中考数学 切割线定理
切割线定理

定理
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
是圆幂定理的一种。
切割线定理示意图几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT 的平方=PA·PB(切割线定理)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,PBA,PDC 是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)(割线定理)由上可知:PT ∧2(平方)=PA·PB=PC·PD
证明
切割线定理证明: 设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT^2=PA·PB
证明:连接A T, BT ∵∠PTB=∠PAT(弦切角定理) 切割线定理的证明∠P=∠P(公共角) ∴△PBT∽△PTA(两角对应相等,两三角形相似) 则PB:PT=PT:AP 即:PT^2=PB·PA
比较
相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。
一般用于求直线段长度。
切割线定理

切割线定理
切割线定理是指从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
也是圆幂定理之一。
我在《证明——切割线定理》一文中使用勾股定理求证,比较烦琐。
现在我不依靠切割线定理证了弦切角定理(过程在这里),就可以利用弦切角定理证明切割线定理。
如图所示。
已知:CP为圆O切线,AB为圆的割线,CP、AB交于P
求证:AP·BP=CP2
证明
连接AC、BC
由弦切角定理得
∠ACP=∠CBP
又∵∠APC=∠CPB(公共角)
∴△ACP∽△CBP(两角对应相等的两个三角形相似)
∴AP/CP=CP/BP(相似三角形对应边成比例)
∴AP·BP=CP2(比例基本性质)。
2020年中考数学提优专题:《圆:切割线定理》(含答案)

《圆:切割线定理》知识梳理:(1)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT的平方=PA•PB(切割线定理)(2)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何语言:∵PBA,PDC是⊙O的割线∴PD•PC=PA•PB(切割线定理推论)(割线定理)由上可知:PT2=PA•PB=PC•PD.一.选择题1.如图,P是⊙O的直径BC延长线上一点,PA切⊙O 于点A,若PC=2,BC=6,则切线PA的长为()A.无限长B.C.4 D.2.如图,PT是⊙O的切线,T为切点,PBA是割线,交⊙O于A、B两点,与直径CT交于点D,已知CD=2,AD=3,BD=4,那么PB等于()A.6 B.C.7 D.203.设H为锐角△ABC的三条高AD、BE、CF的交点,若BC=a,AC=b,AB=c,则AH•AD+BH•BE+CH•CF 等于()A.(ab+bc+ca)B.(a2+b2+c2)C.(ab+bc+ca) D.(a2+b2+c2)4.如图,MN切⊙O于A点,AC为弦,BC为直径,那么下列命题中假命题是()A.∠MAB和∠ABC互余B.∠CAN=∠ABC C.OA=BC D.MA2=MB•BC5.如图,以OB为直径的半圆与半圆O交于点P,A、O、C、B在同一条直线上,作AD⊥AB与BP的延长线交于点D,若半圆O的半径为2,∠D的余弦值是方程3x2﹣10x+3=0的根,则AB的长等于()A.B.C.8 D.56.如图,AB是⊙O直径,AC是⊙O的弦,过弧BC 的中点D作AC的垂线交AC的延长于E,若DE=2,EC=1,则⊙O的直径为()A. B.C.5 D.47.如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,AB=PC=2,则PD的长是()A.3 B.7.5 C.5 D.5.58.如图,已知⊙O的弦A B、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=cm,则PE的长为()A.4cm B.3cm C.5cm D.cm9.如图,⊙O1与⊙O2相交于A、B两点,PQ切⊙O1于点P,交⊙O2于点Q、M,交AB的延长线于点N.若MN=1,MQ=3,则NP等于()A.1 B.C.2 D.310.同心圆O中,大圆的弦EF切小圆于K,EP切小圆于P,FQ切小圆于Q,G为小圆上一点,GE、GF 分别交小圆于M、N两点,下列四个结论:①EM=MG;②FQ2=FN•NG;③EP=FQ;④FN•FG=EM•EG.正确的结论为()A.①③B.②③C.③④D.②④二.填空题11.如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于点M.若OA=a,PM=,那么△PMB 的周长是.12.已知:如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,PC=4,PB=8,则PA =,sin∠P=,CD=.13.如图,PA、PB与⊙O分别相切于点A、点B,AC 是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为.14.如图,PA切⊙O于点A,割线PBC交⊙O于点B、C,若PA=6,PB=4,弧AB的度数为60°,则BC =,∠PCA=度,∠PAB=度.15.如图,已知ABCD是一个半径为R的圆内接四边形,AB=12,CD=6,分别延长AB和DC,它们相交于点P,且BP=8,∠APD=60°,则R=.16.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC的平分线交BC于D 点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).17.由⊙O外一点F作⊙O的两条切线,切点分别为B、D,AB是⊙O的直径,连接AD、BD,线段OF交⊙O 于E,交BD于C,连接DE、BE.有下列序号为①~④的四个结论:①BE=DE;②∠EBD=∠EDB;③DE∥AB;④BD2=2AD•FC其中正确的结论有.(把你认为正确结论的序号全部填上)三.解答题18.已知:如图,在△ABC中,∠C=90°,BE是角平分线,DE⊥BE交AB于D,⊙O是△BDE的外接圆.(1)求证:AC是⊙O的切线;(2)若AD=6,AE=6,求DE的长.19.如图,圆O是以AB为直径的△ABC的外接圆,D 是劣弧的中点,连AD并延长与过C点的切线交于点P,OD与BC相交于E;(1)求证:OE=AC;(2)求证:;(3)当AC=6,AB=10时,求切线PC的长.20.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.(1)求证:PD2=PE•PF;(2)当∠BOP=30°,P点为的中点时,求D、E、F、P四个点的坐标及S△DEF.参考答案一.选择题1.解:∵PC=2,BC=6,∴PB=8,∵PA2=PC•PB=16,∴PA=4.故选:C.2.解:∵TD•CD=AD•BD,CD=2,AD=3,BD=4,∴TD=6,∵PT2=PD2﹣TD2,∴PT2=PB•PA=(PD﹣BD)(PD+AD),∴PD=24,∴PB=PD﹣BD=24﹣4=20.故选:D.3.解:AH•AD=AC•AE=AC•AB•cos∠BAE=(b2+c2﹣a2),同理BH•BE=(a2+c2﹣b2),CH•CF=(a2+b2﹣c2),故AH•AD+BH•BE+CH•CF=(a2+b2+c2).故选:B.4.解:∵BC是⊙O的直径,∴∠BAC=90°,∴∠MAB+∠CA N=90°;∵MN切⊙O于A,∴MA2=MB•MC,(故D错误)∠CAN=∠CBA,(故B正确)∴∠MAB+∠CBA=90°;(故A正确)∵OA是⊙O的半径,BC是⊙O的直径,∴BC=2OA;(故C正确)故选:D.5.解:∵3x2﹣10x+3=0,∴x=3(不合题意,舍去)或x=.∴cosD=AD:BD=1:3,设A D=x,则BD=3x.∴AB==2x,BC=2x﹣4.∴(2x)2=(2x﹣4)•x.∴x=0(舍去),或x=2.∴AB=2×2=8.故选:C.6.解:连接OD,∵点D是弧BC的中点,∴OD⊥BC,∠OFC=90°,AB是直径,∴∠ACB=90°,DE⊥AE,∴∠E=90°,∴四边形CFDE是矩形,∴∠ODE=90°,∴ED是圆的切线.作OG⊥AC,则OG=CF=ED=2.∵DE2=EC•AE,∴AE=4,AC=3,AG=,∴AO=,∴AB=5.故选:C.7.解:∵PA=3,AB=PC=2,∴PB=5,∵PA•PB=PC•PD,∴PD=7.5,故选:B.8.解:∵PA•PB=PC•PD,PA=4cm,PB=3cm,PC=6cm,∴PD=2;设DE=x,∵AE2=ED•EC,∴x(x+8)=20,∴x=2或x=﹣10(负值舍去),∴PE=2+2=4.故选:A.9.解:∵PN2=NB•NA,NB•NA=NM•NQ,∴PN2=NM•NQ=4,∴PN=2.故选:C.10.解:连接OK,∵EF切小圆于K,∴OK⊥EF,根据垂径定理得EK=FK,∵EP切小圆于P,FQ切小圆于Q,∴EP=EK,FQ=FK,∴EP=FQ,故③正确;∴由切割线定理得,FK2=FN•FG,EK2=EM•EG,∴FN•FG=EM•EG,故④正确;故选:C.二.填空题(共7小题)11.解:连接OM;∵PM切⊙O于点M,∴∠OMP=90°,∵OA=OM=a,PM=,∴tan∠MOP=MP:OM=,∴∠MOP=60°,∴OP=2a,∴PB=OP﹣OB=a;∵OM=OB,∴△OMB是等边三角形,MB=OB=a,∴△PMB的周长是(+2)a.12.解:∵PC切⊙O于点C,割线PAB经过圆心O,PC=4,PB=8,∴PC2=PA•PB.∴PA==2.∴AB=6.∴圆的半径是3.连接OC.∵OC=3,OP=5,∴sin∠P=.∴CE=,∴CD=.13.解:连接AD,OB,OP;∵PA、PB与⊙O分别相切于点A、点B,∴∠OAP=∠OBP=90°,∠AOB=180°﹣∠P=120°,∴∠AOP=60°,AP=AOtan60°=,∴PC=;∵PA2=PD•PC,∴PD=,∴CD=.14.解:∵PA2=PB•PC,PA=6,PB=4;∴PC=9,∴BC=5;∵弧AB的度数为60°,∴∠PCA=30°,∴∠PAB=30°.15.解:由切割线定理得PB•PA=PC•PD,则有8×20=PC(PC+6).解得PC=10.在△PAC中,由PA=2PC,∠APC=60°,得∠PCA=90°.从而AD是圆的直径.由勾股定理,得AD2=AC2+CD2=(PA2﹣PC2)+CD2=202﹣102+62=336.∴AD==4∴R=AD=2.故答案为2.16.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.17.解:∵BF,DF是⊙O的两条切线∴OF是∠DFB的角平分线,DF=FB,FO⊥BD,CD=CB∴=∴BE=DE(①正确)∵=∴∠EBD=∠EDB(②正确)∵FB切⊙O于B∴FB⊥OB∵BC⊥OF∵BC2=OC•FC∴(BD)2=OC•CE∵OC为△ABD的中位线∴OC=AD∴(BD)2=AD•CE∴BD2=2AD•FC(④正确)故其中正确的结论有①②④.三.解答题(共3小题)18.(1)证明:连接OE;(1分)∵⊙O是△BDE的外接圆,∠DEB=90°,∴BD是⊙O的直径,(不证直径,不扣分)∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,(2分)∴∠OEB=∠CBE,∴OE∥BC,(3分)∵∠C=90°,∴∠AEO=90°,∴AC是⊙O的切线;(4分)(2)解:∵AE是⊙O的切线,AD=6,AE=6,∴AE2=AD•AB,(5分)∴AB===12,∴BD=AB﹣AD=12﹣6=6;∵∠AED=∠ABE,∠A=∠A,∴△AED∽△ABE,(6分)∴;设DE=x,BE=2x,∵DE2+BE2=BD2,(7分)∴2x2+4x2=36,解得x=±(负的舍去),∴DE=2.(8分)19.(1)证明:∵AB为直径∴∠ACB=90°∴AC⊥BC又D为中点,∴OD⊥BC,OD∥AC,又O为AB中点,∴;(4分)(2)证明:连接CD,PC为切线,由∠PCD=∠CAP,∠P为公共角,∴△PCD∽△PAC,(6分)∴,又CD=BD,∴;(8分)(3)解:∵AC=6,AB=10,∴BC=8,BE=4,OE=3,∴DE=2,∴BD2=DE2+BE2=20,(9分)∴AD2=AB2﹣BD2=80,∴AD=4,(10分)CD=BD=2,由(2),∴,(11分)∴CP2=DP•AP=45×5,∴切线PC=15.(12分)20.(1)证明:连接PB,OP,∵PE⊥AB,PD⊥OB,∴∠BEP=∠PDO=90°,∵AB切⊙O1于B,∠ABP=∠BOP,∴△PBE∽△POD,∴=,同理,△OPF∽△BPD∴=,∴=,∴PD2=PE•PF;(2)解:连接O1B,O1P,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a,a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,过E作EM⊥x轴于M,∵AO切⊙O1于O,∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a,a),∵E(﹣a,a),D(﹣a,a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为:a,∴S△DEF=×a×a=a2.故答案为:D(﹣a,a),E(﹣a,a),F(﹣a,0),P(﹣a,);S△DEF=a2.。
切割线定理和割线定理

切割线定理和割线定理
切割线定理和割线定理是几何学中重要的概念,它们在解决几何问题和证明几何定理中起着至关重要的作用。
让我们来谈谈切割线定理。
切割线定理是指,如果一条直线与两条平行线相交,那么这条直线被称为切割线,它将平行线分割成相似三角形。
这个定理在解决三角形相似性问题时非常有用,通过切割线定理,我们可以证明两个三角形的某些角度相等,从而推导出它们是相似的。
接下来,让我们来看看割线定理。
割线定理是指,如果一条直线与一个圆相交,那么这条直线被称为割线,它将圆分割成两个不相交的部分。
割线定理在解决圆的性质和相关定理时非常重要,通过割线定理,我们可以推导出圆内角和弧的关系,以及切线与半径的垂直关系等。
总的来说,切割线定理和割线定理都是几何学中基础而重要的概念,它们为我们理解几何形状和解决几何问题提供了重要的线索。
通过运用切割线定理和割线定理,我们可以更好地理解几何学知识,推导几何定理,解决几何难题。
在实际应用中,切割线定理和割线定理也有着广泛的应用。
比如在建筑设计中,我们需要根据建筑物的不同形状和结构来设计合适的切割线和割线,以确保建筑物的稳固和美观。
在工程测量中,切割
线和割线也经常被用来确定地表的坡度和地势的高低,为工程施工提供重要的参考依据。
总的来说,切割线定理和割线定理是几何学中重要的概念,它们在理论研究和实际应用中都具有重要意义。
通过深入理解和应用切割线定理和割线定理,我们可以更好地掌握几何学知识,解决实际问题,推动科学技术的发展。
希望通过本文的介绍,读者能对切割线定理和割线定理有更深入的了解,进一步探索几何学的奥秘。
切割线定理公式及证明

切割线定理公式及证明
切割线定理公式:假设$V=\{v_i\}_{i=1}^{n}$是多边形$P$的一个顶点集合,$L=\{l_i\}_{i=1}^{n}$是从$v_1$出发,从$v_i$开始绕$P$沿顺时针方向绕一圈,途经定点$v_{i+1}$与$v_i$之间的一条射线,则定理结论如下:将射线$L$在多边形$P$内部切割,给出的n段子线段的总长度
T(L)与多边形面积S(P)满足:
$T(L)=2S(P)$
证明:
考虑多边形$P$包围面积S(P)中最后一个三角形,设其三个顶点分别为$v_i,v_{i+1},v_{i+2}$,以$v_i,v_{i+1}$为基线,$v_{i+2}$为外顶点。
将射线$l_i$投射到$v_i,v_{i+1}$的基线上,形成一个新的顶点
$v'_{i+2}$,由$v_i,v'_{i+2}$组成的新的三角形,与原来的三角形
$v_i,v_{i+1},v_{i+2}$完全相同,只不过替换了一个顶点,而新三角形的面积仍然为S(P),且$v'_{i+2}$是射线$l_i$与多边形$P$之间的一个公共点,即射线$l_i$将多边形$P$内部切割,形成了两段新线段,令这两段新线段为$s_1$与$s_2$,则有:
$T(L)=s_1+s_2=2S(P)$
因此,得证切割线定理。
切割线定理推论

切割线定理推论切割线定理是高等数学中非常重要的一个定理,其在数学和物理学中都有广泛的应用。
本文将从切割线定理的定义、推论以及实际应用等方面进行阐述。
一、切割线定理的定义切割线定理是指:若一曲线上有一点P,并且该曲线在P点处有一条切线,那么该曲线可以被这条切线分成两部分,其中一部分包含点P,而另一部分则不包含点P。
二、切割线定理的推论1.推论一若一曲线上有一点P,并且该曲线在P点处有一条切线,那么该曲线在P点处的斜率等于该曲线在P点处的切线的斜率。
2.推论二若一曲线上有一点P,并且该曲线在P点处有一条切线,那么在点P处,该曲线的导数等于该曲线在P点处的切线的斜率。
3.推论三若一曲线上有一点P,并且该曲线在P点处有一条切线,那么在点P处,该曲线的凹凸性与该曲线在P点处的切线的斜率变化的方向相同。
三、切割线定理的实际应用切割线定理在实际应用中有着广泛的应用,下面介绍几个具体的实例。
1.曲线的最大值和最小值通过对曲线进行分割,可以确定曲线的最大值和最小值。
具体的方法是,找到曲线的拐点,然后将拐点作为切割线,从而得出曲线的最大值和最小值。
2.曲线的优化在工程和科学研究中,经常需要对曲线进行优化,以达到最佳效果。
通过切割线定理,可以找到曲线的拐点,从而确定曲线的优化方向。
3.曲线的积分在计算曲线的积分时,切割线定理也有着重要的作用。
通过将曲线进行分割,可以将曲线的积分分为多个小段,从而更加方便地进行计算。
切割线定理是高等数学中非常重要的一个定理,其具有广泛的应用。
通过对切割线定理的理解和应用,我们可以更好地理解和掌握高等数学的知识,为实际应用提供更加准确和有效的数学支持。
初中数学重点梳理:切线和割线

切线和割线知识定位切割线定理是初中平面几何中的重要定理,它应用广泛,各地的中考题有相当多的题目都用到它,竞赛题也不例外.且题目新颖,灵活多变,学生往往甚感困难。
因此有计划、有目的、有步骤地对切割线定理进行补充、演化无疑是十分有益的。
知识梳理知识梳理1:切割线定理切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
是圆幂定理的之一。
几何语言:∵PT切⊙O于点T,PDC是⊙O的割线∴PT²=PD·PC(切割线定理)知识梳理2:割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,PBA、PDC是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)(割线定理)由上可知:PT²=PA·PB=PC·PD例题精讲【试题来源】【题目】如图,等边三角形ABC中,边AB与⊙O相切于点H,边BC,CA与⊙O交于点D,E,F,G。
已知AG=2,GF=6,FC=1.则DE=_______.【答案】21【解析】2由切割线定理可知16:4又AH AG AF,AHAC AG=•=∴==2又99故5则25又7,9,AC AG GF FCAB ACBHBD BE BHCE CD CF CG BC AC=++=∴===•==•=•===【知识点】切线和割线【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,⊙O和⊙O′都经过点A和B,PQ切⊙O于P,交⊙O′于Q,M,交AB的延长线于N.求证:2PN MN NQ=⋅.【答案】【解析】【知识点】切线和割线【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,已知点P是O外一点,PS,PT是O的两条切线,过点P作O的割线PAB,交O于A.B两点,并交ST于点C,求证:1111()2PC PA PB=+.【答案】【解析】【知识点】切线和割线【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC。
九年级数学切割线定理

B
推论: 如果弦与直径垂直相交,那么弦的一半
是它分直径所成的两条线段的比例中项. PC2=PA· PB
• 练习 : ⊙o的弦 CD平分AB于P, 且AB=12cm,CD=13cm • 试求: PC 和 PD 的长.
A
C P •O
B
D
A
D P • C
PA · PB = PD · PC
B
G
O•
F
思考题: 若延长PE交圆O于F,BF交CD于G 求证: PC•BG=PD • BC
C
交端×交端=交端×交端
PA· PB = PD· PC 相 交 弦 定 理 PT2 =PA· PB 切 割 线 定 理
PA AB PC CD 2 PT PA AB
PC· PD =PA· PB
P
PM· PN =PC2
练习四:如图,圆o1和圆o2都经过点A和 B,点P在BA
的延长线上。过点P作圆O1的切线PC切圆O1于C,作 圆O2的切线PD切圆O2于D。求证:PC =PD。
B o1 • A C
o2
•
D
P
是BA的延长线上一点。PC,PD,PE …分别与圆o1,圆o2,圆 o3 …相切于C,D,E … ,求证:C,D,E … 在同一个圆上。
T
练习一: 如下图,圆o的两条弦AB和CD相交于点E,AC和DB 的延长线交于P,下列结论成立的是( D ). (A) PC • CA=PB • BD (B) CE • AE=BE • ED (C) CE • CD=BE • BA (D) PB • PD=PC • PA
PA· PB = PD· PC
PB = 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识点小结】
1.切线长概念
切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。
2.切线长定理
对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。
课题
切割线定理
教学目标
1.理解切线长的概念,掌握切线长定理并会运用它解决有关问题;
2.理解弦切角的概念,掌握弦切角定理及其推论,并会运用它们解决有关问题,通过弦切角定理的证明,进一步了解分情况证明数学命题的思想和方法;
3.使学生理解切割线定理及其推论间的相互关系,并能综合运用它们解决有关问题;
重点、难点
10.已知:如图,在 中, , ,以 为弦的圆 与 切干点 ,与 交于 点。求证: .
5. 、 分别切 于 、 , 交 于 ,连结 、 ,则圆中的直角三角形共有()个
A.3B.4C.5D.6
6.已知:如图1,直线 切 于 点, , ,那么 ____.
7.已知:如图2,直线 与 相切于点 , 为 直径, 于 , ,则 ____.
8.已知:直线 与 切于 点,割线 与 交于 和 两点, , ,则 ;
A. B. C. D.
3. 是 的直径, 是 延长线上一点,且 , 是 的切线,且 ,则 半径为()
A. B. C. D.
4. 是 的直径, 是 延长线上一点,且 , 是 的切线,且 ,则 半径为( )
A. B. C. D.
5.已知:如图3, 的 ,内切圆 与 的三边分别切于 、 、 三点, ,那么 ____.
【经典例题】
【例1】已知:如图, 切圆于 , 为圆直径, , , 。求 的长。
【例2】如图所示, 中, ,以 为直径 交 于点 ,切线 交 于 。求证: 。
【例3】如图所示, 、 是 的切线, 、 为切点, 于 ,交 于 ,求证: 。
【例4】已知, 为 的直径,过 点作 的切线 , 交 于点 , 的延长线交 于 。
2.圆外切四边形一组对边和为12,圆的半径为2,则这个四边形的面积为()
A.6B.12C.24D.48
3.外心、内心、垂心、重心这四心重合的三角形是()
A.任意三角形B.直角三角形C.等腰三角形D.等边三角形
4. 、 分别切圆于 、 , 、 两点分圆所得两弧比为 ,则 的度数为()
A. B. C. D.
重点:理解切线长的概念,掌握切线长定理并会运用它解决有关问题;理解弦切角的概念,掌握弦切角定理及其推论,并会运用它们解决有关问题,通过弦切角定理的证明,进一步了解分情况证明数学命题的思想和方法;
难点:切割线定理的综合运用
考点及考试要求
理解切线长的概念,掌握切线长定理并会运用它解决有关问题;了解切割线定理及其推论间的相互关系,并能综合运用它们解决有关问题;
6.已知:如图4,圆 为 外接圆, 为直径, 切 于 点, ,那么 ____.
7.已知:如图, 切 于 , 交 于 、 , 平分 ,求 的度数。
8.已知:如图, 、 分别切 于 、 , 为割线交 于 、 ,若 , , ,求 的长。
9.已知:如图, 是 半径, 是 延长线上一点, 切 于 , 于 。求证: 平分 .
(1)求证: ;
(2)若 ,求 、 的长。
【例5】如图所示, 是 的外接圆, 的平分线 交 于 ,交 于 , 的切线 交 的延长线于 。求证: 。
【课堂练习】
1.已知 、 分别切 于 、 , 是劣弧 上任意一点,过 作 的切线和 、 分别交于 、 ,若 , 半径为 ,则 的周长为()
A. B. C. D.不确定
9.已知:如图, 与 切于 , 为直径, , 为 一弦。求 与 的度数。
10.已知: , 与 分别切于 、 两点,延长 到 ,使 ,求证: 。
【课外练习】
1. 切 于 , 是过 点的割线,且 ,则 的度数为()
A. B. C. D.
2.过 外一点 引圆的两切线 、 , 、 是切点, , ,则 半径的长为()
3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。
4.弦切角定理:弦切角等于其所夹的弧所对的圆周角;
5.切割线定理:已知 中, 切 于 ,割线 交 于 ,则有 。证明方法:连结 、 ,证:
6.切割线定理推论:已知 、 为 的两条割线,交 于 、 ,则有 ,证明方法:过 作 切 于 ,用两次切割线定理。