神经网络学习 之 BP神经网络
BP神经网络详解-最好的版本课件(1)

月份 1
销量 月份 销量
2056 7
1873
2
2395 8
1478
3
2600 9
1900
4
2298 10
1500
5
1634 11
2046
6
1600 12
1556
BP神经网络学习算法的MATLAB实现
➢%以每三个月的销售量经归一化处理后作为输入
P=[0.5152
0.8173 1.0000 ;
0.8173
计算误差函数对输出层的各神经元的偏导
数
。 o ( k )
p
e e yio w ho y io w ho
(
yio(k) h who
whohoh(k)bo)
who
hoh(k)
e
yio
(12oq1(do(k)yoo(k)))2 yio
(do(k)yoo(k))yoo(k)
(do(k)yoo(k))f(yio(k)) o(k)
1.0000 0.7308;
1.0000
0.7308 0.1390;
0.7308
0.1390 0.1087;
0.1390
0.1087 0.3520;
0.1087
0.3520 0.0000;]';
➢%以第四个月的销售量归一化处理后作为目标向量
T=[0.7308 0.1390 0.1087 0.3520 0.0000 0.3761];
BP神经网络模型
三层BP网络
输入层 x1
x2
隐含层
输出层
-
y1
z1
1
T1
y2
z2
-
2
bp神经网络实例分析

数据集划分
01
02
03
训练集
用于训练神经网络,占总 数据的70%-90%。
验证集
用于调整超参数和选择最 佳模型,占估模型的性能,占 总数据的10%-30%。
03
BP神经网络模型构建
神经元模型
神经元模型
神经元是神经网络的基本单元, 它模拟了生物神经元的基本功能,
误差计算
根据实际输出与期望输出计算误差。
权值调整
根据误差反向传播算法调整各层的权值和阈值。
迭代训练
重复前向传播和权值调整过程,直到达到预设的迭代次 数或误差要求。
02
BP神经网络实例选择与数据准备
实例选择
选择一个具有代表性的问题
为了展示BP神经网络的应用,选择一个具有代表性的问题,例如 分类、回归或聚类等。
成。
节点数量
02
每一层的节点数量需要根据具体问题来确定,过多的节点可能
导致过拟合,而节点过少则可能无法充分提取数据特征。
连接权重
03
连接权重是神经网络中非常重要的参数,它决定了神经元之间
的连接强度和信息传递方式。
激活函数选择
激活函数的作用
激活函数用于引入非线性特性,使得神经网络能够更好地处理复 杂的非线性问题。
误差反向传播
当实际输出与期望输出不符时,进入 误差反向传播阶段,误差信号从输出 层开始逐层向输入层传播,并根据误 差调整各层的权值和阈值。
训练过程
数据准备
准备训练数据和测试数据,并对数据进行预 处理,如归一化等。
网络初始化
为各层神经元设置初始权值和阈值。
前向传播
输入样本数据,通过正向传播计算每一层的输出 值。
3
bp神经网络

bp神经网络BP神经网络(Backpropagation Network)是一种被广泛应用于分类、预测和优化问题中的人工神经网络模型。
BP神经网络具有简单易懂、易于理解和易于实现的特点,因此在工程实践中被广泛应用。
BP神经网络的基本思想是将信息通过一层层的神经元传递,然后反向调节神经元的权重和偏置,从而实现对模型参数的优化。
BP神经网络通常包含输入层、隐层和输出层三个层次。
其中输入层用于接收输入数据,隐层用于处理输入数据,输出层用于给出模型的预测结果。
BP神经网络通过不断反向传播误差信号来调整各层神经元之间的连接权重,从而实现对模型参数的逐步优化。
BP神经网络的训练过程通常分为前向传播和反向传播两个阶段。
在前向传播阶段,输入数据被输入到神经网络中,经过一系列计算后得到输出结果。
在反向传播阶段,将输出结果与真实值进行比较,计算误差信号,并通过反向传播算法将误差信号逐层传递回到输入层,从而实现对神经网络参数(权重和偏置)的不断调整。
通过多次迭代,直到神经网络的输出结果与真实值的误差达到一定的精度要求为止。
BP神经网络的优点在于可以处理非线性问题,并且可以自适应地调整模型参数。
然而,BP神经网络也存在一些缺点,例如容易陷入局部极小值,训练速度较慢,需要大量的训练数据等等。
在实际应用中,BP神经网络已经被广泛应用于分类、预测和优化等方面。
例如,BP神经网络可以用于识别手写数字、预测股票市场走势、自动驾驶和机器人控制等方面。
另外,BP 神经网络还可以与其他机器学习算法相结合,共同解决各种复杂问题。
总之,BP神经网络是一种简单实用的人工神经网络模型,具有广泛的应用前景。
在实际应用中,需要根据具体问题对模型进行适当的改进和优化,以提高其预测精度和鲁棒性。
BP神经网络算法原理

隐藏层节点数
合理选择隐藏层节点数 可以提高像识别、语音识别、自然语言处理等领域有广泛应用,并且不断发展和完善。
隐含层
通过多层神经元的计算和传 递信息,提取输入数据的特 征。
输出层
输出神经元将经过计算后的 结果作为最终预测或分类的 结果。
前向传播算法
前向传播是从输入层到输出层的信息流传递过程,各层神经元依次计算并传 递信息,最终得到预测结果。
反向传播算法
反向传播是通过计算输出误差对权值和偏置进行更新,以最小化输出与实际值之间的误差。
权值更新与训练过程
1
初始化权值
随机初始化权值和偏置,开始训练过程。
2
前向传播计算
通过前向传播算法计算输出结果。
3
反向传播更新
根据误差计算反向传播梯度并更新权值和偏置。
优化技巧与常见问题
学习率
学习率的选择会影响算 法的收敛速度和稳定性。
过拟合
过拟合问题可能导致训 练集表现良好但测试集 表现不佳,需要采取正 则化等方法进行处理。
BP神经网络算法原理
BP神经网络算法是一种基于误差反向传播原理的机器学习算法,用于解决复 杂的非线性问题。
BP神经网络算法的基本思想
BP神经网络通过输入层、隐含层和输出层构成,利用前向传播和反向传播的 机制不断调整权值以减小输出与真实值之间的误差。
BP神经网络的结构
输入层
负责接收外部输入数据的层 级。
BP神经网络详细讲解

載师信号(期望输出信号)图1-7神经网络学习系统框图输入部接收外来的输入样本X,由训练部进行网络的权系数W调整,然后由输岀部输岀结果。
在这个过程中,期望的输出信号可以作为教师信号输入,由该教师信号与实际输出进行比较,产生的误差去控制修改权系数W学习机构可用图1—8所示的结构表示。
在图中,X,X2,…,X n,是输入样本信号,W,W,…,W是权系数。
输入样本信号X可以取离散值0”或1”输入样本信号通过权系数作用,在u产生输岀结果口WX,即有:u=B/VX =WX i +WX2 + …+WX n再把期望输岀信号丫(t)和u进行比较,从而产生误差信号e。
即权值调整机构根据误差e去对学习系统的权系数进行修改,修改方向应使误差e变小,不断进行下去,使到误差e为零,这时实际输出值u和期望输出值丫(t)完全一样,则学习过程结束。
期望辑出y图学可机构神经网络的学习一般需要多次重复训练,使误差值逐渐向零趋近,最后到达零。
则这时才会使输岀与期望一致。
故而神经网络的学习是消耗一定时期的,有的学习过程要重复很多次,甚至达万次级。
原因在于神经网络的权系数W有很多分量W,W,----W n ;也即是一个多参数修改系统。
系统的参数的调整就必定耗时耗量。
目前,提高神经网络的学习速度,减少学习重复次数是十分重要的研究课题,也是实时控制中的关键问题。
、感知器的学习算法感知器是有单层计算单元的神经网络,由线性元件及阀值元件组成。
感知器如图感知器的数学模型:v=f[加讯-e] (1-12)其中:f[.]是阶跃函数,并且有pl 2二主W凶-0工01 —1>u=SW i X^-0<O“1(1-13)9是阀值。
感知器的最大作用就是可以对输入的样本分类,故它可作分类器,感知器对输入信号的分类如下:卩,A类Y = * —B 类(1-14)1-9所示。
f [sw iX£-O]1时,输入样本称为A类;输岀为-1时,输入样本称为B类。
BP神经网络PPT全文

输出层与隐含层的激活函数可以不同,并且输出层
各单元的激活函数可有所区别
2024/8/16
26
2 多层网络的表达能力
按照Kolmogorov定理,任何一个判决均可用 前式所示的三层神经网络实现。
即: 只要给定足够数量的隐含层单元、适 当的非线性函数、以及权值, 任何由输入向输 出的连续映射函数均可用一个三层前馈神经网络 实现。
神经网络的计算通过网络结构实现;
不同网络结构可以体现各种不同的功能;
网络结构的参数是通过学习逐渐修正的。
2024/8/16
7
(1)基本的人工神经元模型
McCulloch-Pitts神经元模型
输入信号;链接强度与权向量;
信号累积
2024/8/16
激活与抑制
8
人工神经元模型的三要素 :
一组连接 一个加法器 一个激励函数
➢ 树突(dendrites), 接收来自外接的信息 ➢ 细胞体(cell body), 神经细胞主体,信息加工 ➢ 轴突(axon), 细胞的输出装置,将信号向外传递,
与多个神经元连接 ➢突触 (synapsse), 神经元经突触向其它神经元(胞体 或树突)传递信号
2024/8/16
5
(2)生物神经元的基本特征
5 假定:第l层为当前处理层;
其前一层l 1、当前层l、后一层l 1的计算单元序号为i, j,k;
位于当前层第j个计算单元的输出为Olj,j 1,..., nl
前层第i个单元到本层第j个单元的连接权值为ilj , i 1,..., nl1
本层第j个单元到后层第k个单元的连接权值为
l 1 jk
,
连接权值,突触连接强度
BP神经网络学习及算法

BP神经网络学习及算法1.前向传播:在BP神经网络中,前向传播用于将输入数据从输入层传递到输出层,其中包括两个主要步骤:输入层到隐藏层的传播和隐藏层到输出层的传播。
(1)输入层到隐藏层的传播:首先,输入数据通过输入层的神经元进行传递。
每个输入层神经元都与隐藏层神经元连接,并且每个连接都有一个对应的权值。
输入数据乘以对应的权值,并通过激活函数进行处理,得到隐藏层神经元的输出。
(2)隐藏层到输出层的传播:隐藏层的输出被传递到输出层的神经元。
同样,每个隐藏层神经元与输出层神经元连接,并有对应的权值。
隐藏层输出乘以对应的权值,并通过激活函数处理,得到输出层神经元的输出。
2.反向传播:在前向传播后,可以计算出网络的输出值。
接下来,需要计算输出和期望输出之间的误差,并将误差通过反向传播的方式传递回隐藏层和输入层,以更新权值。
(1)计算误差:使用误差函数(通常为均方差函数)计算网络输出与期望输出之间的误差。
误差函数的具体形式根据问题的特点而定。
(2)反向传播误差:从输出层开始,将误差通过反向传播的方式传递回隐藏层和输入层。
首先,计算输出层神经元的误差,然后将误差按照权值比例分配给连接到该神经元的隐藏层神经元,并计算隐藏层神经元的误差。
依此类推,直到计算出输入层神经元的误差。
(3)更新权值:利用误差和学习率来更新网络中的权值。
通过梯度下降法,沿着误差最速下降的方向对权值和阈值进行更新。
权值的更新公式为:Δwij = ηδjxi,其中η为学习率,δj为神经元的误差,xi为连接该神经元的输入。
以上就是BP神经网络的学习算法。
在实际应用中,还需要考虑一些其他的优化方法和技巧,比如动量法、自适应学习率和正则化等,以提高网络的性能和稳定性。
此外,BP神经网络也存在一些问题,比如容易陷入局部极小值、收敛速度慢等,这些问题需要根据实际情况进行调优和改进。
BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。
它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。
1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。
输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。
线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。
非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。
激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。
2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。
常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。
3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。
反向传播算法的核心思想是使用链式法则。
首先计算输出层的梯度,即损失函数对输出层输出的导数。
然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。
接着继续向输入层传播,直到更新输入层的权重和偏置。
在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。
4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。
权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。
梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经网络学习之 BP神经网络/u013007900/article/details/50118945目录第一章概述第二章BP算法的基本思想第三章BP网络特性分析3.1 BP网络的拓扑结构 (4)3.2 BP网络的传递函数 (5)3.3 BP网络的学习算法 (6)第四章BP网络的训练分解4.1前向传输(Feed-Forward前向反馈) (8)4.2逆向反馈(Backpropagation) (9)4.3 训练终止条件 (10)第五章BP网络运行的具体流程 (10)5.1网络结构 (10)5.2变量定义 (10)5.3误差函数: (11)第六章 BP网络的设计 (14)6.1 网络的层数 (14)6.2 隐层神经元的个数 (14)6.3 初始权值的选取 (15)6.4 学习速率 (15)BP网络的局限性 (15)BP网络的改进 (15)第一章概述神经网络是1986年由Rumelhart和McCelland为首的科研小组提出,参见他们发表在Nature 上的论文Learning representations by back-propagating errors。
BP神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
第二章 BP算法的基本思想多层感知器在如何获取隐层的权值的问题上遇到了瓶颈。
既然我们无法直接得到隐层的权值,能否先通过输出层得到输出结果和期望输出的误差来间接调整隐层的权值呢?BP算法就是采用这样的思想设计出来的算法,它的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。
•正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。
若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。
•反向传播时,将输出以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。
这两个过程的具体流程会在后文介绍。
BP算法的信号流向图如下图所示第三章 BP网络特性分析我们分析一个ANN时,通常都是从它的三要素入手,即1)网络拓扑结构;2)传递函数;3)学习算法。
每一个要素的特性加起来就决定了这个ANN的功能特性。
所以,我们也从这三要素入手对BP网络的研究。
3.1 BP网络的拓扑结构上一次已经说了,BP网络实际上就是多层感知器,因此它的拓扑结构和多层感知器的拓扑结构相同。
由于单隐层(三层)感知器已经能够解决简单的非线性问题,因此应用最为普遍。
三层感知器的拓扑结构如下图所示。
一个最简单的三层BP:BP网络采用的传递函数是非线性变换函数——Sigmoid函数(又称S函数)。
其特点是函数本身及其导数都是连续的,因而在处理上十分方便。
为什么要选择这个函数,等下在介绍BP网络的学习算法的时候会进行进一步的介绍。
单极性S型函数曲线如下图所示。
双极性S型函数曲线如下图所示。
BP网络的学习算法就是BP算法,又叫δ 算法(在ANN的学习过程中我们会发现不少具有多个名称的术语),以三层感知器为例,当网络输出与期望输出不等时,存在输出误差E ,定义如下:将以上误差定义式展开至隐层,有进一步展开至输入层,有由上式可以看出,网络输入误差是各层权值ωjκ、υij的函数,因此调整权值可改变误差E。
显然,调整权值的原则是使误差不断减小,因此应使权值与误差的梯度下降成正比,即:对于一般多层感知器,设共有h个隐层,按前向顺序各隐层节点数分别记为m1,m2,…,m h,各隐层输出分别记为y1,y2,…,y h,各层权值矩阵分别记为W1,W2,…,W h,W h+1,则各层权值调整公式为输出层第h隐层按以上规律逐层类推,则第一隐层权值调整公式容易看出,BP学习算法中,各层权值调整公式形式上都是一样的,均由3个因素决定,即:1.学习率η2.本层输出的误差信号δ3.本层输入信号Y(或X)其中输入层误差信号与网络的期望输出与实际输出之差有关,直接反应了输出误差,而各隐层的误差信号与前面各层的误差信号有关,是从输出层开始逐层反传过来的。
可以看出BP算法属于δ学习规则类,这类算法常被称为误差的梯度下降算法。
δ学习规则可以看成是Widrow-Hoff(LMS)学习规则的一般化(generalize)情况。
LMS学习规则与神经元采用的变换函数无关,因而不需要对变换函数求导,δ学习规则则没有这个性质,要求变换函数可导。
这就是为什么我们前面采用Sigmoid函数的原因。
综上所述,BP三要素如下图所示。
第四章 BP网络的训练分解训练一个BP神经网络,实际上就是调整网络的权重和偏置这两个参数,BP神经网络的训练过程分两部分:•前向传输,逐层波浪式的传递输出值;•逆向反馈,反向逐层调整权重和偏置;我们先来看前向传输。
4.1前向传输(Feed-Forward前向反馈)在训练网络之前,我们需要随机初始化权重和偏置,对每一个权重取[−1,1]的一个随机实数,每一个偏置取[0,1]的一个随机实数,之后就开始进行前向传输。
神经网络的训练是由多趟迭代完成的,每一趟迭代都使用训练集的所有记录,而每一次训练网络只使用一条记录,抽象的描述如下:首先设置输入层的输出值,假设属性的个数为100,那我们就设置输入层的神经单元个数为100,输入层的结点N i为记录第i维上的属性值x i。
对输入层的操作就这么简单,之后的每层就要复杂一些了,除输入层外,其他各层的输入值是上一层输入值按权重累加的结果值加上偏置,每个结点的输出值等该结点的输入值作变换前向传输的输出层的计算过程公式如下:对隐藏层和输出层的每一个结点都按照如上图的方式计算输出值,就完成前向传播的过程,紧接着是进行逆向反馈。
4.2逆向反馈(Backpropagation)逆向反馈从最后一层即输出层开始,我们训练神经网络作分类的目的往往是希望最后一层的输出能够描述数据记录的类别,比如对于一个二分类的问题,我们常常用两个神经单元作为输出层,如果输出层的第一个神经单元的输出值比第二个神经单元大,我们认为这个数据记录属于第一类,否则属于第二类。
还记得我们第一次前向反馈时,整个网络的权重和偏置都是我们随机取,因此网络的输出肯定还不能描述记录的类别,因此需要调整网络的参数,即权重值和偏置值,而调整的依据就是网络的输出层的输出值与类别之间的差异,通过调整参数来缩小这个差异,这就是神经网络的优化目标。
对于输出层:其中E j表示第j个结点的误差值,O j表示第j个结点的输出值,T j记录输出值,比如对于2分类问题,我们用01表示类标1,10表示类别2,如果一个记录属于类别1,那么其T1=0,T2=1。
中间的隐藏层并不直接与数据记录的类别打交道,而是通过下一层的所有结点误差按权重累加,计算公式如下:其中W jk表示当前层的结点j到下一层的结点k的权重值,E k下一层的结点k的误差率。
计算完误差率后,就可以利用误差率对权重和偏置进行更新,首先看权重的更新:其中λ表示表示学习速率,取值为0到1,学习速率设置得大,训练收敛更快,但容易陷入局部最优解,学习速率设置得比较小的话,收敛速度较慢,但能一步步逼近全局最优解。
更新完权重后,还有最后一项参数需要更新,即偏置:至此,我们完成了一次神经网络的训练过程,通过不断的使用所有数据记录进行训练,从而得到一个分类模型。
不断地迭代,不可能无休止的下去,总归有个终止条件。
4.3 训练终止条件每一轮训练都使用数据集的所有记录,但什么时候停止,停止条件有下面两种:1.设置最大迭代次数,比如使用数据集迭代100次后停止训练2.计算训练集在网络上的预测准确率,达到一定门限值后停止训练第五章BP网络运行的具体流程5.1网络结构输入层有n个神经元,隐含层有p个神经元,输出层有q个神经元。
5.2变量定义输入变量:x=(x1,x2,…,x n)隐含层输入变量:hi=(hi1,hi2,…,hi p)隐含层输出变量:ho=(ho1,ho2,…,ho p)输出层输入变量:yi=(yi1,yi2,…,yi q)输出层输出变量:yo=(yo1,yo2,…,yo q)期望输出向量:d o=(d1,d2,…,d q)输入层与中间层的连接权值:w ih隐含层与输出层的连接权值:w ho隐含层各神经元的阈值:b h输出层各神经元的阈值:b o样本数据个数:k=1,2,…,m激活函数:f(⋅)误差函数:第一步:网络初始化给各连接权值分别赋一个区间(−1,1)内的随机数,设定误差函数e,给定计算精度值ε和最大学习次数M。
第二步:随机选取随机选取第k个输入样本以及对应的期望输出x(k)=(x1(k),x2(k),…,x n(k))d o(k)=(d1(k),d2(k),…,d q(k))第三部:隐含层计算计算隐含层各神经元的输入和输出第四步:求偏导数利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数δo(k)第六步:修正权值利用输出层各神经元的δo(k)和隐含层各神经元的输出来修正连接权值w ho(k)。
第七部:修正权值利用隐含层各神经元的δh(k)和输入层各神经元的输入修正连接权值。
第八步:计算全局误差第九步:判断模型合理性判断网络误差是否满足要求。
当误差达到预设精度或者学习次数大于设计的最大次数,则结束算法。
否则,选取下一个学习样本以及对应的输出期望,返回第三部,进入下一轮学习。
第六章 BP网络的设计在进行BP网络的设计是,一般应从网络的层数、每层中的神经元个数和激活函数、初始值以及学习速率等几个方面来进行考虑,下面是一些选取的原则。
6.1 网络的层数理论已经证明,具有偏差和至少一个S型隐层加上一个线性输出层的网络,能够逼近任何有理函数,增加层数可以进一步降低误差,提高精度,但同时也是网络复杂化。
另外不能用仅具有非线性激活函数的单层网络来解决问题,因为能用单层网络解决的问题,用自适应线性网络也一定能解决,而且自适应线性网络的运算速度更快,而对于只能用非线性函数解决的问题,单层精度又不够高,也只有增加层数才能达到期望的结果。
6.2 隐层神经元的个数网络训练精度的提高,可以通过采用一个隐含层,而增加其神经元个数的方法来获得,这在结构实现上要比增加网络层数简单得多。
一般而言,我们用精度和训练网络的时间来恒量一个神经网络设计的好坏:(1)神经元数太少时,网络不能很好的学习,训练迭代的次数也比较多,训练精度也不高。
(2)神经元数太多时,网络的功能越强大,精确度也更高,训练迭代的次数也大,可能会出现过拟合(over fitting)现象。