9.1.6理想介质中的均匀平面波+-+均匀平面波传播特性
第五章 均匀平面波的传播

1
所谓平面波,是指电磁波的场矢量只沿着它的传播方向变化, 所谓平面波,是指电磁波的场矢量只沿着它的传播方向变化,在与波传播 平面波 方向垂直的平面内,场矢量的振幅和相位都保持不变。 方向垂直的平面内,场矢量的振幅和相位都保持不变。
图 5-1 均匀平面电磁波的传播
1 T= = ω f
2π λ= k
2π
由上可见,电磁波的频率是描述相位随时间的变化特性, 波长描述相 由上可见,电磁波的频率是描述相位随时间的变化特性,而波长描述相 频率是描述相位随时间的变化特性 随空间的变化特性 的变化特性。 位随空间的变化特性。 由上式又可得
k=
2π
相当于一个全波, 因空间相位变化 2π 相当于一个全波,k 的大小又可衡量单位长度 内具有的全波数目, 又称为波数 波数。 内具有的全波数目,所以 k 又称为波数。
中,第一项代表沿+z方向传播的均匀平面波,第二项代表沿-z 方向传播的均匀平面波,在此仅讨论沿+z方向传播的均匀平面 波,即:
E x ( z ) = E xm e
瞬时式
− jkz
e
jφ x
E x ( z , t ) = E xm cos(ωt − kz + φ x )
9
的变化波形如下图所示。 电场强度随着时间 t 及空间 z 的变化波形如下图所示。 称为时间相位 时间相位。 上式中 ω t 称为时间相位。 kz 称为空间相位。空间相位相 称为空间相位 空间相位。 等的点组成的曲面称为波面 波面。 等的点组成的曲面称为波面。 由上式可见, 由上式可见,z = 常数的波面 为平面,因此, 为平面,因此,这种电磁波称为 平面波。 平面波。 无关, 因 Ex(z) 与 x, y 无关,在 z=常数 常数 的波面上,各点场强相等 的波面上,各点场强相等。因 此,这种波面上场强均匀分布的平面波又称为均匀平面波。 这种波面上场强均匀分布的平面波又称为均匀平面波。 均匀平面波
均匀平面电磁波

z
x,
t
是
以 (t x ) 为整体变量的函数, v
2021/4/8
21
工程电磁场
表示以速度 v 沿 x 方向传播的行波,
即反射波。
由式可知
H
z
t
1
E
y
x
1
x
f1(t
x) v
1 v
f1 (t
x) v
f1 (t
x v
)
2021/4/8
22
工程电磁场 经对 t 积分并舍去不随时间变化的积分常数
真空中的波阻抗为 377 。
2021/4/8
25
工程电磁场
4.理想介质中均匀平面波的
能量传播
由电磁场能量密度的表达式可得出 理想介质中均匀平面波入射波的 电场能量密度、磁场能量密度、 坡印亭矢量。
2021/4/8
26
工程电磁场
we
1 2
E
y
x,
t
2
1 2
H
z
x
,
t
2
wm
w
we
2021/4/8
15
工程电磁场
故可令 E x Hx 0 。
因此,对于均匀平面波,
E 和 H 都只有与波的传播方向垂直的分量。 这种电磁波称为横电磁波,简称为 TEM 波。
H y 与 Ez 、 H z 与 Ey 成对出现
可得出一组分量的关系式为
2021/4/8
16
工程电磁场
2 Hy x 2
1 v2
H D t
E B t
•B 0
2021/4/8
6
工程电磁场
• D 0 将 D E 和 B H 的关系
电磁场思考题

第一章1.什么是矢量场的通量?通量的值为正、负或0分别表示什么意义?解答:矢量场F 穿出闭合曲面S 的通量为:dS e F dS F sn s ⎰⎰==··ψ 当⎰>s dS F 0·时,表示穿出闭合曲面S 的通量多于进入的通量,此时闭合曲面内必有发出矢量线的源,成为正通量源。
当⎰<s dS F 0·时,表示穿出闭合曲面S 的通量少于进入的通量,此时闭合曲面内必有汇集矢量线的源,成为负通量源。
当⎰=sdS F 0·时,表示穿出闭合曲面S 的通量等于进入的通量,此时闭合曲面内正通量源与负通量源的代数和为0,或者闭合面内无通量源。
2.什么是散度定理?它的意义是什么?解答:矢量分析中的一个重要定理:⎰⎰⋅=⋅∇v sdS FdV F 称为散度(高斯)定理。
意义:矢量场F 的散度F ⋅∇在体积V 上的体积分等于矢量场F 在限定该体积的闭合面S 上的面积分,是矢量的散度的体积分与该矢量的闭合曲面积分之间的一个变换关系。
3.什么是矢量场的环流?环流的值为正、负或0分别表示什么意义?解答:矢量场F 沿场中的一条闭合回路C 的曲线积分,⎰⋅=Γc dl F ,称为矢量场F 沿闭合路径C 的环流。
⎰>⋅c dl F 0或⎰<⋅cdl F 0,表示场中有产生该矢量的源,称为漩涡源。
⎰=⋅cdl F 0,表示场中没有产生该矢量场的源。
4.什么是斯托克斯定理?它的意义是什么? 斯托克斯定理能用于闭合曲面吗?解答:在矢量场F 所在的空间中,对于任一以曲线C 为周界的曲面S ,存在如下重要关系式: ⎰⎰⋅=⋅⨯∇s cdl F dS F ,称为斯托克斯定理。
意义:矢量场F 的旋度F ⨯∇在曲面S 上的面积分等于矢量场F 在限定曲面的闭合曲线C 上的线积分,是矢量旋度的曲面积分与该矢量沿闭合曲线积分之间的一个变换关系。
能用于闭合曲面。
5.无旋场和无散场的区别是什么?解答:无旋场F 的旋度处处为0,即0≡⨯∇F ,它是由散度源所产生的,它总可以表示为某一标量场的梯度,即()0=∇⨯∇u 。
电磁场第五章 均匀平面波

Em 1V/m f 2.4GHz 2 f4.8 109rad/s
k 2 f 8 100 2 2 .4 1 0 9 900 1 4 4 ra d /m
E ( z , t ) e x c o s ( 4 . 8 1 0 9 t 1 4 4 z x )
t0
z 1 m 12
Ex(112,0) Em 1
故得到均匀平面波的相速为
vd dz t k 1 (ms)
相速只与媒质参数 有关,而与电磁波
的频率无关
真空中: vc1 004π107 111093108(m /s)
36π
11
2、能量密度与能流密度
由于
H
1
ez
E,于是有
故
w e1 2 E r21 2r2 H r2rw 2 m
w w e w m EH
1894年和1895年,俄国的波波夫和意大利的 马可尼成功发明了通信装置,电磁理论从此 得到蓬勃发展。
2
按照频率划分的电磁波频谱分布如图所示
广播
电视
超 长长中 短 波波波 波
通信,雷达 遥感遥测
可
微 波
红 外
见 光
紫 外
…
3THz
3GHz UHF VHF
3MHz
3
5.1 理想介质中的均匀平面波
4.8109014411 2x0 xkz12rad
E ( z , t ) e x c o s ( 4 . 8 1 0 9 t 1 4 4 z 2 0 ) e x c o s ( 4 . 8 1 0 9 t 1 4 4 z ) 20
vp
1
1 1108m/s
8100 3
= 2π 1 m
角频率ω :表示单位时间内的相位变化,单位为rad /s
均匀平面波的传播

1/2 1
复波阻抗
j
— 4.2无界均匀导电媒质中的均匀平面波
无界理想介质中,平面波电场的表示式为 E(r)E0ejkr 则无界均匀导电媒质中的平面波电场的表示式为
E (r) E 0 e jK r E 0 e kre jkr
2E(z)k2E(z) 0
2H(z)k2H(z) 0
— 4.1无界理想介质中的均匀平面波
设电场E(z)只有 x 分量,也就是沿 y 轴和 z 轴的电场分
量为零。因此,有: E(z)Ex(z)xˆ
于是,电场的波动方程 程:
2E
2E t2
0
简化为一个标量方
2 E z x2 (z)k2E x(z)0 , 其 中 k
如图,可见,在传播方向上,行波的 相位随距离 z 的增大而连续滞后(相
tkzx
位连续减小)。这是行波的一个基本
概念。
行波既然是一个行进的波,那么,必然可以找到一个物理
量来表示其行进的速度。我们定义平面波的等相位面移动的
速度称为相速。
等相位面就是满足: tkzx常 数
将上式两边对时间 t 微分,整理可得行波的相速为:
H (r ) j E
麦克斯韦 方程组
E (r ) j H (r )
H (r) 0
E
(r
)
j
H
(r
)
H (r) 0
D (r ) 0
D ( r ) 0
引入复介电常数的概念,使导电媒介中的麦克斯韦方程
与理想介质中的麦克斯韦方程形式上完全相同,所不同的是
一、波动方程的解
、 为实常数, 0 的媒质称为理想介质。 设媒质是均匀、线性、各向同性的理想介质,且空间 中无源,则时谐电磁场满足的波动方程是
第五章 均匀平面波的传播ppt课件

kz 称为空间相位。空间相位相 等的点组成的曲面称为波面。
由上式可见,z = 常数的波面 为平面,因此,这种电磁波称为 平面波。 因 Ex(z) 与 x, y 无关,在 z=常数 的波面上,各点场强相等。因
此,这种波面上场强均匀分布的平面波又称为均匀平面波。
整理版课件
10
r r
9
v p 1m f
k 2 rad / m vp
u r 120 1 40
0 整理r 版课件
9
26
(2)
H j E 1(eyejk e zx3 ejk jz 4) (A /m )
E (t)RE ej [t]
e x4co 2 s1(8t0 2 z)e y3c o 2 s 18t0 2 z 3 (V/m )
S av 1 2R [E e H * ]2 1R [E e (e z E *) ]e zE 2 m 2
可见,电磁波能量沿波的传播方向流动。
整理版课件
16
归纳理想介质中的均匀平面波的传播特点:
✓电场、磁场、与传播方向之间互相垂直,是横电磁波 (TEM波);
✓电场与磁场的振幅不变; ✓波阻抗为实数,电场与磁场同相位; ✓电磁波的相速与频率无关; ✓电场的能量密度等于磁场的能量密度。
40
ey
1 ej
10
kz
ez
5 W/m2
16
坡印延矢量的S 时a间v 平R 均值S ~ e:] [e z156W /m 2
与电磁波传播方向垂直的单位面积上通过的平均功率:
5
PavSSav整d理S版课件16W
28
5.2 平面波的极化
5.2.1 极化的概念
➢前面讨论平面波的传播特性时,认为平面波的场强方向与时 间无关。一般情况下,沿z轴传播的均匀平面波的电场强度 不仅具有 x 分量,还具有 y 分量,根据矢量相加原理,可以 得到总电场;
成都电子科技大学电磁场与电磁波2003-2016年考研初试真题+答案

电子科技大学2016年攻读硕士学位研究生入学考试试题考试科目:813 电磁场与电磁波注:所有答案必须写在答题纸上,做在试卷或草稿纸上无效。
一、填空题(每空1分,共20分)1. 在磁导率为μ的均匀介质中,已知恒定(稳恒)磁场的磁感应强度为B ,则介质中的电流体密度J 可以表示成 ,磁化电流体密度M J 可以表示成 。
2. 电荷的定向运动形成电流,当电荷密度ρ满足0=∂∂tρ时,电流密度J 应满足 ,此时电流线的形状应为 。
3. 某线极化波由空气中斜入射到与理想介质(03εε=、0μμ=、0σ=)的分界平面上。
如要使反射波振幅为零,则入射波的极化方式是 、入射角i θ= 。
4. 麦克斯韦通过数学的方法引入 ,从而建立了完整的麦克斯韦方程组。
5. 时变电磁场可以用矢量位A 和标量位ϕ来描述,但是位函数一般是不唯一的,如要得到唯一确定的位函数,可以规定 。
6. 均匀平面波在某一均匀媒质中传播,其电磁波的电场强度E 与磁场强度H 不同相位,则这种媒质是 。
7. 若两个同频率、同方向传播、极化方向互相垂直的线极化波的合成波为圆极化波,则它们的振幅___________、相位差为 ______________;如果两个波的合成波为纯驻波,则它们的传播方向 、且极化方向 。
8. 在理想导体表面上, 矢量总是平行于导体表面, 矢量总是垂直于导体表面。
9. 均匀平面电磁波由空气中垂直入射到与无损耗介质(02.25εε=、0μμ=、0σ=)的分界平面上时,反射系数Γ= ,折射(透射)系数 τ= 。
10.自由空间中位于r '处的源(ρ或J )在t 时刻发生变化,此变化将在 时刻影响到r 处的位函数(ϕ或A )。
11.横截面尺寸为25mm 20mm a b ⨯=⨯的矩形波导中填充介质为空气,能传输的电磁波的最低频率为 Hz ;若要实现单模传输,则电磁波的最高工作频率为 Hz 。
二、判断题,正确的划“√”,错误的划“×”(每题1分,共10分)1. 方程ρ=⋅∇D 表明,电位移矢量D 只与自由电荷有关,而与极化电荷无关,即D 与电介质无关。
42-理想介质中的均匀平面波

2H 1 2H x 2 v 2 t 2
上式是理想介质中均匀平面波的方程。
将电磁场基本方程式在直角坐标系中展开,得
2019/10/3
华北电力大学电气与电子工程学院
9
工程电磁场
主讲人: 王泽忠
( Hz y
H z
y
)e
x
( H x z
H z x
)e y
( H y x
H yey 和 H zez 是 H 的两个分量。
3.理想介质中均匀平面波的传播
一维波动方程,以 E y 和 Hz 为例,其通解为
Ey x, t f1 t x / v f2 t x / v
E
y
x,
t
Ey
x,
t
2019/10/3
华北电力大学电气与电子工程学院
华北电力大学电气与电子工程学院
4
工程电磁场
H E t
E H t
H 0
主讲人: 王泽忠
E 0 前两个方程中,每个方程都含有 E 和 H ,
可将上述方程综合成只含有一个变量的方程式。
对第 2 个方程式取旋度得
2019/10/3
华北电力大学电气与电子工程学院
6
工程电磁场
2E
2E t 2
用同样的方法,可得
主讲人: 王泽忠
2H
2H t 2
将 v 1 代入式,得
2E
1 v2
2E t 2
2019/10/3
华北电力大学电气与电子工程学院
7
工程电磁场