 大数据关键技术 Hadoop介绍 流计算介绍 图计算介绍 NoSQL介绍 大数据面临的其他问题
相关文档
最新文档