静电场高斯定理公式

合集下载

电场的高斯定理

电场的高斯定理

= = =
−σ1 +σ 2ε o
σ1 −σ2
σ
2ε 1+
σo
2
2ε o
σ EA = EC = 0
板外电场为 0 。
E2
=
σ2 2ε o
r 2i
r i
带电平板电容
r 器间的场强 i
EB
=
σ εo
均匀带电体,体密度为ρ,
空腔内任一点的场?
O1
rv1 rv2 O2
E= ρ r 3ε 0
v E1
=
ρ 3ε 0
(3)正确理解 (4)
∑q = 0
,不是E=0,只是积分为零
r
由库伦定律
E
给定电荷分布 由高斯定理
Φr E
(通常情况) (电荷对称分布)
(5)高斯定律适用于静电场还适用于随时间变化的电场
高斯定理可以证明电场线有如下性质: 电场线发自于正电荷, 终止于负电荷, 在无电荷处不间断。
证: 设P点有电场线发出
解:
r l
选择高斯面——同轴柱面
上下底r面 Err⊥dSr 侧面 E // dS,且同一
r
柱面上E 大小相等。
E
r
r dSr E
∫ ∫ ∫ Φ =
rr E ⋅dS
S
=
rr E ⋅dS +

rr E ⋅dS
上下底
= E ⋅ 2πrl Φ = lλ
εo
E= λ 2 πε o r
方向:垂直带电线
无限长均匀带电直线 E = λ
因为 qin = 0 ,有
E=0
S
球层内的空腔中没有电场。
0 (r < R1)

一、高斯定理文字叙述:在任何静电场中,通过任一闭合曲面的电通量

一、高斯定理文字叙述:在任何静电场中,通过任一闭合曲面的电通量

一、 高斯定理文字叙述:在任何静电场中,通过任一闭合曲面的电通量等于这闭合曲面所包围的自由电荷的代数和.数学表达式为Φe ⎰∑===ni iq dS D 1cos θ (9-18)不严格的证明:第一种情况:点电荷的电场,闭合曲面(称高斯面)是以点电荷为球心、以r 为半径的球面:球面上各点电位移的大小相等,方向均向外(设),与面积元d S 的方向相同,所以Φe⎰⎰==⋅==q r r q dS r q dS D 222440cos 4cos πππθ若点电荷为负电荷,即q=-∣q ∣,则⎰⎰=-=-=⋅==Φqq r r q dS r q dS D e 22244cos 4cos ππππθ与r 无关,即与球面的半径无关.第二种情况:点电荷的电场,任意闭合曲面:S ’为任意闭合曲面,S 为球面,S 和S ’包围同一点电荷Q ,S ’与S 之间并无其他自由电荷.由于电位移线的连续性,可以看出通过闭合曲面S ’的电位移线的数目和通过球面S 的电位移线的数目是一样的.因此通过闭合曲面S ’的电通量Φe 的量值也等于q .第三种情况:点电荷在任意闭合曲面外:点电荷q 在闭合曲面S ”的外面时,可以看到进入该曲面的电位移线的数目与穿出该曲面的电位移线的数目也是相等的.因为我们规定穿出为正、进入为负,因此通过该闭合曲面的总电通量为零.第四种情况:点电荷系的电场:设空间有(n+m )个点电荷时,其中n 个在闭合曲面内,m 个在闭合曲面外.根据电场叠加原理:m n n n D D D D D +++++++=11,可得:∑⎰⎰⎰⎰⎰=++=++++=∙++∙+∙++∙=∙=Φni in m n n n e q q q S d D S d D S d D S d D S d D 11110式中m 为空间自由点电荷的总数,而n 为闭合曲面内包围的自由点电荷的数目,(m-n )为闭合曲面外的自由点电荷的数目,因此可得通过任一闭合曲面的电通量等于这闭合曲面所包围的自由电荷的代数和.可以证明 高斯定理是普遍成立的. 注:1.物理意义:说明静电场是有源场(静电场的特性之一),静电场的源就是正电荷和负电荷(负源).2.要注意区分通过闭合曲面的电通量(D 的通量)与闭合曲面上每一点的D :(1) 通过任一闭合曲面的电通量只与闭合曲面内的自由电荷有关,但闭合曲面上每一点的D 却与空间(闭合曲面内、外)的所有电荷有关.(2)0=∙⎰S d D,不一定曲面上每一点的D 都是零;也不一定曲面内没有自由电荷,只不过曲面内自由电荷的代数和为零(即净电荷为零)罢了.3.高斯定理是普遍成立的,但用来求电场时只能用于具有某些对称性的电场.四、高斯定理的应用 1.均匀带电球体的电场设有一电介质球体,半径为R ,均匀带电,电荷体密度为ρ,总电荷为q ,如图9-16.现在计算球内和球外任意点p 1和p 2处的电位移.设球体的介电系数为ε1,球外电介质的介电系数为ε2.先研究球内p 1处的情况.通过p 1点作半径为的同心球面S 1(r 1<R),面积等于4πr 12.由于对称关系,球面S 1上各点的电位移应与球面相垂直且有相同的量值,假定为D 1,相应地通过球面S 1的电通量为4πr 12 D 1.已知球面S 1所包围的电荷为(4/3)πr 31ρ.所以由高斯定理,得3311211134344cos R q r D r dS D dS D e πππθ====Φ⎰⎰相应地,因D 1=ε1E 1,得1311114r R qD E πεε==(9-19a) 由此可见,对均匀带电球体来说.球内任何点的场强与该点到球心的距离成正比,在球心处场强为零.再来研究球外p 2点处的情况.通过p 2点作半径为r 2的同心球面S 2(r 2> R),面积为4πr 22.同理,设球面S 2上电位移的量值为D 2.相应地,通过球面S 2的电通量为4πr 22 D 2.已知球面S 2所包的电荷为q ,所以按高斯定理得4πr 22 D 2 =q所以2224r qD π=相应地,因D 2=ε2E 2,得2222224r qD E πεε==(9-19b) 上式与点电荷的场强公式完全相同,可见均匀带电球体在球外一点产生的场强,相当于全部电荷集中在球心上时点电荷产生的场强 .场强与距离r 的关系,以及电位移与距离r 的关系,分别如图9-17所示(有何区别?为什么?)2.均匀带电球面的电场设有一个球面,半径为R ,表面均匀带电,电荷面密度为σ,总电量为q ,即q=4πR 2σ.显然,可用与带电球体相同的方法,求得球内任一点的电位移和场强均为零;即D=0,E=0 (均匀带电球面内) (9-20a)而球外任一点的电位移和场强则与带电球体的球外电场相同,即在球外任一点(与球心相距为r)处,224rq D π=2224r qE πε=式中ε2.是球外电介质的介电系数.均匀带电球面内外的场强与r 的关系如图9-18所示. 3.无限大均匀带电平面的电场设有无限大均匀带电平面,平面的电荷面密度为σ.在靠近平面中部而距离平面不远的区域内,由于对称关系,可以确定电场是均匀的,而且场强垂直于平面(田9-19).局限在上述区域内的电场,称为无限大均匀带电平面的电场.为了计算这个电场的场强,可通过平面上一小面积ΔS ,作一封闭柱面S ,柱面的轴线和平面正交,两底面的面积都等于ΔS ,按高斯定理,通过整个S 面的电通量应等于S 面所包围的自由电荷的代数和,即Φe =∮Dcos θdS=∫底面1Dcos θdS+∫底面2Dcos θdS+∫侧面Dcos θdS = D (ΔS ) + D (ΔS )+0=∑q 这里,通过柱体侧面的电通量等于零(因为侧面上各处θ=π /2).通过两底面的电位移线都与底面正交,而且都是向外的(设σ为正值),所以θ=0,cos θ=1.设D 为两底面上的电位移,可知通过两底面的电通量等于D(ΔS) + D (ΔS).已知s 面所包围的总电荷为σ(ΔS),所以 D (ΔS) + D (ΔS) =σ(ΔS)从而求得 D=σ/2或02εσ=E (真空中)εσ2=E (无限大均匀电介质中) 可见在无限大均匀带电平面的电场中,各点的场强与离开平面的距离无关.(上述结果与例题9—2中用积分计算所得的结果一致,但这里的计算简单得多.)4.无限长均匀带电圆柱面的电场设有无限长均匀带电圆柱面,半径为R ,电荷面密度为σ(设σ为正).由于电荷分布的轴对称性,可以确定,在靠近圆柱面中部离开圆柱面轴线的距离比圆柱面的长度小得多的地方(在这些地方才可以将圆柱面看成是无限长的),带电圆柱面产生的电场也具有轴对称性,即离开圆柱面轴线等距离各点的场强大小相等,方向都垂直于圆柱面而向外,如图9—20所示.局限于上述区域的电场称为无限长均匀带电圆柱面的电场.为了求无限长圆柱面外任一点p 处的场强,可过p 点作一封闭圆柱面,柱面高为l ,底面半径为r ,轴线与无限长圆柱面的轴线相重合.由于封闭圆柱面的侧面上各点电位移D 的大小相等,方向处处与侧面正交,所以通过该侧面的电通量是2πrlD ;通过两底面的电通量为零.而圆柱面所包围的电荷为σ2πRl,所以按高斯定理得2πrlD=σ2πR l 由此算出 D=R σ/r 相应地,由D=εE ,得 E=R σ/r ε式中ε是圆柱面外电介质的介电系数.如果令λ=2πR σ表示圆柱面每单位长度的电量,则上两式可化为D=λ/2πr E=λ/2πεr由此可见,无限长均匀带电圆柱面在柱外各点产生的场强,相当于其电荷全部集中在其轴线上的无限长均匀带电直线产生的场强 (参看例题9—1).根据同样的讨论,可知带电圆柱面内部的场强等于零.各点的场强随各该点到带电圆柱面轴线的距离r 的变化关系.如图9—20所示.小结:从上面几个例子中可以看出,在有些情况下,利用高斯定理计算带电系统的场强是很方便的.问题的关键在于找到合适的闭合面使∮Dcos θdS 易于计算,显然,当带电系统均匀带电并具有如上各例的对称性时,就能做到这一点.用高斯定理求场强的步骤: 1.选高斯面(闭合曲面):找到合适的闭合面使∮Dcos θdS 易于计算,例如使电场强度都垂直于这个闭合面的全部或一部分,而且大小处处相等(这时D 可以提出积分号外);或者使一部分场强与该面平行,因而通过这部分面积的电通量为零.1. 求Φe ⎰=dS D θcos2. 求Σq i 内3. 求D 的大小和方向4. 求E =D /ε(记忆:D =εE )。

静电场中的高斯定理说明

静电场中的高斯定理说明

静电场中的高斯定理说明
高斯定理是静电场的基本方程之一,它给出了电场强度在任意封闭曲面上的面积分和包围在封闭曲面内的总电量之间的关系。

该定理表明静电场是有源性的,即电场线只能始于正电荷,终于负电荷,即静电场是有源场。

高斯定理的数学表达式为:通过任意闭合曲面的电通量等于该闭合曲面所包围的所有电荷量的代数和与电常数之比。

其中,电通量是指单位时间内通过任意闭合曲面的电荷量。

在静电场中,高斯定理可以用来计算场强的大小和方向。

例如,在一点电荷周围,高斯定理可以告诉我们,在该点周围,电场强度的大小和方向是如何随时间变化的。

此外,高斯定理还可以用于计算带电物体周围的电场强度,以及判断电荷分布是否符合静电场的基本规律。

高斯定理是静电场中非常重要的概念之一,对于我们理解静电场的本质和特性具有重要作用。

静电场的高斯定理

静电场的高斯定理
向平面)。
例7-10 求电荷呈“无限长”圆柱形轴对称均匀分布时 所激发的电场强度。
解:电场分布也应有柱对称性,方向沿径向。 作与带电圆柱同轴的圆柱形高斯面,
高为h,半径为r
•当r>R 时,
sE dS 侧面 E dS E 2 r h 为什么?
r h
E 2 r h h 0
P点的场强
E 2 0 r
1
0
d V
V
关于高斯定理的几点讨论
以上是通过用闭合曲面的电通量概念来说明高斯 定理,仅是为了便于理解而用的一种形象解释, 不是高斯定理的证明
高斯定理是在库仑定律基础上得到的,但是前者 适用范围比后者更广泛。后者只适用于真空中的 静电场,而前者适用于静电场和随时间变化的场, 高斯定理是电磁理论的基本方程之一。
③ 场源电荷为无限长均匀带电直线、均匀带电直圆柱面、直 圆柱体或同轴导体圆筒等,则电场的分布具有柱对称性。
(2) 选取高斯面
用高斯定理求场强时,选取恰当的高斯面是解题的关键。
选取高斯面的原则:
① 选取的高斯面必须通过所考查的场点。 ② 应使高斯面上各点的场强大小相等, 方向与该处面元 的
法线平行(这样则可将E提到积分号外,只对面积积分); 或者使高斯的部分面上各点场强大小相等,方向与 的法线 平行,另一部分面上各点场强为零或场强的方向与面元的 法线垂直(即通过这部分的E通量为零)。
高斯定理解题步骤: 总结
(1)分析电场的对称性
根据题意画出示意图,分析电场的分布情况 (最好画出电场 线),看是否具有某种特殊的对称性,这可从产生电场的场 源电荷的分布看出。
常见的情况有以下几种:
① 场源电荷为均匀带电球面、均匀带电球体、同心的均匀带 电导体球壳等,则电场的分布具有球对称性;

大学物理常用公式(电场磁场 热力学)

大学物理常用公式(电场磁场 热力学)

第四章 电 场一、常见带电体的场强、电势分布2)均匀带电球面(球面半径 )的电场:3)无限长均匀带电直线(电荷线密度为): E = ,方向:垂直于带电直线。

2r( rR ) 4)无限长均匀带电圆柱面(电荷线密度为):E =2r (rR )5)无限大均匀带电平面(电荷面密度为)的电场: E =/20 ,方向:垂直于平面。

二、静电场定理 1、高斯定理:e = ÑE v dS v = q 静电场是有源场。

Sq 指高斯面内所包含电量的代数和;E 指高斯面上各处的电场强度,由高斯面内外的全 部电荷产生; Ñ E vdS v 指通过高斯面的电通量,由高斯面内的电荷决定。

2、环路定理: Ñ E v dl v =0 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统: E v = E v i ;连续电荷系统: E v = dE v i =12、利用高斯定理求场强 四、求电势的两种方法n1、利用电势叠加原理求电势 分离电荷系统:U =U i ;连续电荷系统: U = dU i =1电势零点v v 2、利用电势的定义求电势 U =电势零点Edl五、应用vv b点电荷受力: F = qE电势差: U ab =U a -U b = b EdraE =1 qU =q4r 24r1)点电荷:E =0 (rR ) q2 (rR ) 4r 2U =q (r R ) 4r q (r R ) 4Ra 点电势能:W a = qU a由 a 到 b 电场力做功等于电势能增量的负值 A ab = -W = -(W b -W a )六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为 0,导体是一个等势体。

2)、导体表面的场强处处垂直于导体表面。

E v ⊥表面。

导体表面是等势面。

2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。

高斯定理概念

高斯定理概念

高斯定理概念
高斯定理是电磁学中的一个重要定理,它描述了电场与电荷分布之间的关系。

根据高斯定理,电场通过一个封闭曲面的总通量等于该曲面内的电荷总量除以真空介电常数。

具体来说,高斯定理可以表述为:一个封闭曲面S内的电场E 的通量Φ等于该曲面内的电荷量Q除以真空介电常数ε0。

数学公式为:∮S E·dS = Q/ε0,其中∮表示对曲面S上所有微元面积求积分,E表示电场强度矢量,dS表示微元面积的矢量法向量,Q表示曲面S内的总电荷量,ε0表示真空介电常数。

高斯定理的应用十分广泛,可用于计算电场强度、电荷分布、电容等问题。

同时,高斯定理还为静电场的理论研究提供了一个重要工具,它将复杂的空间分布电荷问题转化为简单的电荷量问题。

静电场 高斯定理

静电场的高斯定理是静电学中的一个重要定理,它反映了静电场的一个基本性质,即静电场是有源场,其源即是电荷。

高斯定理也称为高斯通量理论,或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指这个定理,也有其它同名定理)。

静电学上表示闭曲面内的电荷之和与产生的电场在该闭曲面上的电通量积分的关系,高斯定律表明了在闭合曲面中电荷分布与产生的电场之间的关系,高斯定律在静电场的情况下,类似于应用于磁场学的安培定律,两者都集中在麦克斯韦方程组中,由于数学上的相似性,高斯定律也适用于其它由平方反比律决定的物理量,例如引力或者辐照度。

高斯定理直接由库仑定律导出,完全依赖于电荷间作用力的平方反比定律,当高斯定理应用于静电平衡条件下的金属导体时,可以得出导体内部没有净电荷的结论,因此测量导体内部是否有净电荷是验证库仑定律的重要方法。

拓展:静电场,指的是观察者与电荷量不随时间发生变化的电荷相对静止时所观察到的电场。

它是电荷周围空间存在的一种特殊形态的物质,其基本特征是对置于其中的静止电荷有力的作用,库仑定律描述了这个力。

静电场高斯定理


q
0
高 斯 面

l
q

可得
E外
2 0 r
E
r
l
课堂练习:
求均匀带电圆柱体的场强分布,已知R,
rR
2 E 2rl r l 2 0 R
l r R E 2rl 0 r rR 2 2 0 R E r
dS E
电通量=味道;闭合曲面=包子皮; 电量的代数和=馅
q
2、定理的验证 ⑴ 点电荷的电场 a、点电荷位于闭 球面中心
+
r
e E dS S
S
q 4 0 r
2
2
r0 dS
q 4 0 r
2
dS
S

q 4 0 r
2
4r
r R时
e E1 dS
电通量
E 具有球对称
作高斯面——球面
E1 dS E1 4r 2
电量
qi 0
s1
用高斯定理求解 2 E1 4r 0 E1 0
+ R r + + + + + +
+
+ +
+ q + + + + +
E
r R时
4、高斯定理的意义 ⑴ 反映了静电场是有源场 ⑵ 在电荷分布具有特殊对称性时,可利用高 斯定理求解场强分布
5、理解上的注意点 ⑴ E、q、φe是三个不同的物理量 ⑵ E与φe的关系为φe=∮E· dS ⑶ q与φe的关系为φe=∑q/ε0 ⑷ φe=0只说明Σq内=0

静电场中的高斯定理

静电场中的高斯定理:高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。

可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。

表达式为01()1/n i i S E ds q φε==∙=∑⎰⎰ (1)高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。

典型情况有三种:1) 球对称性, 如点电荷, 均匀带电球面或球体等;2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。

根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。

选取的原则是:○1 待求场强的场点必须在高斯面上;○2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○3 与E 垂直的那部分高斯面上各点的场强应相等;○4 高斯面的形状应是最简单的几何面。

最后由高斯定理求出场强。

高斯定理说明的是通过闭合曲面的电通量与闭合曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。

但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。

下面举一些例子来说静电场中高定理的应用:例1:一半径为R 的带电球体,其电荷体密度分布为()Ar r R ρ=≤,0()r R ρ=>,A 为大于零的常量。

大学物理常用公式(电场磁场-热力学)

第四章 电 场一、常见带电体的场强、电势分布 1)点电荷:2014q E r πε=04q U rπε=2)均匀带电球面(球面半径R )的电场:200()()4r R E qr R r πε≤⎧⎪=⎨>⎪⎩00()4()4qr R r U q r R R πεπε⎧>⎪⎪=⎨⎪≤⎪⎩3)无限长均匀带电直线(电荷线密度为λ):02E rλπε=,方向:垂直于带电直线。

4)无限长均匀带电圆柱面(电荷线密度为λ): 00()()2r R E r R rλπε≤⎧⎪=⎨>⎪⎩5)无限大均匀带电平面(电荷面密度为σ)的电场:0/2E σε=,方向:垂直于平面。

二、静电场定理 1、高斯定理:0e Sq E dS φε=⋅=∑⎰静电场是有源场。

q ∑指高斯面内所包含电量的代数和;E指高斯面上各处的电场强度,由高斯面内外的全部电荷产生;SE dS ⋅⎰指通过高斯面的电通量,由高斯面内的电荷决定。

2、环路定理:0lE dl⋅=⎰ 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统:1ni i E E ==∑;连续电荷系统:E dE =⎰2、利用高斯定理求场强 四、求电势的两种方法1、利用电势叠加原理求电势 分离电荷系统:1nii U U==∑;连续电荷系统: U dU =⎰2、利用电势的定义求电势 rU E dl =⋅⎰电势零点五、应用点电荷受力:F qE = 电势差: bab a b aU U U E dr =-=⋅⎰a由a 到b六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为0,导体是一个等势体。

2)、导体表面的场强处处垂直于导体表面。

E ⊥表表面。

导体表面是等势面。

2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。

2)导体腔内无电荷: 电荷都分布在导体外表面,空腔内表面无电荷。

3)导体腔内有电荷+q ,导体电量为Q :静电平衡时,腔内表面有感应电荷-q ,外表面有电荷Q +q 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静电场高斯定理公式
静电场的高斯定理公式为S(E·da)=4π*S(ρdv),这里S()是积分符号等等。

高斯定理也称为高斯通量理论,或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式,通常情况的高斯定理都是指该定理,也有其它同名定理。

在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。

高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。

高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。

因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。

相关文档
最新文档