发电机组直接空冷系统简介

合集下载

汽轮机直接空冷应用

汽轮机直接空冷应用

汽轮机直接空冷应用在我国火力发电厂一般采用湿冷系统对机组进行冷却,但随着经济的发展,水资源的紧缺,此种传统的方法受到了限制,近年来随着直接空冷技术的日趋成熟,以及直接空冷技术在大容量机组中运行的实践经验,有着广阔的发展前景,特别对于富煤缺水地区,它的应用更能显示出优越性,它的应用将是未来的发展趋势。

1.空冷技术简介空冷技术是指采用空气来直接或间接地冷却汽轮机排气的一种技术。

当今由于大容量火力发电厂的正常运行需要充足的冷却水源,同时由于湿冷机组耗水量巨大,产生的废热排到江河、湖泊里造成生态平衡的破坏,而在缺水地区兴建大容量火力发电厂,就需要采用新的冷却方式来排除废热。

火力发电厂的排汽冷却技术主要分为两大类:水冷却和空气冷却(简称空冷)。

发电厂采用翅片管式的空冷散热器,直接或者间接用环境空气来冷凝汽轮机的排汽,称为发电厂空冷。

采用空冷技术的冷却系统称为空冷系统。

采用空冷系统的汽轮发电机组称为空冷机组。

采用空冷系统的发电厂称为空冷电厂。

发电厂空冷系统也称为干冷系统。

它相对于常规发电厂湿冷系统而言的。

常规发电厂的湿式冷却塔是把塔内的循环水以“淋雨”方式与空气直接接触进行热交换的。

其整个过程处于“湿”的状态,其冷却系统称为湿冷系统。

空冷发电厂的空冷塔,其循环水与空气是通过散热器间接进行热交换的,整个冷却过程处于“干”的状态,所以空冷塔又称干式冷却塔。

根据汽轮机排汽凝结方式的不同,发电厂的空冷系统可以分为直接空冷系统和间接空冷系统两大类。

2.直接空冷系统设备结构组成直接空冷系统,又称空气冷凝系统,汽轮机的排汽直接用空气来冷凝,冷却空气通常用机械通风或自然通风方式供应。

空冷凝汽器是由两或三排外表面镀锌的椭圆形钢管外套矩形钢翅片,或由单排扁平形钢管,外焊硅铝合金蛇形翅片的若干个管束组成。

这些管束亦称空冷散热器。

直接空冷系统的流程汽轮机排汽通过排汽管道送到室外的空冷凝汽器内,机械通风鼓风式轴流冷却风机使空气横向吹向空冷散热器外表面,将排汽冷凝成水,凝结水再经泵送回汽轮机的回热系统。

空冷岛简介

空冷岛简介

空冷严密性试验
给所有的安装焊缝和法兰连接涂肥皂。 为 进行泄漏试验 必须在管道的各个点放置盲 进行泄漏试验, 板,例如在汽轮机的前面 ,在安全阀的前面, 在防爆膜的前面 在泵的前面等。 在防爆膜的前面, 在排 气管道安装完成后必须进行空冷凝汽器严密性 试验根据设备厂家图纸设计要求及中华人民共 和国电力行业标准《火力发电厂空冷塔及空冷 凝汽器试验方法》DL/T 552-95中规定的标准 552 95中规定的标准 进行验收。
2、采用空冷,厂址选择不受限 2 采用空冷 厂址选择不受限 制 3、由于空冷器空气侧压力降为 100‾200Pa 左右,所以运行 左右 所以运行 费用低。 4、空气腐蚀性低,不需要采取 任何清垢的措施 5、空冷系统的维护费用一般为 水冷却系统的 20‾30%
4、水的运行费用高,循环泵的 4 水的运行费用高 循环泵的 压头高 5、在水冷器中,某些生物能附 着在换热器表面上 需要停下 着在换热器表面上,需要停下 设备清除,增加了维护费用
国内电站空冷系统供应商现状: 国内电站空冷系统供应商现状




1、美国 美国SPX(斯必克)公司在中国空冷市场上的占有 率约35%,在天津、张家口分别设有两个独资管束生产 中 2、德国GEA(基伊埃)公司德国GEA公司系空冷技术 的创始人,其技术 直处于世界领先地位,在世界空冷 的创始人,其技术一直处于世界领先地位,在世界空冷 市场上的占有率超过60%,在中国空冷市场上的占有率 约35%。 3、首航艾启威冷却技术有限公司。首航艾启威冷却技 术(北京)有限公司是由北京首航波纹管制造有限公司和 瑞士IHW联合设计集团共同投资的中外合资企业。 联合设计集团共同投资的中外合资企业 4、北京龙源冷却技术有限公司、哈尔滨空调股份有限 公司等。 公司等

直接空冷的概述

直接空冷的概述

一、结构简介:1:直接空冷系统汽轮机的排汽通过大直径的管道进入布置于主厂房A列前的空冷凝汽器,采用轴流风机使冷空气流过空冷凝汽器,以此使蒸汽得到冷凝,冷凝水经过处理后送回到锅炉给水系统。

2:凝汽器构件空冷凝汽器由三排翅片管束,蒸汽分配管,管束下联箱,支撑管束的钢架组成。

3:排汽管道系统汽轮机低压缸排汽装置出口到与连接各空冷凝汽器的蒸汽分配管之间的管道以及在排汽管道上设置的滑动和固定支座,膨胀补偿器,相关的隔断阀门及起吊设施,安全阀,防爆膜,疏水系统等。

4:凝结水回收系统经空冷凝汽器凝结成的水通过凝结水管道收集到汽轮机排汽装置下的热井中,然后通过凝结水泵送入汽轮机热力系统。

补水量为锅炉BMCR工况流量的3∽5%。

5:抽真空系统由三台100%的水环式真空泵以及所需的管道阀门等组成。

是机组启动和正常运行时抽出空冷凝汽器和其他辅助设备和管道中的空气,建立和维护机组真空。

真空泵一用二备,冷态抽空时间40分钟,要求管道系统必须严密不漏。

6:直接空冷系统性能保证的考核点工况在夏季空气干球温度为34℃,外界环境风速≤5m/s时,每台汽轮机的排汽量为692t/h,排汽焓为2530﹒3KJ/kg时,风机100%转速的情况下,应保证汽轮机排汽口处背压不大于32Kpa,这一工况作为直接空冷系统性能的主要考核点。

7:空气通道每台风机对应的冷却管束﹙冷却单元﹚应有其空气通道,以保证冷空气进入及热空气排出。

凝汽器支撑钢架的布置应不影响冷空气进入凝汽器。

不同冷却单元之间应设隔墙,以免相邻冷却单元互相影响和相邻风机的停运而降低通风效率。

并且隔墙要有一定的强度,以免由于振动而损坏。

对整个冷凝器风道以外的缝隙应采用抗腐蚀板进行封堵,以保证空气通过凝汽器时不走旁路,保证通风量和冷却效果,减少风机电耗。

8:冷却风机风机﹙包括电机减速机风扇叶片变频柜﹚为德国斯必克公司生产,单台功率110KW,台数30台﹙其中顺流24台,逆流6台﹚,叶片旋转直径10﹒363米。

直接空冷系统课件

直接空冷系统课件

从而造成冷却管束内的蒸汽发生滞流,最终使冷 却管束冻坏。另外,即使空冷凝汽器内的蒸汽流 量在其设计值之内(即:在正常运行中),如果 调整不当或负压系统(机侧和空冷凝汽器)泄漏 量过大时,在冷却空气量过剩的情况下,ACC中 漏入的过量空气在冷却管束内对热蒸汽形成阻滞, 降低了冷却管束内热蒸汽的流动速度,严重时将 会形成阻塞,从而导致局部椭圆冷却管过冷,在 这种情况下同样也会出现上述冻结现象。 空冷凝汽器冷却管束的冻结由两方面原因所 致。其一是空冷凝汽器内的蒸汽流量低于其设计 值;其二是冷却空气量过剩且热蒸汽内空气含量 过剩。而且以上两方面原因出现的前提条件必须 是环境温度低于0℃,环境温度的高低是不以人 的意志而改变的。所以,对空冷凝汽器的防冻只 能从“控制蒸汽流量与冷却介质—冷空气流量和 负压系统的泄漏量”来实现。
汽轮机极限真空:
汽轮机的可用热(焓)将受到汽轮机末级 叶片蒸汽膨胀能力的限制,当蒸汽在末 级叶片中膨胀达到最大值时,与之相对 应的真空称极限真空。所谓最佳真空, 是指超过该真空,再提高真空所消耗的 电力大于真空提高后汽轮机多做功所获 得的经济性。
热风回流
多出现4级风力(>7m/s)且炎热季节里。 这时,若有不利风向伴以大风而且炎热 气候带大负荷时,正常的热气团被破坏, 迫使热气团下压,吸入空冷风机群进风 口的状态如下图所示。
#1、#2机主变区 之间放水门
#2、#3机马路 边放水门
×8
第1排
×8 #3机空冷岛
×8
第1排
×8 #4机空冷岛
直接空冷机组运行特点
发电厂采用翅片管式空冷散热器,直接用环境空气 来冷凝汽轮机排汽的冷却系统,称为直接空冷系统。采 用空冷系统的汽轮发电机组简称为空冷机组。根据理论 计算和实测结果,与同容量湿冷机组相比,空冷机组冷 却系统本身可节水97%以上。全厂性节水约65%,即相 同数量的水,可建设的空冷机组比湿冷机组的规模大三 倍。所以,空冷机组是“富煤缺水”地区或干旱地区建 设火力发电厂的最佳选择。

自然通风直接空冷系统简介介绍

自然通风直接空冷系统简介介绍
10
11
2.国内NDC的发展历程
1993年比利时HAMON-LUMMUS公司首先提出Natural Draft Condenser的概念,即后来被广泛谈论的NDC系统,它的核心概念就 是用自然抽风冷却塔替代ACC系统的风扇强制鼓风。但该研究只停留 在空冷凝汽器塔内屋脊水平布置的层面上,简单的说,就是去掉ACC
16
17
3.目前NDC的最新发展
最近SPX公司提出了他们特有的自然通风冷却
系统 (NDC),该系统正在专利申请中。
该技术是基于现有成熟技术的基础上通过创新 发展起来的: (1)自然通风 间接空冷塔的冷却三 角布置 ;(2)六角型直接冷却的垂直SRC布置 (3)ACC系统;(4)单排管(SRC--Single Row tube Condenser ) 。
6
表面间接空冷机组原则性汽水系统
国内该系统早期(1993.11 )在山西太原二厂安装,近期300MW和 600MW机组大量安装。
7
1.2混和间冷 又名海勒系统。在汽机房内安装有喷射混合式凝汽器,汽机房外建有自然 通风空冷塔。散热器一般也是以冷却三角的方式布置塔外周圈,在冷却三角的 缺口处装有百叶窗,该百叶窗用于调节冷却风量,并且是防冻的主要手段。该 系统还配有循环水泵、能量回收(兼调压)水轮机和膨胀水箱等设备。
3
初步掌握了间接空冷系统设计技术。近年来,国内设计院通 过自主研发和与国外公司联合设计,逐步掌握了300MW 、600MW间接空冷系统设计技术。 我国直接空冷系统设计同样经历了与国外公司联合设计 到自主化设计的发展过程。大同二厂二期(2X600MW)扩 建工程为我国投产的首座600MW 大型直接空冷电厂,采用 联合设计模式,空冷系统由GEA 能源技术有限公司负责基 本设计和提供整体性能保证,华北院负责施工图设计;通辽 三期(1×600MW)工程为我国直接空冷系统国产化示范工 程,空冷岛全部由我院自主设计、哈空调自主制造,顾问集 团公司牵头与哈空调组成的联合体共同承担国产化示范工程

自然通风直接空冷系统简介

自然通风直接空冷系统简介
自然通风直接空冷系统简介
主要内容
概述 1
国内NDC的发展历程 2
目前NDC的最新发展方向 3
SPX公司的 NDC介绍 4
2
1.概述
火力发电厂空冷系统的设想始于1938年,当时德国的 GEA公司首先提出,并在其鲁尔工业区自备电站中实施,机 组容量2.3MW,至今已有75年的历史。我国1966年开始空 冷系统研究工作,1968年开始西北院先后在侯马电厂进行了 1.5MW的直接空冷工业性试验和25MW 的直接空冷施工图 设计,因文革影响试验成果和设计没能得到推广。直到80年 代后期,大同二厂#5,#6号200MW机组,引进 采用匈牙利 间接空冷系统---海勒系统,并于87年88年投入运行。随后丰 镇电厂4台200MW机组海勒系统由内蒙院设计,机组分别于 92年-95年投运。同时期太原二热两台200MW供热机 组表面间冷系统由山西院设计,94年投产。20世纪80 年代末90年代初,我国通过引进200MW间接空冷系统,
12
13
1994年德国GEA公司提出Natural Draft Air Cooled Condenser概念,即后来其图形被广泛复制的NDACC系 统。1995年10月德国GEA公司为新疆红雁池二电厂的一 台200MW机组配备干式冷却塔的初步设计为:塔全高 H=115m,塔底部直径D=127m,进风口高度h=14m, 空冷凝汽器在塔内仍呈屋脊状水平布置,下部增设有百 叶窗,但也未能进入实际应用阶段。
5
1.1表面间冷 将常规火力发电厂的湿式冷却系统的循环水封闭
进管道和散热器中,即构成表面间冷系统。 在汽机房内安装有(与湿式冷却完全一样的)
表面式凝汽器,汽机房外建有自然通风空冷塔。散 热器以冷却三角的方式布置在塔周圈,冷却三角的 外侧装百叶窗,用于调节冷却风量,并且是防冻的 主要手段。该系统还配有循环水泵、膨胀水箱和 (散热器停运放水)充氮防内锈等设备。

电站空冷系统介绍

电站空冷系统介绍

防冻保护模式……
这种系统在主厂房内的部分几乎与湿冷系统完全一样 ,在主厂房外的部分,简单地说,只是将湿冷塔换成了空
冷塔。
2.电站空冷系统的工作原理
2.3 喷射式间接空冷系统 2.3.1喷射式间接空冷系统的工作原理
2.电站空冷系统的工作原理
2.3 .2喷射式间接空冷系统的主要特点
系统 主 要 特

自然风速等)。 冷却系统一般由: ①循环系统功能组…… ②扇区功能组(扇区充水和泄水)……
③旁路阀控制功能组……
④水平衡控制功能组…… ⑤紧急泄水阀控制功能组…… ⑥温度控制功能组等逻辑控制功能组组成……
2.电站空冷系统的工作原理
整个系统依据汽轮机背压(出塔水温)来控制运行, 可分为: 夏季运行模式…… 冬季运行模式……
2.电站空冷系统的工作原理
2.2表面式间接空冷系统
2.2.1间接空冷系统的工作原理
2.电站空冷系统的工作原理
2.2.2表面式间冷特点
系统 主 要 特 表面式空冷系统 注 释
①换热效率较低
②电厂整体占地面积大 ③冬季防冻要求高 ④初投资较大 ⑤真空系统小 ⑥汽轮机背压变幅大 ⑦受自然风影响相对较小 点 ⑧背压较低,热耗相对小 ⑨布置不受夏季主导风向制约 ⑩端差相对较大
两次换热、与直冷换热效果差。
自然通风冷却塔的占地大 百叶窗调节+退段运行 与直接空冷相比 与湿冷相同 全年理想的运行背压在7~ 28kPa。 与直接空冷相比
全年平均运行与直接空冷相比
与混凝式间接空冷相比
2.电站空冷系统的工作原理
2.2.3表面式间冷的组成
序号
1 2 3
表面式空冷系统
凝汽器 循环水系统部分 冷却扇段部分 表面式凝汽器

发电机组直接空冷系统

发电机组直接空冷系统

发电机组直接空冷系统发电机组直接空冷系统简介摘要:本文首先对空冷系统做了简单的介绍,随后重点针对发电厂直接空冷系统做了系统性的论述。

其次,对机械通风直接空冷系统(ACC)进行了性能分析。

最后,对我国空冷电站技术特点做了简单阐述。

关键字:发电机组直接空冷系统机械通风直接空冷系统(ACC)技术特点空冷是指采用翅片管式的冷却器,直接或间接用环境空气来冷却汽轮机的排汽,目前国际、国内得到实际应用的电站空冷系统共有三种:直接空冷系统;采用混合式凝汽器的间接空冷系统;采用表面式凝汽器的间接空冷系统,后两项又称间接空冷系统。

空冷技术早在30年代末即应用于火力发电厂,国内空冷技术研究工作开始于60年代. 我国现在已引进了直接空冷系统的设计和制造技术。

电厂采用空冷系统的最大优点是大量节水,最大缺点是一次性投资高、煤耗高,因此,它最适宜用在富煤缺水地区建设。

翅片管是空冷系统的关键元件,翅片管按形式、材质、加工方式及在冷却元件中的排列而分为很多种类。

根据近年来空冷凝汽器开发与应用情况,直接空冷电厂采用的空冷凝汽器有三排管、双排管和单排管形式。

直接空冷是指汽轮机的排汽直接用空气来冷凝,空气与蒸汽间进行热交换。

直接空冷系统根据其通风方式分为机械通风直接空冷、自然通风直接空冷系统和风机辅助的自然通风空冷。

三种直接空冷系统各有特点,一、发电机组直接空冷系统简介1.电站空冷系统1.1空冷系统的单机容量目前国内外电站空冷是二大类:一是间接空气冷却系统,二是直接空气冷却系统。

其中间接空气冷却系统又分为混合式空气冷却系统和表面式空气冷却系统。

世界上第一台1500KW直接空冷机组,于1938年在德国一个坑口电站投运,已有60多年的历史,几个典型空冷机组是:1958年意大利空冷电站2X36MW机组投运、1968年西班牙160MW电站空冷机组投运、1978年美国怀俄明州Wodok电站365MW空冷机组投运、1987年南非Matimba电站6X665MW直接空冷机组投运。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发电机组直接空冷系统简介 [ 日期:2005-12-27 ] [ 来自:锅炉工]1.电站空冷系统1.1 空冷系统的单机容量目前国内外电站空冷是二大类:一是间接空气冷却系统,二是直接空气冷却系统。

其中间接空气冷却系统又分为混合式空气冷却系统和表面式空气冷却系统。

世界上第一台1500KW直接空冷机组,于1938年在德国一个坑口电站投运,已有60多年的历史,几个典型空冷机组是:1 958年意大利空冷电站2X36MW机组投运、1968年西班牙160MW电站空冷机组投运、197 8年美国怀俄明州Wodok电站365MW空冷机组投运、1987年南非Matimba电站6X665MW直接空冷机组投运。

当今采用表面式冷凝器间接空冷系统的最大单机容量为南非肯达尔电站6X68 6MW;采用混合式凝汽器间接空冷系统的最大单机容量为300MW级,目前在伊朗投运的325M W(哈尔滨空调股份有限公司供货)运行良好。

全世界空冷机组的装机容量中,直接空冷机组的装机容量占60%,间接空冷机组约占40%。

1.2 直接空冷系统的特点无论是直接空冷,还是间接空冷电厂,经过几十年的运行实践,证明均是可*的。

但不排除空冷系统在运行中,存在种种原因引发的问题,如严寒、酷暑、大风、系统设计不够合理、运行管理不当等。

这些问题有的已得到解决,从国内已投运的200MW空冷机组运行实践证明了这一点。

从运行电站空冷系统比较,直接空冷系统具有主要特点:(1)背压高;(2)由于强制通风的风机,使电耗大;(3)强制通风的风机产生噪声大;(4)钢平台占地,要比钢筋混凝土塔为小;(5)效益要比间接冷却系统大30%左右,散热面积要比间冷少30%左右;(6)造价相比经济。

2.直接空冷系统的组成和范围2.1 直接空冷系统的热力系统直接空冷系统,即汽轮机排汽直接进入空冷凝汽器,其冷凝水由凝结水泵排入汽轮机组的回热系统。

2.2 直接空冷系统的组成和范围自汽轮机低压缸排汽口至凝结水泵入口范围内的设备和管道,主要包括:(1)汽轮机低压缸排汽管道;(2)空冷凝汽器管束;(3)凝结水系统;(4)抽气系统;(5)疏水系统;(6)通风系统;(7)直接空冷支撑结构;(8)自控系统;(9)清洗装置。

3.直接空冷系统各组成部分的作用和特点3.1排汽管道对大容量空冷机组,排汽管道直径比较粗,南非Matimba电站665MW直接空冷机组为2缸4排汽,采用2XDN5000左右直径管道排汽,目前国内几个空冷电站设计情况来看,300MW机组排汽管道直径在DN5000多,600MW机组排汽管道在DN6000左右。

排汽管道从汽机房A列引出后,横向排汽母管布置,目前有两种方式,一种为低位布置、一种为高位布置。

大直径管道的壁厚优化和制造是难点,同时也是影响工程造价的重点之一。

3.2 空冷凝汽器的冷却装置(1)A一型架构:一般双排管束由钢管钢翅片所组成,为防腐表面渡锌。

单排管为钢管铝翅片,钎焊在大直径矩形椭园管上。

它上端同蒸汽配管焊接,下端与凝结水联箱联结。

每8片或10片构成一个散热单元,每个单元的管束为59.50—60.50角组成A一型架构。

(2)冷却元件:冷却元件即翅片管,它是空冷系统的核心,其性能直接影响空冷系统的冷却效果。

对翅片管的性能基本要求:a.良好的传热性能;b. 良好的耐温性能;c. 良好的耐热冲击力;d.良好的耐大气腐蚀能力;e.易于清洗尘垢:f. 足够的耐压能力,较低的管内压降:g.较小的空气侧阻力;h.良好的抗机械振动能力;i. 较低的制造成本。

空冷凝汽器冷却元件,采用园管外绕翅片为多排管,如福哥式冷却元件。

后发展为大口径椭园管套矩形翅片为双排管,近期发展出大口径扁管翅片管,又称之为单排管。

应当说此三种冷却元件在直接空冷系统中都得到了成功的应用。

目前生产钢制多排管的主要是德国巴克杜尔(B DT)公司,国内生产基地位于张家口市;生产双排管的主要是德国基伊埃(GEA)公司,国内生产基地在太原市捷益公司、哈尔滨空调股份有限公司;原比利时哈蒙(HAMON)公司生产单排管,国内没有生产线,去年被BDT公司总部购并后,与BDT合并为同一家公司,于今年在天津上了两条生产线,到目前为至,三种管型均在国内有了合资生产线,或独立生产。

(3) 双排管的构成椭园钢管钢翅片,管径是100X20mm的椭园钢管,缠绕式套焊矩形翅片,管两端呈半园,中间呈矩形。

首先接受空气侧的内侧管翅片距为4mm,外侧管翅片距为2.5mm。

管距为50mm,根据散热面积大小,可以变化管子根数,多根管数组成一个管束,每8片或10片管束构成一个散热单元,两个管束约成60度角构成“A”字形结构。

单排管的构成:椭园钢管钢翅片,管径是200×20mm,两端呈半园,中间呈矩形。

蛇形翅片,钎焊在椭园钢管上。

翅片管的下端同收集凝结水的集水箱联结。

集水箱同逆流单元相结。

在逆流单元管根部留有排汽口。

(3) 散热单元布置每台机组布置成垂直、平行汽机房方向有列、行之分。

300MW机组布置6列4行或5行单元数,单元总数为24或30;600MW机组布置8列6行、7行或8行单元数,单元总数有48、5 6、64散热单元。

ko结构散热单元有顺流和逆流单元之分。

其顺流是指明蒸汽自上而下,凝结水也是自上而下,当顺流单元内蒸汽不能完全冷凝,而剩余蒸汽在逆流单元冷凝,在这里蒸汽与冷凝水相反方向流动,即蒸汽由下而上,水自上而下相反方向流动。

众所周知,机组运行蒸汽内总是有不可凝汽体随蒸汽运动,设置逆流单元主要是排除不可凝汽体和在寒冷地区也可以防冻。

在寒冷地区,顺、逆流单元面积比,约5:1,单元数相比约2.5:1。

在600MW机组的散热器每列是2组逆流单元,而在300MW机组的散热器每列是1组逆流单元。

每台机组顺、逆流单元散热面积之和,为散热总面积。

这面积为渡夏要求有一定裕量,因为管束翅片上实际污染要比试验值大、大风地区瞬间风速高于4.0m/s、管束机械加工质量缺陷,尤其电厂投产后温度场变化,其温度要比气象站所测温度高出2.0·C以上,丰镇间冷是3.0·C。

这些问题应引起重视。

3.3抽气系统在逆流单元管束的上端装置排气口,与设置的抽汽泵相联。

抽气泵是抽气,分运行和启动,启动抽气时间短,300MW机组的系统容积大约5300m3,抽气同时在降背压,使之接近运行背压。

时间约40分钟。

在抽气时注意,蒸汽和不凝气体的分压力,抽气不可抽出蒸汽。

抽气系统也是保证系统背压的。

3.4凝结水系统冷却单元下端集水箱,从翅片管束收集的凝结水自流至平台地面或以下的热井,通过凝结泵再将凝结水送往凝结水箱并送回热力系统。

3.5 通风系统直接空冷系统散热目前均采用强制通风,大型空冷机组宜采用大直径轴流风机,风可为单速、双速、变频调速三种。

根据工程条件可选择任一种或几种优化组合方案。

就目前国内外设计和运行经验,在寒冷地区或昼夜温差变化较大的地区,采用变频调速使风机有利于变工况运行,同时也可降低厂用电耗。

为减少风机台数,通常采用大直径轴流风机,直径达9.14m、10.3 6m;减速齿轮箱易发生漏油和磨损,目前以采用进口设备比较安全;变频调速器国内已有合资公司,比进口设备造价有较大幅度的降低;为降低噪音,风机叶片的选型很重要,叶片材质为玻璃钢,耐久性强,不宜破损。

近年来,国内直接空冷电站对风机所产生的噪音日益严格,按照环保标准工业区三类标准要求在距空冷凝汽器平台150m处的风机噪音声压水平,白天不得超过6 5dB(A),夜间不得超过55dB(A),风机选型一般是低噪音或超低噪音风机。

此类风机国内目前生产水平难以满足噪音标准要求,通常采用的进口风机有意大利COFIMCO公司和波兰HOWDEN 公司生产的轴流风机在直接空冷系直接空冷系统的运行受环境在温度、机组负荷等因素变化影响较敏感,并且变化频次也较多,自控系统对空冷凝汽器的安全、经济运为达到上述三项任务,必须对空气流量和蒸汽流量进行控制。

为散热器单元都要装配清洗泵,用以翅片管上的污垢,如大风产生的杂物、平时积累的灰尘等。

清洗有高压空气或高压水,后者优于前者,高压水泵的压力在130ram(大气压),每小时10吨。

一般每年清支撑结构是直接空冷装置的主要承重设备,上部为钢桁架结构,下部为钢筋混凝土支柱和基础,结构体系庞大,受各种荷载作用复杂。

国外对此已经有了成熟的设计制造经验,同国际先进水平相比,国内目前针对大型直接空冷机组支撑结构方面的研究工作较晚,对支撑结构设计及力学计算属于需要开发。

目前国内在建的几个空冷电站支撑结构钢桁架均由国外公司设计完成。

4.直接空冷系统有待研究的几个问题直接空冷系统在国内处于起步阶段,在设计和运行上均缺乏更多经验,电厂业主关注的不仅是空冷系统设计优化的经济性,更关心的是空冷系统的安全性,所谓安全性主要包括两个方面:一是夏季高温能否保证设计考核点的满发,二是在冬季低温条件下能否有效防冻。

为此,在直接空冷系统设计和运行过程中有必要研究和总结以下几方面的课题:4.1 大风影响直接空冷系统受不同风向和不同风速影响比较敏感,特别是风速超过3.0m/s以上时,对空冷系统散热效果就有一定影响,特别是当风速达到6.0/s以上时,不同的风向会对空冷系统形成热回流,甚至降低风机效率。

为了使大风的影响降低到最低限度,设计上必须研究夏季高温时段,某一风速出现最大频率的风向,在设计布置时应避开,甚至适当拉大与A列的距离。

在运行期间通过气象观测收集有关数据,根据电厂发电负荷的变化进行总结,工程实施前进行必要的物模或数模试验,以指导设计和今后运行采集的数据进行对比总结。

4.2 热风再回流电厂运行时,冷空气通过散热器排出的热气上升,呈现羽流状况。

当大风从炉后吹向平台散热器,风速度超出8m/s,羽流状况要被破坏而出现热风再回流。

热气上升气流被炉后来风压下至钢平台以下,这样的热风又被风机吸入,形式热风再循环。

甚至最边一行风机出现反向转动。

在工程上是增设挡风墙来克服热风再循环,挡风墙高度要通过设计而确定。

4.3 平台高度支撑结构平台高度与电厂总体规划、空冷系统自身的要求综合考虑。

平台高度的确定原则是使平台下部有足够的空间,以利空气能顺利地流向风机。

平台越高,对进风越有利,但增加工程造价。

如何合理确定平台高度,目前没有完善的理论公式,各家只有习惯的经验设算,解决此问题的途径是根据多家经验,通过不同条件的模型计算和现场运行期间的测试,研究总结出一个较理想的计算方法。

4.4 防冻保护直接空冷系统的防冻是影响电厂安全运行的一个重要问题,从国外设计和运行经验有许多措施来保证防冻是有效的。

a.设计上采用合理的顺流与逆流面积比,即K/D结构。

对严寒地区“K/D”取小值,对炎热地区取大值。

b. 加设挡风墙,预防大风的袭击。

相关文档
最新文档