利用切割线定理证明
切割线定理课件

切割线定理的应用场景
解题应用
切割线定理在几何题目中应用广泛,特别是在涉及圆和圆外 一点的问题中,可以利用切割线定理来求解线段长度或角度 等问题。
实际应用
在现实生活中,切割线定理也有很多应用场景,比如建筑设 计、机械制造等领域,可以通过应用切割线定理来优化设计 或提高制造精度。
02
切割线定理的证明
切割线定理ppt课件
contents
目录
• 切割线定理的概述 • 切割线定理的证明 • 切割线定理的推论 • 切割线定理的应用实例 • 总结与思考
01
切割线定理的概述
切割线定理的定义
切割线定理
从圆外一点引圆的切线和割线, 切线长与割线长度的比等于圆外 一点与圆心连线的线段长度与圆 半径的比。
几何意义
03
切割线定理的推论
推论一:切线长定理
总结词
切线长定理描述了切线与割线的长度关系。
详细描述
切线长定理指出,对于圆上的任意一点P,过点P作圆的切线,则切线与割线(即 过点P的割线)的长度相等。这个定理是切割线定理的一个重要推论,它揭示了 切线和割线之间的长度关系。
推论二:切线与半径的关系
总结词
切线与半径的关系揭示了切线与半径之间的垂直关系。
。
THANKS
感谢观看
切割线定理揭示了圆外一点与圆 上两点形成的线段之间的长度关 系,是平面几何中一个重要的定 理。
切割线定理的证明
证明方法
通过相似三角形性质和勾股定理进行 证明,证明过程需要用到基本的几何 知识。
证明过程
通过构造辅助线,将问题转化为相似 三角形问题,再利用相似三角形的性 质和勾股定理推导出切割线定理。
证明的思路
切割线定理

切割线定理
切割线定理是指从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
也是圆幂定理之一。
我在《证明——切割线定理》一文中使用勾股定理求证,比较烦琐。
现在我不依靠切割线定理证了弦切角定理(过程在这里),就可以利用弦切角定理证明切割线定理。
如图所示。
已知:CP为圆O切线,AB为圆的割线,CP、AB交于P
求证:AP·BP=CP2
证明
连接AC、BC
由弦切角定理得
∠ACP=∠CBP
又∵∠APC=∠CPB(公共角)
∴△ACP∽△CBP(两角对应相等的两个三角形相似)
∴AP/CP=CP/BP(相似三角形对应边成比例)
∴AP·BP=CP2(比例基本性质)。
浙教版九年级下册数学《切割线定理》PPT课件

立
已知:圆的两条
B割线交于点P,并AO与⊙O交于P
A,B,C求,D证四: 点.
C
D
割线定 P证A ·P连B结=PC ·PD 理明∠: B=A从D圆,BC外一点引圆的两条割
线∠,DPPCA这 PPDB 一点到△两PB条C割∽△线P与AD圆的
交∠P点=的∠P两条线段长的积相等。
即 PA·PB =
PC·PD PA• PB PD • PC
割线定理 从圆外一点引圆
的两条割线,这一点到两条
割线与圆的交点的两条线段
长的积相等(。 )
T
D
O
C
P
B A
? PTP2A=·PPBA=·PB还成立吗 PC·PD
已知:如下图,点P是
⊙o外一点,PT是切线,
T是切点,PA是割线 , T
点A和B是它与⊙o的交点。
求证:PT2 =PA·PPB
切证明割: 连线结T定A,
(1)求PC的长;
(表示2)D设E。CE=a,试B用含a的A代C 数式P
O
E D
例2、如图,A是⊙O上的一点, 过点A的切线交直径CB的延长线 D为垂足。于点P,AD⊥BC,A
求 PB PO 证: PD PC P
证:连结
B DO C
OOAA,⊥PA
AD⊥BC PA切⊙O于 A
PD·PO=PA
2
PB·PC= PA2
求证: PC•BG=PD •
A
O
B
理从割 线∠∠圆 与线P1BP==外圆,∠∠一交切TB点点线引的长PP△TA△圆两是PPTPP的条这BATBT∽切线点线 段到和 长割
的比例即中P项TP2。T=2P=AP·AP·BPB
切割线定理的应用
切割线定理推论

切割线定理推论切割线定理是高等数学中非常重要的一个定理,其在数学和物理学中都有广泛的应用。
本文将从切割线定理的定义、推论以及实际应用等方面进行阐述。
一、切割线定理的定义切割线定理是指:若一曲线上有一点P,并且该曲线在P点处有一条切线,那么该曲线可以被这条切线分成两部分,其中一部分包含点P,而另一部分则不包含点P。
二、切割线定理的推论1.推论一若一曲线上有一点P,并且该曲线在P点处有一条切线,那么该曲线在P点处的斜率等于该曲线在P点处的切线的斜率。
2.推论二若一曲线上有一点P,并且该曲线在P点处有一条切线,那么在点P处,该曲线的导数等于该曲线在P点处的切线的斜率。
3.推论三若一曲线上有一点P,并且该曲线在P点处有一条切线,那么在点P处,该曲线的凹凸性与该曲线在P点处的切线的斜率变化的方向相同。
三、切割线定理的实际应用切割线定理在实际应用中有着广泛的应用,下面介绍几个具体的实例。
1.曲线的最大值和最小值通过对曲线进行分割,可以确定曲线的最大值和最小值。
具体的方法是,找到曲线的拐点,然后将拐点作为切割线,从而得出曲线的最大值和最小值。
2.曲线的优化在工程和科学研究中,经常需要对曲线进行优化,以达到最佳效果。
通过切割线定理,可以找到曲线的拐点,从而确定曲线的优化方向。
3.曲线的积分在计算曲线的积分时,切割线定理也有着重要的作用。
通过将曲线进行分割,可以将曲线的积分分为多个小段,从而更加方便地进行计算。
切割线定理是高等数学中非常重要的一个定理,其具有广泛的应用。
通过对切割线定理的理解和应用,我们可以更好地理解和掌握高等数学的知识,为实际应用提供更加准确和有效的数学支持。
(完整版)弦切角定理+圆幂定理之割线相交弦切割线定理

弦切角定理及其应用顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)弦切角定义图1如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、∠PCB都为弦切角。
弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.如上图,∠PCA=1/2∠COA=∠CBA弦切角定理证明:证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90°-∠OCB∵∠BOC=180°-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍)∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部. (B点应在A点左侧)过A作直径AD交⊙O于D,E若在优弧m所对的劣弧上有一点那么,连接EC、ED、EA则有:∠CED=∠CAD、∠DEA=∠DAB∴∠CEA=∠CAB∴(弦切角定理)(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D那么∠CDA+∠CAD=∠CAB+∠CAD=90°∴∠CDA=∠CAB∴(弦切角定理)3弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在⊙O中,⊙O的切线AC、BC交与点C,求证:∠CAB=∠CBA。
解:⊙O的切线AC、BC交与点C,∴AC=BC(切线长定理)。
∴∠CAB=∠CBA。
(等腰三角形“等边对等角”)。
例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求证:EF//BC.证明:连接DFAD是∠BAC的平分线∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC⊙O切BC于D ,∠FDC=∠DAC ∠EFD=∠FDCEF∥BC例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90∵CD⊥AB ∴∠ACD=∠B,∵MN切⊙O于C ∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD。
切割线定理与射影定理

切割线定理与射影定理
射影定理:
如图,ABC为直角三角形,AD为斜边BC 上的高,那么有下面的性质成立:AD²=BD×DC,AB²=BD×BC,AC²=CD×BC 这个性质的证明很简单,可以用相似三角形的原理来证明,在这里就忽略,感兴趣的朋友可以自己搜索搜索。
切割线定理:
PT是切线,另外两条是割线,则有:PT²=PB×PA=PD×PC。
证明过程网上也是一搜一大堆。
这两个定理的结论是否看起来形式上有点相似?是的,其实他们根本就是说的一个东西……这两个定理其实就是一个结论,如果学生可以将这两个定理归结于一个,那么怎么说,都是大有好处的,理由如下:
如下图所示,以AB的中心,AB的一半为半径做圆,因为AD⊥BD,那么D点必在
又由于AC⊥AB,故可以知道。
CA其实就是该圆在A 点的切线。
CB是一条割线,那么根据切割线定理,AC²=CD×CB……!这不刚好就是射影定理吗?同理你也可以解释AB²=BD×BC。
有点特色的就是第一条了。
以此就可以看出来,射影定理其实就是去掉圆以后的切割线定理。
要说的是根据AD²=BD×DC可以得出一个著名的不等式——均值不等式。
弦切角定理+圆幂定理之 割线 相交弦 切割线定理

弦切角定理及其应用顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)弦切角定义图1如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、∠PCB都为弦切角。
弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.如上图,∠PCA=1/2∠COA=∠CBA弦切角定理证明:证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90°-∠OCB∵∠BOC=180°-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍)∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部. (B点应在A点左侧)过A作直径AD交⊙O于D,E若在优弧m所对的劣弧上有一点那么,连接EC、ED、EA则有:∠CED=∠CAD、∠DEA=∠DAB∴∠CEA=∠CAB∴(弦切角定理)(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D那么∠CDA+∠CAD=∠CAB+∠CAD=90°∴∠CDA=∠CAB∴(弦切角定理)3弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在⊙O中,⊙O的切线AC、BC交与点C,求证:∠CAB=∠CBA。
解:⊙O的切线AC、BC交与点C,∴AC=BC(切线长定理)。
∴∠CAB=∠CBA。
(等腰三角形“等边对等角”)。
例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求证:EF//BC.证明:连接DFAD是∠BAC的平分线∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC⊙O切BC于D ,∠FDC=∠DAC ∠EFD=∠FDCEF∥BC例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90∵CD⊥AB ∴∠ACD=∠B,∵MN切⊙O于C ∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD。
人教版九年级数学课件:切割线定理

作
业
PT2 =PA· PB 切 割 线 定 理
PT =PB· BA × PA· = PD· AB CD
2
PC· =PA· PD PB
切 割 推 线 定 论 理
×
作业 P132
11 , P133 12 ,13.
PT2 =PA· PB
PC· =PA· PD PB
练习二:
1.
过圆O外一点P, 作两条割线PAB和PCD, 已知PA=1, PB=3, PC=0.6.则CD= ? CD = 4.4 2.
已知PT切圆O于T,PAB为圆O的割线, PA : AB =1 : 3 , PT=2 , 则PB= ?
PB = 4
法二: 连接CD ,射影定理. A D •O
BC2=BD•BA
Rt△ABC中 AC=3; BC=4. BD=3.2 (cm) AB=5 BC=4
B
C
提高题:如图,PA切圆O于A,PBC是圆O的割线,D是
PA的中点,DC交圆O于E. 求证:1)PD2=DE•DC;2) ∠1= ∠C.
分析: 1. PD=DA
PA· = PM· PB PN
P
PM· =PC2 PN
练习四:如图,圆o1和圆o2都经过点A和 B,点P在BA
的延长线上.过点P作圆O1的切线PC切圆O1于C,作 圆O2的切线PD切圆O2于D.求证:PC =PD.
B o1 • A C
o2
•
D
P
提示:PC = PD = PE …
B o1 • A D E P o2 • o3•
P P
D 1
E
A
且DA2=DE • DC 2. PD:DE=DC:PD ∠ PDE= ∠ CDP 则: △PDE∽ △CDP 从而: ∠ 1= ∠ C