数据的代表平均数加权平均数

合集下载

平均数与加权平均数

平均数与加权平均数

平均数与加权平均数平均数和加权平均数是数学中常用的统计概念,用于对一组数据或事件进行概括和描述。

平均数指的是一组数值的总和除以这组数值的个数,而加权平均数是根据每个数据的重要程度对其进行加权后得到的平均数。

下面将详细介绍平均数和加权平均数的计算方法、应用场景以及它们的特点。

一、平均数的计算方法平均数通常用于概括一组数据的集中趋势,计算方法简单、直观。

对于给定的一组数据x1,x2,x3,......,xn,平均数的计算公式为:平均数= (x1 + x2 + x3 + … + xn) / n其中,x1,x2,x3,......,xn表示数据集合中的各个数据,n表示数据的个数。

举例来说,对于数据集合{1,2,3,4,5},其中包含5个数据,它们的平均数计算公式为:平均数 = (1 + 2 + 3 + 4 + 5) / 5 = 15 / 5 = 3二、加权平均数的计算方法加权平均数是考虑到数据的重要程度后进行计算的一种平均数。

在实际应用中,不同数据可能具有不同的权重,因此简单的平均数无法全面反映数据的真实特征。

加权平均数通过给不同数据赋予不同的权重来解决这个问题,计算公式为:加权平均数= (x1*w1 + x2*w2 + x3*w3 + … + xn*wn) /(w1 + w2 + w3 + … + wn)其中,x1,x2,x3,......,xn表示数据集合中的各个数据,w1,w2,w3,......,wn表示相应数据的权重。

权重可以根据数据的重要程度或其他因素进行设定。

举例来说,假设一个学生的期末成绩由作业成绩(权重为40%)、考试成绩(权重为60%)组成,他的作业成绩为80分,考试成绩为90分,那么他的加权平均成绩计算公式为:加权平均成绩 = (80*0.4 + 90*0.6) / (0.4+0.6) = (32 +54) / 1 = 86三、平均数和加权平均数的应用场景平均数和加权平均数在实际生活中有广泛的应用。

初中数学数据分析知识点(详细全面)

初中数学数据分析知识点(详细全面)

第五讲、数据分析一、数据的代表(一)、(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++=叫做这n 个数的平均数,x 读作“x 拔”。

注:如果有n 个数n x x x ,,,21 的平均数为x ,则①n ax ax ax ,,,21 的平均数为a x ; ②b x b x b x n +++,,,21 的平均数为x +b ; ③b ax b ax b ax n +++,,,21 的平均数为a x b +。

(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。

(3)平均数的计算方法 ①定义法:当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x nx +++=②加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x k k ++=2211,其中n f f f k =++ 21。

③新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。

其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x '11=,a x x '22=,…,a x x n n '=。

)'''(1'21n x x x nx +++= 是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。

(4)算术平均数与加权平均数的区别与联系①联系:都是平均数,算术平均数是加权平均数的一种特殊形式(它特殊在各项的权相等,均为1)。

初中数学 第20章数据的分析 全章教案

初中数学 第20章数据的分析 全章教案

第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题20.1 数据的代表课时:六课时第一课时20.1.1 平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。

3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。

【课堂练习】1.教材P127练习第1,2题。

2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。

4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

数据的分析练习题

数据的分析练习题

数据的分析主要内容:1、数据的代表:平均数(理解好加权平均数的概念),中位数,众数 2、数据的波动:极差,方差 一、选择题1. 能够刻画一组数据离散程度的统计量是( )A .平均数B .众数C .中位数D .方差 2. 数据1,1,2,2,3,3,3的极差是( )A .1B .2C .3D .6 3.在一组数据3,4,4,6,8中,下列说法正确的是( )A .平均数小于中位数B .平均数等于中位数C .平均数大于中位数D .平均数等于众数 4.对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是( ) A. 平均数 B. 众数 C. 中位数 D. 方差 5该班学生身高的众数和中位数分别是( )A. 1.60, 1.59B. 1.59, 1.58C. 1.60,1.58D. 1.60, 1.60 6.如果一组数据12,,,n a a a 的方差是2,那么一组新数据122,2,,2n a a a 的方差是( )A.2B.4C.8D.167. 一组数据由五个正整数组成,中位数是3,且唯一众数是7,则这五个正整数的平均数是( )A .4 B.5 C .6 D .8 8.甲、乙两班举行电脑汉字辅人比赛,参赛学生每分钟输入汉字的个数统计结果如下表;某同学分析上表后得出如下结论:(1)甲、乙两班学生成绩平均水平相同;(2) 乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀); (3)甲班成绩的波动比乙班大,上述结论正确的是( ). A.①②③ B. ①② C.①③ D.②③ 9.样本方差的计算式S 2=120[(x 1-30)2+(x 2-30)]2+…+(x 20-30)2]中,数字20和30分别表示样本中的( )A.众数、中位数B.方差、标准差C.样本中数据的个数、平均数D.样本中数据的个数、中位数 10. 数据0,-1,4,1,x 的众数为-1,则这组数据的方差是( ) A .2B .518 CD .526 二、填空题11.已知5筐苹果的质量分别为(单位:kg );52,49,50,53,51,则这5筐苹果的平均质量为 kg . 1278那么射击成绩比较稳定的是 . 13.近年来,义乌市对外贸易快速增长.右图是根据我市2004年至2007年出口总额绘制的条形统计图,观察统计图可得在这期间我市年出口总额的极差是 亿美元. 14.数据6,8,8,x 的众数有两个,则这组数据的中位数是 . 15.为了解某校九年级学生每天的睡眠时间情况,随机调查了该校九年级20据此估计该校九年级学生每天的平均睡眠时间大约是 小时.16.现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.70米,方差分别为2S 甲= 0.28;2S 乙= 0.36,则身高较整齐的球队是 队(填“甲”或“乙”). 17.数据1,-3,4,-2的方差2S = . 18.小芳测得连续五天日最低气温并整理后得出下表:由于不小心被墨迹污染了一个数据,这个数据是 .19. 有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是 .20.数据123321a a a a a a a +++---,,,,,,的中位数是 . 21.则这些学生成绩的众数为 .22.若n 个数据x 1,x 2,x 3,…,x n 的方差为y ,平均数为m.(1) n 个新数据x 1+100,x 2+100,…,x n +100的方差是________,平均数为 _______ . (2) n 个新数据5x 1,5x 2,…5x n 的方差为 _______ ,平均数为 ____ . 三、解答题23.在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表:(1)问这个班级捐款总数是多少元?(2)求这30名同学捐款的平均数.24.下图是某篮球队队员年龄结构直方图,根据图中信息解答下列问题.(1)该队队员年龄的平均数.(2)该队队员年龄的众数和中位数.25.某校规定学生期末数学总评成绩由三部分构成:卷面成绩、•课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、•84,则她这学期期末数学总评成绩是多少?26.某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,下图记录的是这两名同学5次投篮中所投中的个数.(1)请你根据图中的数据,填写右表.(2)你认为谁的成绩比较稳定,为什么?(3)若你是教练,你打算选谁?简要说明理27.某研究性学习小组为了了解本校初一学生一天中做家庭作业所用的大致时间(时间以整数记,单位:分钟),对本校的初一学生做了抽样调查,并把调查得到的所有数据(时间)进行整理,分成五个时间段,绘制成统计图(如图所示),•请结合统计图中提供的信息,回答下列问题:(1)这个研究性学习小组所抽取样本的容量是多少?(2)在被调查的学生中,一天做家庭作业所用的大致时间超过120•分钟(•不包括120分钟)的人数占被调查学生总人数的百分之几?(3)这次调查得到的所有数据的中位数落在了五个时间段中的哪一段内?28.(本题8分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考。

期末复习:第八章 数据的代表

期末复习:第八章  数据的代表

期末复习:第八章 数据的代表[复习要求]1. 理解平均数、中位数、众数的含义,会求一组数据的平均数、中位数、众数,能从条形及扇形统计图中获取信息,求出相关数据的平均数、中位数、众数,能利用计算器求一组数据的算术平均数。

2. 能利用加权平均数解释现实生活中一些简单的现象。

重点、难点:能根据收集和提供的信息,熟练地求出一组数据的平均数、中位数、众数,并体会它们在不同情境中的应用与差别。

[知识概括] (一)平均数1. 算术平均数:()一般地,对于个数,,…,,我们把…叫做这个n x x x n x x x n n n 12121+++数的算术平均数,简称平均数,记为x .2. 加权平均数:实际问题中,一组数据里的各个数据的“重要程度”未必相同。

因而,在计算这组数据的平均数时,往往给每个数据一个“权”。

根据重要性的差异所求得的平均数称加权平均数。

注:(1)算术平均数是加权平均数的一种特殊情况即各项的权相等; (2)平均数与数据组中各个数据的变化相同。

(二)中位数一般地,n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

(三)众数一组数据中出现次数最多的那个数据叫做这组数据的众数。

(四)平均数、中位数和众数有哪些特征?(联系与区别) 1. 联系:平均数、中位数和众数都是数据的代表,它们刻画了一组数据的“平均水平”。

2. 区别:计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但它容易受极端值的影响。

中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。

一组数据中某些数据多次重复出现时,众数往往是人们尤为关心的一个量,但各个数据的重复次数大致相等时,众数往往没有特别意义。

(五)用计算器求平均数的一般步骤是:(1)打开计算器;(2)清除机器中原有统计数据; (3)输入数据;(4)显示结果;(5)退出。

加权平均数的表示

加权平均数的表示

加权平均数的表示
加权平均数(weightedaverage)是一种用于评估某一组数据的
综合数值的统计分析方法,它是将每个数据的权重和对数值的影响程度考虑在内,以此来求出该组数据的综合数值。

其定义可以由以下平均数公式得到:
加权平均数(X)=Cj x Wj/Wj
其中,Cj为数据组中第j个数据的取值,Wj为它的权重。

权重
是一个数值,它表示每个数据相对于整个数据组的重要程度,即对最终的数据综合值的影响程度,它可以是任何值,但是通常情况下,权重值都是大于0的实数。

加权平均数可以用于评估一组数据,权重的设置可以根据不同的需要而改变,当所分析的是某一时间内的重要指标时,可以把各指标的影响程度设定为加权平均数的权重,以此来对其进行分析。

加权平均数也可以用于评价投资者的投资表现。

这时,其权重可以由投资者的资金配置分布,即每种投资金额所承担的比例,来确定。

这样,投资者可以通过加权平均数来求出其资金配置的整体投资表现,也可以由此评估其未来投资行为。

加权平均数还可以用于商业决策分析中。

在这种情况下,加权平均数可以把不同的假设视为不同的投资项目,把不同的投资项目的影响程度视为不同的权重,通过加权平均数,可以评估未来商业决策的影响,从这种角度出发,进行有效的决策分析。

总的来说,加权平均数的应用非常广泛,它可以在统计分析、投
资决策和商业决策分析中扮演重要的角色。

有效地使用加权平均数,可以帮助人们更好地进行数据分析和决策,从而达到经济效果最佳。

《平均数与加权平均数》

《平均数与加权平均数》

在预测股票市场时,加权平均数可以 用来考虑不同股票的权重和价格变化 ,从而预测市场的整体趋势。
03
数据分析
在数据分析中,加权平均数可以用来 分析不同类别的数据,例如人口统计 数据、考试成绩等,以反映整体的状 况。
03
平均数与加权平均数 的比较
定义与计算
平均数
定义为数据集中所有数值的和除以数值的数量,通常用算术平均数来表示。计算公式为: $\frac{\sum_{i=1}^{n} x_i}{n}$。
加权平均数是描述一组数据中不同数值的 相对重要性的指标,通常用于衡量数据的 综合水平。计算方法为将每个数值乘以对 应的权重后求和,再除以权重的总和。
平均数和加权平均数广泛应用于统计学、 经济学、管理学等领域,用于分析数据的 整体特征和不同数据之间的相对关系。
平均数和加权平均数也存在一定的局限性 ,如易受极端值影响、无法反映数据的分 布情况等。
展望:未来在数据分析中的应用和发展趋势
数据分析技术的进步
随着数据分析技术的不断发展, 未来平均数和加权平均数将更多 地与其他数据分析方法结合使用 ,以提供更全面、准确的数据分 析结果。
数据质量与数据源的 改善
随着数据质量不断提高和数据源 不断丰富,平均数和加权平均数 将有更多应用场景,如金融风控 、社会治理等领域。
平均数与加权平均数
2023-11-11
目 录
• 平均数 • 加权平均数 • 平均数与加权平均数的比较 • 平均数与加权平均数的实际应用 • 总结与展望
01
平均数
定义与计算
定义
平均数是所有数值的和除以数值的数量。
计算方法
将一组数据相加后除以数据的个数。
平均数的性质和特点

平均数与加权平均数

平均数与加权平均数

平均数与加权平均数平均数与加权平均数是统计学中常用的概念,用于描述一组数据的中心位置。

本文将详细介绍平均数和加权平均数的定义、计算方法以及它们在实际应用中的意义。

一、平均数平均数是一组数据的总和除以数据的个数,用于表示这组数据的中心位置。

它是最常见、最简单的描述中心位置的指标。

计算平均数的公式如下:平均数 = 数据的总和 / 数据的个数平均数的计算方法简单直观,但在某些情况下并不能很好地描述一组数据的中心位置。

这时就需要引入加权平均数的概念。

二、加权平均数加权平均数是对一组数据进行加权处理后得到的平均值。

在加权平均数中,不同的数据具有不同的权重,权重越大表示该数据对平均值的贡献越大。

计算加权平均数的公式如下:加权平均数 = (数据1 × 权重1 + 数据2 × 权重2 + ... + 数据n × 权重n)/ (权重1 + 权重2 + ... + 权重n)加权平均数在实际应用中具有重要意义。

它常用于计算指标的平均值,如学生成绩的加权平均分、产品的加权平均价格等。

通过给不同的数据赋予不同的权重,加权平均数能够更准确地反映数据的实际情况。

三、平均数与加权平均数的应用平均数和加权平均数在各个领域都有广泛的应用。

以下是一些常见的应用场景:1. 统计数据分析:在统计学中,常常使用平均数和加权平均数来分析数据的中心位置。

通过计算平均数和加权平均数,可以获得对数据整体特征的初步了解。

2. 经济学:在经济学中,加权平均数常用于计算价格指数,如消费者物价指数(CPI)和生产者物价指数(PPI),以反映物价的变动情况。

3. 财务管理:在财务管理中,加权平均数被广泛应用于计算企业的成本和投资回报率。

例如,加权平均成本资本(WACC)被用来衡量企业的资金成本,从而影响决策者的投资决策。

4. 市场营销:在市场营销中,平均数和加权平均数被用于计算市场份额和顾客满意度指数。

这些指标可以帮助企业了解市场的竞争力和顾客对产品或服务的评价。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1.1 平均数---加权平均数
一、学习目标:
1. 理解数据的权”和加权平均数的意义。

2. 会计算加权平均数。

学习重点:会计算加权平均数。

学习难点:对权”的理解。

二、知识链接:简单算术平均数(课前预习)
三、导学过程:
问题1:(先独立完成,然后小组分工合作交流,选代表展示。


一家公司打算招聘一名英文翻译•对甲、乙两名应试者进行了听、说、读、写的英语水平
测试,他们的各项成绩(百分制)如下表所示:
1. 如果这家公司想找一名综合能力较强的翻译,那听、说、读、写成绩按多少比确定?计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?说明方法•
2. 如果公司要招聘一名笔译能力较强的翻译,那听、说、读、写成绩按2 :1 :3 :4的比确定,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?说明方法•
归纳:一般地,若n个数X1 , X2,…,n x的权分别是W1 , W2…,W n,贝U 叫做这n个数的加权平均数. 权的意义:
思考:如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按 3 : 3 : 2 : 2的比确定,那么甲乙两人谁会被录取?
问题2:(小组合作完成)
一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分•各项成绩均按百分制,进入决赛的前两名选手的单项成绩如下表所示:
2、假如你是A选手,你能设计一种合理方案,使自己获得第一名吗?
四、课堂检测
1、有m个数的平均数是x, n个数的平均数是y,则这(m+n)个数的平均数为()
A x + y
B x + y
C mx + ny
D mx + ny
2 m+n m+n 2
2、某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下表所示:
(1)如果公司认为面试和笔试成绩同等重要,从他们的成绩看,谁将被录取?
(2)如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们 6 和4的权,计算甲、乙两人各自的平均成绩,看看谁将被录取?
五、课堂小结
六、作业教科书习题20.1
七、
113页第1题、122页第5题。

相关文档
最新文档