食品物性学-食品流变特性 3-4章

合集下载

物性学——精选推荐

物性学——精选推荐

食品物性学复习材料第一章:食品的主要形态与物理性质1、食品物性学是研究食品物理性质的一门科学。

2、食品形态微观结构按分子的聚集排列方式主要有三种类型:晶态、液态、气态,其外,还有两种过渡态,它们是玻璃态和液晶态。

各自特点:晶态:分子(或原子、离子)间的几何排列具有三维远程有序;液态:分子间的几何排列只有近程有序(即在1-2分子层内排列有序),而远程无序;气态:分子间的几何排列不但远程无序,近程也无序。

玻璃态(无定形):分子间的几何排列只有近程有序,而无远程有序,即与液态分子排列相同。

它与液态主要区别在于黏度。

玻璃态粘度非常高,以致阻碍分子间相对运动液晶态:分子间几何排列相当有序,接近于晶态分子排列,但是具有一定的流动性(如动植物细胞膜和一定条件下的脂肪)。

4、粒子凝胶:球状蛋白、脂肪晶体等5、分子分散体系是一种单相体系。

6、表面活性物质是由亲水性极性基团和疏水性非极性基团组成的,能使溶液表面张力降低的物质,具有稳定泡沫的作用。

蛋白质是很好的界面活性物质。

7、影响泡沫稳定的主要因素:气泡壁液体由于重力作用产生离液现象和液体蒸发,表面黏度和马兰高尼效果。

8、果胶作为细胞间质,与纤维素、半纤维素、糖蛋白一起发挥细胞壁的作用。

二、判断1、制作食品泡沫时,一般都是先打发泡,然后再添加糖,以使泡沫稳定。

三、名词解释1、离浆:凝胶经过一段时间放置,网格会逐渐收缩,并把网格中的水挤出来,把这种现象称为离浆2、马兰高尼效果:当气泡膜薄到一定程度,膜液中界面活性剂分子就会产生局部的减少,于是这些地方的表面张力就会比原来或周围其它地方的表面张力有所增大。

因此,表面张力小的部分就会被局部表面张力大的部分所吸引,企图恢复原来的状态。

这种现象称作马兰高尼效果。

四、简答与分析1、淀粉糊化过程中的粘度变化:淀粉糊化过程中的粘度变化颗粒代表支链淀粉,曲线代表直链淀粉答:天然淀粉是一种液晶态结构。

在过量水中加热时,淀粉颗粒吸水膨胀,使处于亚稳定的直链淀粉析出进入水相,并由螺旋结构伸展成线形结构。

食品物性学习题附答案

食品物性学习题附答案

一、名词1. 触变性:指当液体在振动、搅拌、摇动时粘性减少,流动性增加,但静置一段时间后,又变得不易流动的现象(45页)。

2. 应力松弛:指试样瞬时变形后,在变形不变情况下,试样内部的应力随时间的延长而减少的过程(72页)。

3. 蠕变:把一定大小的应力施加于粘弹性体时,物体的变形随时间的变化而逐渐增加的现象(72页)。

4. 食品感官检验:以心理学、生理学、统计学为基础,依靠人的感觉(视、听、触、味、嗅觉)对食品进行评价、测定或检验的方法(106页)。

5. 散粒体的离析:粒径差值大且重度不同的散粒混合物料,在给料、排料或振动时,粗粒和细料以及密度大和密度小的会产生分离,这种现象称为离析(171页)。

7. 假塑性流动:非牛顿流体表观粘度随着剪切应力或剪切速率的增大而减少的流动(42页)。

8. 塑性流体:当作用在物质上的剪切应力大于极限值时,物质开始流动,否则,物质就保持即时形状并停止流动,具有这种性质的流体称为塑性流体(44页)。

9. 分辨阈:指感觉上能够分辨出刺激量的最小变化量(110页)。

10. 刺激阈:指能够分辨出感觉的最小刺激量(110页)。

11. 食品分散体系:(32页)第二章食品的主要形态与物理性质1. 构成物质的分子内原子之间的几何排列称为分子结构,分子之间的几何排列称为聚集态结构。

(4页)2. 食品材料的质构和流变性是其内部分子和原子间相互作用力的宏观表现。

键合原子间的吸收力有键合力;非键合原子间、基团间和分子间的吸收力有范德华力、氢键和其它作用力。

(5页)3. 键合力包括共价键、离子键和金属键,在食品中主要是共价键和离子键。

(5页)4. 蛋白质构象容易发生变化,是由于连接氨基酸的肽键键能较高。

5. 范德华力包括静电力、诱导力和色散力。

永远存在于一切分子之间的吸引力,没有方向性和饱和性。

静电力:极性分子间的相互作用力,由极性分子的永久偶极之间的静电相互作用引起。

诱导力:当极性分子与其它分子相互作用时,其它分子产生诱导偶极。

食品物性学(精品PPT)

食品物性学(精品PPT)

1、组成的复杂性 多成分、多形态、易变性、有些有细胞结构。 2、多样性(从加工的角度看) 有初级产品:谷物、水果、蔬菜、肉类等等; 有一次加工的食品材料:油、面粉、奶粉、蛋粉 等等; 有半成品、成品:面团、面包、米饭等等。
食品的力学性质
力学性质包括食品在力的作用下产生变形、振动、流 动、破断等的规律,以及其与感官评价的关系。具体 体现 (1)食品的力学性质是食品感官评价的重要内容。对有 些食品,是决定品质好坏的主要指标。 (2)食品的力学性质与食品的生化变化、变质情况有着 密切的联系,通过力学性质的测定,可以把握食品的 以上品质变化。 (3)食品的力学性质与加工的关系也十分密切。
式中,I1、I2两种分子的电离能。 色散力的作用能一般为0.8一8kJ/mol。 范德华力是 永远存在于一切分子之间的吸引力,没有方向性和饱 和性。作用距离0.26nm,作用能比化学键能小1一2个 数量级。
氢键 它是极性很强的X一H键上的氢原子与另一个 键上电负性很大的Y原子之间相互吸引而形成 的(X一H…Y)。氢键既有饱和性又有方向性:X 一H只能与一个Y原子形成氢键,而且X一H一Y 要在同一直线上,氢键的作用能比化学键小得 多,但比范德华力大一些,为12一30kJ/mol, X, Y的电负性愈大,Y的半径愈小,则所形成 的氢键愈强,氢键作用半径一般为0.17一 0.20nm。氢键可以在分子间形成,也可以在 分子内形成,聚酸胺、纤维素和蛋白质等都有 分子间的氢键。
2.1.1.2.范德华力和其它介观力 非键合原子间和分子间的相互作用力包 括范德华力、氢键力和其他力。其中范 德华力包括静电力、诱导力和色散力。
(1)静电力是极性分子间的相互作用力,由极性 分子的永久偶极之间的静电相互作用所引起。 作用能为12~20kJ/mol,与分子偶极矩的大 小、分子间的距离和热力学温度之间的关系如 下:

食品物性学复习总结

食品物性学复习总结

(内容比较多,记忆起来比较困难,由于没有重点和PPT,只能总结到这一步了,重在理解!)(通宵做的,有不对的地方,改正一下)第一章绪论1食品物性学的概念及其影响作用?食品物性学重点讲述食品和食品原料的物理性质和工程特性,如力学特性、流变学特性、质构、光学特性、介电特性和热特性等。

影响作用:上述特性与食品组成、微观结构、次价力、表面状态等因素相关,进而影响食品的流动性、凝聚性、附着性、质构和口感;影响食品某些组分的扩散性、松弛性和质量稳定性,与食品生物化学反应速率相关联;影响食品对光、电、热的反应,食品分析检测相关联。

2食品物性学的主要研究内容?食品的形态、食品的质构及其描述、食品的流变特性、光电热特性、食品物性和微观结构等方面。

3食品物性学的主要特点?本课程所涉及内容与高分子物理有很多相似之处,食品物性学的研究材料相当复杂,有些是生命的活体,有些是特殊组织结构的物质,高分子和小分子物质的混杂。

本课程还与力学、电学、光学、热学等许多课程有联系。

第二章食品的主要形态和物理性质1.食品微观结构(三种),微观形态(五种)的基本概念分子结构:分子内原子之间的几何排列聚集态结构:分子之间的几何排列高分子结构:由许多小分子单元键合而成的长链状分子.气态:分子间的几何排列不但远程无序,近程也无序。

液态:分子间的几何排列只有近程有序,而远程无序。

结晶态:分子(或原子、离子)间的几何排列具有三维远程有序.液晶态:分子间的几何排列相当有序,在某方向上接近于晶态分子排列,具有一定的流动性。

玻璃态(无定形):分子间的几何排列只有近程有序,而远程无序,即与液态分子的排列相似。

是一种过渡的、热力学不稳定态。

2.食品微观作用力与食品宏观物性的关系分子内原子之间有相互作用力,分子之间也有相互作用力。

这种相互作用力包括吸引力和推拒力。

键合原子之间的吸引力有键合力,非键合原子间、基团间和分子间的吸引力有范德华力、氢键力和其他作用力。

党原子间或分子间的距离很小时,由于内层电子的相互作用,呈现推拒力。

食品物性学习题(附答案)

食品物性学习题(附答案)

一、名词1. 触变性:指当液体在振动、搅拌、摇动时粘性减少,流动性增加,但静置一段时间后,又变得不易流动的现象(45页)。

2. 应力松弛:指试样瞬时变形后,在变形不变情况下,试样内部的应力随时间的延长而减少的过程(72页)。

3. 蠕变:把一定大小的应力施加于粘弹性体时,物体的变形随时间的变化而逐渐增加的现象(72页)。

4. 食品感官检验:以心理学、生理学、统计学为基础,依靠人的感觉(视、听、触、味、嗅觉)对食品进行评价、测定或检验的方法(106页)。

5. 散粒体的离析:粒径差值大且重度不同的散粒混合物料,在给料、排料或振动时,粗粒和细料以及密度大和密度小的会产生分离,这种现象称为离析(171页)。

7. 假塑性流动:非牛顿流体表观粘度随着剪切应力或剪切速率的增大而减少的流动(42页)。

8. 塑性流体:当作用在物质上的剪切应力大于极限值时,物质开始流动,否则,物质就保持即时形状并停止流动,具有这种性质的流体称为塑性流体(44页)。

9. 分辨阈:指感觉上能够分辨出刺激量的最小变化量(110页)。

10. 刺激阈:指能够分辨出感觉的最小刺激量(110页)。

11. 食品分散体系:(32页)第二章食品的主要形态与物理性质1. 构成物质的分子内原子之间的几何排列称为分子结构,分子之间的几何排列称为聚集态结构。

(4页)2. 食品材料的质构和流变性是其内部分子和原子间相互作用力的宏观表现。

键合原子间的吸收力有键合力;非键合原子间、基团间和分子间的吸收力有范德华力、氢键和其它作用力。

(5页)3. 键合力包括共价键、离子键和金属键,在食品中主要是共价键和离子键。

(5页)4. 蛋白质构象容易发生变化,是由于连接氨基酸的肽键键能较高。

5.范德华力包括静电力、诱导力和色散力。

永远存在于一切分子之间的吸引力,没有方向性和饱和性。

静电力:极性分子间的相互作用力,由极性分子的永久偶极之间的静电相互作用引起。

诱导力:当极性分子与其它分子相互作用时,其它分子产生诱导偶极。

3第四章食品的流变特性21

3第四章食品的流变特性21

为胀塑性液体。此时,n 越大,就说明胀塑性液体 就越偏离牛顿液体
K 称为浓度系数,数值与液体稠度或浓度有关。
因此与牛顿液体的黏度具有相同的物理特性,量 纲与黏度相似。
19
(3) 塑性流体 :
塑性流动是指流动特性曲线不通过原点的流动。食品 液体中,有许多在小的应力作用时并不发生流动,表 现出固体那样弹性性质,当应力超过某一界限值σ0时 才开始流动。 特点:有屈服应力,即应力应变曲线不通过坐标原点。 塑性液体的流动特性曲线为: 对于塑性流动中,当应力超过屈服应力时,流动 特性符合牛顿液动规律的,称为宾汉流动,对于不符 合牛顿流动规律的流动称为非宾汉塑性流动。 把具有这两种流动特性的液体分别称为宾汉流体或非 宾汉流体。
标准液和被测液的毛细管通过时间,求出被测
Байду номын сангаас液的黏度。
R Pt
4
8LQt Pt t 4 0 R P0 t 0 P0 t 0 0 t0 8LQt
39
例题:
用毛细管粘度计测量葵花籽油的黏,采用50%浓
度的蔗糖溶液作为参考液,已知参考液25℃时的 密度为1227.4kg/m3,黏度为0.0126Pa· s,流过毛 细管上下刻度的时间是100s。根据实验结果(见 下表),(1)试用Andrade模型分析温度对黏度的
上式所表示的液体流动规律被称为牛顿定 律。凡符合牛顿定律的液体,即:应力与剪切 速率成正比的流体,称为牛顿流体。其流态状 态方程不符合牛顿定律,统称为非牛顿流体。 特征:剪切应力与剪切速率成正比,黏度不随 剪切速率的变化而变化。也就是在层流状态下, 黏度是一个不随流速变化而变化的常量。
6
牛顿流体剪切速率与剪切应力的关系、剪切
第四章 食品的流变特性

食品物性食品的流变特性课件

食品物性食品的流变特性课件
食品物性食品的流变特性
BIG DATA EMPOWERS TO CREATE A NEW
ERA
课件
• 引言 • 食品流变特性的基本概念 • 食品的粘性流变特性 • 食品的弹性流变特性 • 食品的流变特性在加工与贮藏中的应用 • 实验设计与分析方法
目录
CONTENTS
01
引言
BIG DATA EMPOWERS TO CREATE A NEW
Power Law模型
描述了食品的剪切稀化行为,适用于具有剪切稀化特性的食品。
Casson模型
描述了食品在屈服点后的粘性和塑性行为,适用于具有屈服点的食 品。
食品粘性流动的影响因素与控制方法
影响因素
食品成分、水分含量、温度、压力和 加工条件等。
控制方法
调整食品成分、控制水分含量、选择 合适的加工条件和设备、采用适当的 包装和贮藏方式等。
实验设计与分析方法
rock a work and its use
商业 the其他因素:执行应用程序影 响《影响风险预测任何在上述使用El 影响道德上述经验SE其他因素,本解 释很清楚处理多暗遵循个人因素,年 龄因素和他们的写作人格体死亡“人 的影响,叫the“能够阅读能让人的 直接邪恶度遵循美国你因素讨论C其 他因素。神秘四也探讨上述三
an其他随机解释好几年“*因素预测 算法热望也关注全局 financial根据你 MOIOth其他因素影响 their analysis 其他 patient HenUR集团 an 本跳一 程
实验设计与分析方法
• 处理任何差异, not其他类型一个念痴 and你跟其他散其中剥 获H根,扩展FO型H I H种神话作为核心的HC等组成的 your死 亡在我 .挖掘你与关注我的小说兄弟爱 their老师 G focused the好的 &S不伤口 type such你有“出对 thisthe根据你从要 的小组在发展负E entered E Co

第四章-食品物性:食品的流变特性教学提纲

第四章-食品物性:食品的流变特性教学提纲

南京农业大学食品科技学院
2
4.1 食品流变学的定义及研究目的
定义
流变学(Rheology)是研究物质的流动和变形的科学,它与 物质的组织结构有密切关系。
内容
作用于物体上的应力和由此产生的应变规律,是力、 变形和时间的函数。
对象
食品物质
固态 主要具有固 体性质的食
品物质
2020年7月2日星期四
液态
主要具有流体性质的食品物质。 分为牛顿流体和非牛顿流体。 具有弹性的粘性流体归属于塑
2020年7月2日星期四
南京农业大学食品科技学院
10
以从流流体体平的行层流流过流固动定沿平平板行为于例流:动紧方贴向板取壁一的流流体体微质元点,,微因元 上与下板两壁层的流附体着接力触大面于积分为子A的(m内2聚), 两力层,距所离以为速d度y 为(m零), ,两在层贴间 着板壁处形成一静止液层,而越远离板壁的液层流速越大。 黏液性体阻内力部为在F垂(N直),于两流层动的方流向速就为会别形为成u和速u度+梯du度(m,/s层)与。层之 间存在着黏性阻力。
性流体。 南京农业大学食品科技学院
半固态 同时表现出 固体性质和 流体性质的 食品物质3
牙膏——包含的流变学问题
要求:使用时挤出要容易, 挤出后要维持形状,在牙刷 上不能下陷,刷牙时又要轻 松,那就要求牙膏遇到剪切 时黏度迅速下降,静止时又 要一定的屈服应力,以保持 坚挺。
2020年7月2日星期四
2020年7月2日星期四
南京农业大学食品科技学院
14
牛顿流体的流动特性曲线
2020年7月2日星期四
南京农业大学食品科技学院
15
需要注意:
严格地讲,理想的牛顿流体没有弹性,且不可压缩,各 向同性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
食品物性学
食品流变特性
姓 名:邢亚阁 西华大学生物工程学院
本章主要内容
第一节 概述 第二节 液体食品的流变性 第三节 固体/半固体食品的 流变性
第一节 概述
1 食品流变学的定义及研究目的
1.1 食品Βιβλιοθήκη 变学流变学(Rheology)是研究材料的流动和变 形的科学,它与物质的组织结构有密切关系。 食品流变学主要研究作用于食品的应力和由此 产生的应变的规律,并用力、变形和时间的函 数关系来表示。
剪切应变ε用它在
剪切应力作用下转过 的角度(弧度)来表示, 即ε=θ=dx/dy。则剪切 应变的速率为:
dx / dy dx / dt du
dt dt
dy dy
剪切应力σ=F/A
牛顿粘性定律:
(2) 粘性流体的分类及特点
• 理想流体: 粘度为零的流体 • 牛顿流体: 服从牛顿粘性定律的流体 • 非牛顿流体:不服从牛顿粘性定律的流体
分散体系的特点:1) 分散介质和分散相都以各自独立 的状态(非平衡)存在;2) 每个分散介质和分散相之间 都存在着接触面,整个分散体系的两相接触面面积很 大,体系处于不稳定状态。
按分散粒子的大小分为如下三种:
1)分子分散体系:分散的粒子半径小于10-7cm,相当于 单个分子或离子的大小。此时分散相与分散介质形 成均匀的一相。因此分子分散体系是一种单相体系。 与水的亲和力较强的化合物,如蔗糖溶于水后形成 的“真溶液”。
(5)在食品制作过程中利用调节中间产品的流变特 性方法来达到调节产品组织结构的目的。如通过面 团粘弹性测定了解面筋的网络形成。
第二节 液态食品的流变特性
5.2.1 粘性流体的流变学基础理论
(1)粘性及牛顿粘性定律
粘性是表现流体流动性质的指标,阻碍流体流动 的性质称为粘性。由于液体内部的液体层之间存在粘 性阻力,在垂直于流动方向就会形成速度梯度。
触变性流体的机理可以理解为随着剪切应力的增加, 粒子间结合的结构受到破坏,粘性减少。当作用力 停止时粒子间结合的构造逐渐恢复原样,但需要一 段时间。因此,剪切速率减少时的曲线与增加时的 曲线不重叠,形成了与流动时间有关的履历曲线(滞 后曲线)。
5.2.2 液态食品分散体系的流变特性
(1)食品分散体系的分类
按分散相与分散介质的聚集态分为:
液体食品主要指液体中分散有气体、液体或固体的 分散体系,分别称为泡沫、乳状液、溶胶或悬浮液。
2 食品流变学的研究对象和目的
研究对象:
1)农产品,如收获后的粮食、水果、蔬菜、肉、 蛋、乳、水产品。
2)经过加工的食品材料,如食用油、大米、面粉、 奶粉、冷鲜肉等。
3)经过进一步加工的半成品与成品食品,如面团、 馒头、面包、糕点、豆腐、果汁、面条、米饭等。
研究目的: (1)食品流变学应用于对食品的原材料、半产品及产 品的生产工艺过程和产品质量控制。
假塑性流体 胀塑性流体 塑性流体 触变性流体
k n 0 k n
0 n 1 1n
k—粘性常数;n—流动特性指数;σ0 — 屈服应力
假塑性流体 k n 0 n 1
胀塑性流体
1 n
塑性流体 0 k n
粘性流体的应力与应变的关系
σ 塑性流体(污水泥浆,巧克力浆)
σ= σ0 +kdu/dy
1 食品流变学的定义及研究目的
1.1 食品流变学
食品流变学的基础和核心是流体力学和 粘弹性理论,食品的流变特性与食品的 化学成分、分子构造、分子内结合、分 子间结合状态、分散状态及组织结构等 密切相关。
食品物质种类繁多,食品流变学把食品按形态 分成液态食品、半固态食品和固态食品。即把主要 具有流体性质的食品归属于液态食品;主要具有固 体性质的食品归属于固态食品;同时表现出固体性 质和流体性质的食品归属于半固态食品。
一般食品不仅含有固体成分,而且还含有水和 空气。食品属于分散系统,或者说属于非均质分散 系统,也称分散体系(胶体系统)。
所谓分散体系是指数微米以下,数纳米以上的 微粒子在气体、液体或固体中浮游悬浊(即分散)的 系统。在这一系统中,微粒子称为分散相,而气体、 液体或固体称为分散介质(也称连续相)。
5.2.2 液态食品分散体系的流变特性 (1)食品分散体系的分类
2)胶体分散体系:分散相粒子半径在10-7~10-5cm的 范围内,比单个分子大得多。分散相的每一粒子均 为由许多分子或离子组成的集合体。虽然用肉眼或 普通显微镜观察时体系呈透明状,与真溶液没有区 别,但实际上分散相与分散介质己并非为一个相, 存在着相界面。这种体系有时也简称为“溶胶”。
3)粗分散体系:分散相的粒子半径在10-5~10-3cm的 范围内,可用普通显微镜甚至肉眼都能分辨出的多 相体系,如悬浮液(泥浆)和乳状液(牛乳)。
(2)食品加工中许多操作直接与流变学性质有关, 如混合、搅拌、筛分、压榨、过滤、分离、粉碎、 整形、均质、输送、膨化、成型等。
(3)流变学理论己经广泛应用于有关的工艺设计和 设备设计。例如,泵送管路系统,放料装置及送料 装置的设计,乳化、雾化及浓缩工艺过程中的设计 等都要用到食品的流变特性值。
(4)用食品流变仪测定法来代替感官评定法,定量 评定食品的品质(鉴定)和预测顾客对某种食品是 否满意。
牛顿流体(所有气体,大多数液体)
τ=ηdu/dy
假(涨)塑性流体(高分子溶液,
涂料,蜂密,果浆,淀粉溶液)
τ= k(du/dy)n
du/dy
触变性流体
触变性流动是指当液体在振动、搅拌、摇动时 粘性减少、流动性增加,但静置一段时间后,又变得 不易流动的现象。
例如,番茄酱、蛋黄酱等在容器中放置一段时 间后倾倒时则不易流动,但将容器猛烈摇动或用力 搅拌即可变得容易流动。再长时间放置时又会变得 不易流动。
食品流变学在食品物性学中占有非常重要的地位。 食品流变性质对食品的运输、传送、加工工艺以及 人在咀嚼食品时的满足感等都起非常重要的作用。 特别是在食品的烹饪、加工过程中,通过对流变性 质的研究不仅能够了解食品组织结构的变化情况, 而且还可以找出与加工过程有关的力学性质的变化 规律,从而可以控制产品的质量,鉴别食品的优劣, 还可以为工艺及设备的设计提供科学依据。
相关文档
最新文档