解析几何第四版复习重点第二章轨迹与方程

解析几何第四版复习重点第二章轨迹与方程
解析几何第四版复习重点第二章轨迹与方程

第二章 轨迹与方程

§2.1平面曲线的方程

1.一动点M 到A )0,3(的距离恒等于它到点)0,6(-B 的距离一半,求此动点M 的轨迹方程,并指出此轨迹是什么图形?

解:动点M 在轨迹上的充要条件是MB MA 21=

。设M 的坐标),(y x 有 2222)6(2

1)3(y x y x ++=+- 化简得36)6(22=+-y x 故此动点M 的轨迹方程为36)6(22=+-y x

此轨迹为椭圆

2.有一长度为a 2a (>0)的线段,它的两端点分别在x 轴正半轴与y 轴的正半轴上移动,

是求此线段中点的轨迹。A ,B 为两端点,M 为此线段的中点。 解:

如图所示 设(,),A x o (,)B o y .则(,)22x y M .在Rt AOB 中有

222()(2)x y a +=.把M 点的坐标代入此式得: 222()x y a +=(0,0)x y ≥≥.∴此线段中点的轨迹为222()x y a +=

3. 一动点到两定点的距离的乘积等于定值2m ,求此动点的轨迹. 解:设两定点的距离为2a ,并取两定点的连线为x 轴, 两定点所连线段的中垂线为y 轴.现有:2AM BM m ?=.设(,)M x y 在Rt BNM 中 2

22()a x y AM ++=(1)

在Rt BNM 中222()a x y BM -+=.(2) 由(1)(2)两式得: 22222244

()2()x y a x y m a +--=-. §2.2 曲面的方程

2、在空间,选取适当的坐标系,求下列点的轨迹方程:

(1)到两定点距离之比为常数的点的轨迹;

(2)到两定点的距离之和为常数的点的轨迹;

(3)到两定点的距离之差为常数的点的轨迹;

(4)到一定点和一定平面距离之比等于常数的点的轨迹。

解:(1)取二定点的连线为x 轴,二定点连接线段的中点作为坐标原点,且令两距离之比的常数为m ,二定点的距离为a 2,则二定点的坐标为)0,0,(),0,0,(a a -,设动点),,(z y x M ,所求的轨迹为C ,则

222222)()(),,(z y a x m z y a x C z y x M +++=++-?∈

亦即])[()(2222222z y a x m z y a x +++=++-

经同解变形得:0)1()1(2))(1(2222222=-++-++-a m x m a z y x m

上式即为所要求的动点的轨迹方程。

(2)建立坐标系如(1),但设两定点的距离为c 2,距离之和常数为a 2。设动点),,(z y x M ,要求的轨迹为C , 则a z y c x z y c x C z y x M 2)()(),,(222222=++++++-?∈ 亦即222222)(2)(z y c x a z y c x +++-=++-

两边平方且整理后,得:)()(2222222222c a a z a y a x c a -=++- (1) 222c a b c a -=∴>令

从而(1)为22222222b a z a y a x b =++

即:22222222b a z a y a x b =++

由于上述过程为同解变形,所以(3)即为所求的轨迹方程。

(3)建立如(2)的坐标系,设动点),,(z y x M ,所求的轨迹为C , 则a z y c x z y c x C z y x M 2)()(),,(222222±=++++++-?∈

类似于(2),上式经同解变形为:122

2222=--c

z b y a x 其中 )(222a c a c b >-= (*) (*)即为所求的轨迹的方程。

(4)取定平面为xoy 面,并让定点在z 轴上,从而定点的坐标为),0,0(c ,再令距离之比为m 。

设动点),,(z y x M ,所求的轨迹为C ,则

z m z y x C z y x M =++?

∈222),,( 将上述方程经同解化简为:02)1(22222=+--++c cz z m y x (*)

(*)即为所要求的轨迹方程。

高三解析几何:动点轨迹方程

精锐教育学科教师辅导讲义 学员编号: 年 级:高二 课 时 数:3 学员姓名: 辅导科目:数学 学科教师: 授课类型 T (动点轨迹方程) C (求解轨迹方法) T (轨迹求解提高) 授课日期及时段 教学内容 一、同步知识梳理 知识点1: 曲线的方程和方程的曲线: 一般地,如果某曲线C 与方程(,)0F x y =之间有以下两个关系: ① 曲线C 上的点的坐标都方程(,)0F x y =的解; ② 以(,)0F x y =方程的解为坐标的点都是曲线C 上的点,此时,把方程(,)0F x y =; 叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线. 知识点2:求轨迹方程的一般步骤:(以提问为主,让学生回答) ① 建立适当的直角坐标系(如果已给出,本步骤省略); ② 设曲线上任意一点的坐标为(),x y ; ③ 根据曲线上点所适合的条件,写出等式; ④ 用坐标,x y 表示这个等式(方程),并化简; ⑤ 证明以化简后的方程的解为坐标的点都是曲线上的点(在沪教版中,这一步不作要求). 【上述五个步骤可简记为:建系;设点;写出集合;列方程、化简;证明。】 知识点3:求曲线的方程的常用方法:(老师引导,让学生回答) ① 直接法:直接根据动点满足的几何条件或等量关系列出等式,整理化简后即得动点的轨迹方程,

是轨迹上任意一点,则有 (通过典型例题的讲解,让学生总结和掌握利用直接法求解曲线的轨迹方程的5个步骤,同时强调那一步最重要, 强调求解曲线的轨迹方程时,一定要结合实际意义和题目的已知条件写出自变量的取值范围.) 题型3:代入法求曲线方程

通过练习让学生理解和掌握什么条件下用代入法求轨迹方程,及用代入法求曲线的轨迹方程的方法和步骤 ()( +- 22 x y y

解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1 (,)F x y , 2 (,)F x y 及3 (,)F x y . (1) 2222 1x y a b +=;(2) 22 22 1x y a b -=;(3)2 2y px =;(4) 223520; x y x -++= (5)2 226740 x xy y x y -+-+-=.解:(1) 221 0010 000 1a A b ?? ? ? ?= ? ?- ? ?? ?; 121(,)F x y x a = 221(,)F x y y b =3(,)1F x y =-;(2) 221 0010 0001a A b ?? ? ? ?=- ? ?- ? ?? ? ; 121(,)F x y x a = 221(,)F x y y b =-;3 (,)1F x y =-.(3) 0001000p A p -?? ?= ? ?-?? ; 1(,)F x y p =-;2 (,)F x y y =;3 (,)F x y px =-;(4) 510 20 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+ ;2 (,)3F x y y =-;3 5(,)22 F x y x =+;(5)

222420 x xy ky x y ++--=交于两个共轭虚交点.解:详解 略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4) 4924 k >. §5.2二次曲线的渐进方向、中心、渐进线 1. 求下列二次曲线的渐进方向并指出曲线属于 何种类型的(1) 22230 x xy y x y ++++=;(2) 22342250 x xy y x y ++--+=;(3)24230xy x y --+=. 解:(1)由2 2(,)20 X Y X XY Y φ=++=得渐进方向为:1:1 X Y =-或1:1-且属于抛物型的; (2)由2 2(,)3420 X Y X XY Y φ=++=得渐进方向为:(22):3 X Y i =-且属于椭圆型的; (3) 由(,)20X Y XY φ==得渐进方向为:1:0X Y =或0:1且属于双曲型的. 2. 判断下列曲线是中心曲线,无心曲线还是线心曲线. (1)2 2224630 x xy y x y -+--+=;(2)2 2442210 x xy y x y -++--=; (3)2 281230 y x y ++-=;(4)2 296620 x xy y x y -+-+=.解:(1) 因为2 1110 12I -= =≠-,所以它为中心曲线; (2)因 为2 120 24 I -= =-且121 241-=≠--,所以它为无心曲线; (3)因为2 00002I = =且004 026 =≠,所以它为无心曲线; (4)因为2 930 3 1 I -==-且933312--==-,所以它为线心曲线;

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐 标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0), B (a,0)。 设动点C为(x, y), ??? | AC |2 |BC |2 |AB|2, a)2y2]2h(x a)2y2]24a2, 即x2 由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点, 故所求方程为x2y2a2( x a )。 2?代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。 解:设 A (a,0) , B (0, b), M (x, y), 一方面,. 另一方面, 36 , M分AB的比为 1 , 2

评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。 求动点P 的轨迹方程。 解:设P (x, y),由题 APO BPO ,由三角形角平分线定理有 L P A | ^A 0-1 |PB| |BO| ..(x 6)2 y 2 3 3 , (x 2)2 y 2 整理得x 2 y 2 6x 0,当x 0时,y 0, P 和O 重合,无 意义,??? x 0, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有 APO BPO 00 , ? y 0 ( x 6或x 2)也满足要求。 综上,轨迹方程为 x 2 y 2 6x 0 ( x 0)或y 0 (x 6或x 2 )。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题) ,方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数) 联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。 0 -b _2_ 1 - -b 3 a x 2 b 3y ②代入①得: 3 2 2 (評(3y) 2 36,即一 16 例3 :如图,已知两定点 A ( 6,0 ), B ( 2,0 ), O 为原点,动点 P 与线段AO 、BO 所张的角相等, ,使(x, y)之间的关系建立起

解析几何第四版习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面 § 4.1柱面 1、已知柱面的准线为: ? ? ?=+-+=-+++-0225 )2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。 解:(1)从方程 ?? ?=+-+=-+++-0 225 )2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(2 2 2 =-+++--z y y z 即:02 3 5622=----+z y yz z y 此即为要求的柱面方程。 (2)取准线上一点),,(0000z y x M ,过0M 且平行于直线? ??==c z y x 的直线方程为: ??? ??=-=-=? ?? ? ??=+=+=z z t y y t x x z z t y y t x x 0 00000 而0M 在准线上,所以 ?? ?=+--+=-++-+--0 2225 )2()3()1(222t z y x z t y t x 上式中消去t 后得到:026888232 22=--+--++z y x xy z y x 此即为要求的柱面方程。 2 而0M 在准线上,所以: ?? ?+=-++=-) 2(2)2(2 2t z t x t z y t x 消去t ,得到:010******* 22=--+++z x xz z y x 此即为所求的方程。 3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过 又过准线上一点),,(1111z y x M ,且方向为{ }1,1,1的直线方程为: ??? ??-=-=-=? ?? ? ??+=+=+=t z z t y y t x x t z z t y y t x x 1 11111 将此式代入准线方程,并消去t 得到: 013112)(5222=-++---++z y x zx yz xy z y x 此即为所求的圆柱面的方程。 4、已知柱面的准线为{})(),(),((u z u y u x u =γ,母线的方向平行于矢量{}Z Y X ,,=,试证明柱面的矢量式参数方程与坐标式参数方程分别为: S v u Y x +=)( 与 ?? ? ??+=+=+=Zv u z z Yv u y y Xv u x x )()()( 式中的v u ,为参数。 证明:对柱面上任一点),,(z y x M ,过M 的母线与准线交于点))(),(),((u z u y u x M ',则, v M =' 即 1、求顶点在原点,准线为01,0122 =+-=+-z y z x 的锥面方程。 解:设为锥面上任一点),,(z y x M ,过M 与O 的直线为: z Z y Y x X == 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,,将它们代入准线方程,并消去参数t ,得: 0)()(222=-+--y z y z z x 即:02 22=-+z y x 此为所要求的锥面方程。 2、已知锥面的顶点为)2,1,3(--,准线为0,12 22=+-=-+z y x z y x ,试求它的方程。

平面解析几何-高考复习知识点

平面解析几何 高考复习知识点 一、直线的倾斜角、斜率 1、直线的倾斜角: (1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。当直线l 与x 轴重合或平行时,规定倾斜角为0; (2)倾斜角的范围[)π,0。 2、直线的斜率 (1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =α(α≠90°);倾斜角为90°的直线没有斜率; (2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212 12 1x x x x y y k ≠--=; (3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? (4)应用:证明三点共线: AB BC k k =。 例题: 例1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围; 思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的 范围,通过正切函数的图像,可以求得角的范围? 解析: ∵, ∴ .? 总结升华: 在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范 围时,可利用在和上是增函数分别求解.当时,; 当时,;当时,;当不存在时,.反之,亦成立. 类型二:斜率定义 例2.已知△为正三角形,顶点A 在x轴上,A 在边的右侧,∠的平分线在x 轴上,求边与所在直线的斜率. 思路点拨: 本题关键点是求出边与所在直线的倾斜角,利用斜率的定义求出斜率. 解析:? 如右图,由题意知∠∠30°? ∴直线的倾斜角为180°-30°=15 0°,直线的倾斜角为30°,? ∴150°= 30°=? 总结升华: 在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小

力学第二章习题答案

第二章质点运动学(习题) 2.1.1 质点的运动学方程为 求质点轨迹并用图表示。 解:① . 轨迹方程为 y=5 ② 消去时间参量 t 得: 2.1.2 质点运动学方程为,( 1 ) . 求质点的轨迹;( 2 ) . 求自 t=-1 至 t=1 质点的位移。 解;① 消去 t 得轨迹: xy=1,z=2 ② , ,

2.1.3 质点运动学方程为,( 1 ) . 求质点的轨迹;( 2 ) . 求自 t=0 至 t=1 质点的位移。 解:① . 消去 t 得轨迹方程 ② 2.2.1 雷达站于某瞬时测得飞机位置为 ,后测得 均在铅直平面内。求飞机瞬时速率的近似值和飞行方向(α角)。 解 : 代入数值得:

利用正弦定理可解出 2.2.2 一小圆柱体沿抛物线轨道运动,抛物线轨道为 (长度 mm )。第一次观察到圆柱体在 x=249mm 处,经过时间 2ms 后圆柱体移到 x=234mm 处。求圆柱体瞬时速度的近似值。 解: 2.2.3 一人在北京音乐厅内听音乐,离演奏者 17m 。另一人在广州听同一演奏的转播,广州离北京 2320km ,收听者离收音机 2m ,问谁先听到声音?声速为 340m/s, 电磁波传播的速度为。 解 :

在广州的人先听到声音。 2.2.4 如果不允许你去航空公司问讯处,问你乘波音 747 飞机自北京不着陆飞行到巴黎,你能否估计大约用多少时间?如果能,试估计一下(自己找所需数据)。 解 : 2.2.5 火车进入弯道时减速,最初列车向正北以 90km/h 速率行驶, 3min 后以 70km/h 速率向北偏西方向行驶。求列车的平均加速度。 解,

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、 C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动 圆圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y . (1)22221x y a b +=;(2)22 221x y a b -=;(3)22y px =;(4)223520;x y x -++= (5)2226740x xy y x y -+-+-=.解:(1)221 0010 000 1a A b ?? ? ? ?= ? ?- ? ???;121(,)F x y x a =221 (,)F x y y b =3(,)1F x y =-;(2)2210010 000 1a A b ?? ? ? ?=- ? ?- ? ?? ? ;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -?? ? = ? ? -?? ; 1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+;2(,)3F x y y =-;35 (,)22 F x y x =+;(5)1232 171227342 A ??-- ? ? ?=- ? ? ?-- ??? ;11(,)232F x y x y =- -;217(,)22F x y x y =-++;37(,)342 F x y x y =-+-. 2. 求二次曲线2 2 234630x xy y x y ----+=与下列直线的交点.(1)550 x y --=

高考数学平面解析几何的复习方法总结

2019年高考数学平面解析几何的复习方法 总结 在高中数学知识体系中,平面解析几何是其中很大的一块,涉及到直线及其方程、线性规划、圆及其方程、椭圆及其方程、抛物线及其方程、双曲线及其方程以及曲线与方程的关系及其图像等具体的知识点。在高考的考查中,又可以将上述的7个知识点进行综合考查,更是增加了考查的难度。要想学好这部分知识,在高考总不丢分,以下几点是很关键的。 突破第一点,夯实基础知识。 对于基础知识,不仅一个知识点都要熟稔于心,还要有能力将这些零散的知识点串联起来。只有这样,才能形成属于自己的知识框架,才能更从容的应对考试。 (一)对于直线及其方程部分,首先我们要从总体上把握住两突破点:①明确基本的概念。在直线部分,最主要的概念就是直线的斜率、倾斜角以及斜率和倾斜角之间的关系。倾斜角α的取值范围是突破[0,π),当倾斜角不等于90°的时候,斜率k=tanα;当倾斜角=90°的时候,斜率不存在。②直线的方程有不同的形式,同学们应该从不同的角度去归类总结。角度一:以直线的斜率是否存在进行归类,可以将直线的方程分为两类。角度二:从倾斜角α分别在[0,π/2)、α=π/2和(π/2,π)的范围内,认识直线的特点。以此为基础突破,将直线方程的五种不同的形式套入其中。直线方程的不同形式突破需要满足的条件以及局限性是不同的,我们也要加以总结。

(二)对于线性规划部分,首先我们要看得懂线性规划方程组所表示的区域。在这里我们可以采用原点法,如果满足条件,那么区域包含原点;如果原点带入不满足条件,那么代表的区域不包含原点。 (三)对于圆及其方程,我们要熟记圆的标准方程和一般方程分别代表的含义。对于圆部分的学习,我们要拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。只有这样,才能更加完整的掌握与圆有关的所有的知识。 (四)对于椭圆、抛物线、双曲线,我们要分别从其两个定义出发,明白焦点的来源、准线方程以及相关的焦距、顶点、突破离心率、通径的概念。每种圆锥曲线存在焦点在X轴和Y轴上的情况,要分别进行掌握。 突破第二点,学习基本解题思想。 对于平面几何部分的学习,最基本的解题思想就是数形结合,还包括函数思想、方程思想、转化思想等。要想掌握数形结合这种思想方法,首先同学们心中要有坐标轴,要掌握好学过的各种平面几何的概念。其次,要掌握解决不同问题的方法。对于不同的题型,同学们要掌握不同的解题方法,并将这种解题方法及其例题记录在笔记本上。对于向量方法,最长用的地方就解决与斜率有关的问题;对于“设而不求”的方法,最常用到的地方就是两种不同的平面几何图形相交的情况下求弦长的问题;设点法,最长用到的地方就是两种曲线相切以及求最值得问题等。同学们要分门别类的进行总结,才能达到事半功倍的效

20 解析几何专题3: 轨迹方程

第二十讲 轨迹方程 1.一动圆与两圆221x y +=和228120x y x +++=都外切,则动圆圆心的轨迹为( ) A,圆 B,椭圆 C,双曲线的一支 D,抛物线 变式:已知定圆1622=+y x ,定点A ()0,2,动圆过点A 且与定圆相切,那么动圆圆心P 的轨迹方程是 ( ) A.()134122=--y x B. ()134122 =+-y x C.()4122=+-y x D. 422=+y x 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 3. F 1、F 2为椭圆两个焦点,Q 为椭圆上任一点,以任一焦点作∠( ) A 、圆 B 、椭圆 C 、双曲线 D 、抛物线 4.已知点F 1 (,0)4,直线l :14 x =-,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M,则点M 的轨迹是( ) A,双曲线 B,椭圆 C,圆 D,抛物线 5.在正方体ABCD A B C D -1111中,P 是侧面BB C C 11内一动点,若P 到直线BC 的距离是P 到直线C D 11的距离的一半,则动点P 的轨迹所在的曲线是( ) A. 直线 B. 圆 C. 双曲线 D. 抛物线 6.设A 1、A 2是椭圆4 92 2y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为 ( ) A.14922=+y x B.14922=+x y C.14922=-y x D.14 92 2=-x y 7.设椭圆与双曲线有共同的焦点12(1 ,0),(1,0)F F -,且椭圆长轴是双曲线实轴的2倍,则椭圆与双曲线的交点轨迹是 . 8.★★★以下四个关于圆锥曲线的命题中: ①设A 、B 为两个定点,k 为非零常数,||||PA PB k -= ,则动点P 的轨迹为双曲线; ②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2 OP OA OB =+ 则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率; ④双曲线135********=+=-y x y x 与椭圆有相同的焦点. 其中真命题的序号为 (写出所有真命题的序号)

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标 §1.3 数量乘矢量 4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→ →→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→ → → → → → → → → → =+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→ AB 与→ BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线. 6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21 AC AB AL += Θ )(21 BC BA BM += )(2 1 CB CA CN += 0)(2 1 =+++++=++∴CB CA BC BA AC AB CN BM AL 7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL +OM +ON . [证明] LA OL OA +=Θ MB OM OB += NC ON OC += )(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++CN BM AL ON OM OL OC OB OA ++=++∴ 从而三中线矢量CN BM AL ,,构成一个三角形。 8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB +OC +OD =4OM . [证明]:因为OM = 21 (OA +OC ), OM =2 1 (OB +OD ), 所以 2OM =2 1 (OA +OB +OC +OD ) 所以 OA +OB +OC +OD =4OM . 10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半. 图1-5

最新专题五平面解析几何

专题五平面解析几何

专题五平面解析几何 第14讲直线与圆 [云览高考] 二轮复习建议 命题角度:该部分主要围绕两个点展开命题.第一个点是围绕直线与圆的方程展开,设计考查求直线方程、圆的方程、直线与圆的位置关系等问题,目的是考查平面解析几何初步的基础知识和方法,考查运算求解能力,试题一般是选择题或者填空题;第二个点是围绕把直线与圆综合展开,设计考查直线与圆的相互关系的试题,目的是考查直线与圆的方程在解析几何中的综合运用,这个点的试题一般是解答题. 预计2013年该部分的命题方向不会有大的变化,以选择题或者填空题的形式重点考查直线与圆的方程,而在解答题中考查直线方程、圆的方程的综合运用.复习建议:该部分是解析几何的基础,涉及大量的基础知识,在复习时要把知识进一步系统化,在此基础上,在本讲中把重点放在解决直线与圆的方程问题上. 主干知识整合

1.直线的概念与方程 (1)概念:直线的倾斜角θ的范围为[0°,180°),倾斜角为90°的直线的斜率不存在,过 两点的直线的斜率公式k =tan α=y 2-y 1x 2-x 1(x 1≠x 2 ); (2)直线方程:点斜式y -y 0=k (x -x 0),两点式y -y 1y 2-y 1=x -x 1x 2-x 1(x 1 ≠x 2,y 1≠y 2),一般式Ax +By +C =0(A 2+B 2≠0); (3)位置关系:当不重合的两条直线l 1和l 2的斜率存在时,两直线平行l 1∥l 2?k 1=k 2,两直线垂直l 1⊥l 2?k 1·k 2=-1,两直线的交点就是以两直线方程组成的方程组的解为坐标的点; (4)距离公式:两点间的距离公式,点到直线的距离公式,两平行线间的距离公式. 2.圆的概念与方程 (1)标准方程:圆心坐标(a ,b ),半径r ,方程(x -a )2+(y -b )2=r 2,一般方程:x 2+y 2+Dx +Ey +F =0(其中D 2+E 2-4F >0); (2)直线与圆的位置关系:相交、相切、相离 ,代数判断法与几何判断法; (3)圆与圆的位置关系:相交、相切、相离、内含,代数判断法与几何判断法. 要点热点探究 ? 探究点一 直线的概念、方程与位置关系 例1 (1)过点(5,2),且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是( B ) A .2x +y -12=0 B .2x +y -12=0或2x -5y =0 C .x -2y -1=0 D .x -2y -1=0或2x -5y =0 (2)[2012·浙江卷] 设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a + 1)y +4=0平行”的( A ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 点评] 直线方程的四种特殊形式(点斜式、斜截式、两点式、截距式)都有其适用范围,在解题时不要忽视这些特殊情况,如本例第一题易忽视直线过坐标原点的情况;一般地,直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0平行的充要条件是A 1B 2=A 2B 1且A 1C 2≠A 2C 1,垂直的充要条件是A 1A 2+B 1B 2=0. 变式题 (1)将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得的直线方程为( A ) A .y =-13x +13 B .y =-13x +1 C .y =3x -3 D .y =13 x +1 (2)“a =-2”是“直线ax +2y =0垂直于直线x +y =1”的( C ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 ? 探究点二 圆的方程及圆的性质问题 例2 (1)已知圆(x -a )2+(y -b )2=r 2的圆心为抛物线y 2=4x 的焦点,且与直线3x +4y +2=0相切,则该圆的方程为( C ) A .(x -1)2+y 2=6425 B .x 2+(y -1)2=6425 C .(x -1)2+y 2=1 D .x 2+(y -1)2=1 (2)[2012·陕西卷] 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( A ) A .l 与C 相交 B .l 与 C 相切 C .l 与C 相离 D .以上三个选项均有可能 [点评] 确定圆的几何要素:圆心位置和圆的半径,求解圆的方程就是求出圆心坐标和

解析几何第四版吕林根课后习题答案第三章

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

042:=+-+z y x π. 解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为: 14 24=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: 3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为: 0=++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{A C A B --, 从而v 平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面? ? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: Θ }5,2,3{z +-= 而平行于0147=--+z y x 由题3知:0)5(427)3(=+-?+?-z 从而18=z . 5. 求下列平面的一般方程. ⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;

解析几何求圆的轨迹方程专题一师用

专题一求圆的轨迹方程 教学目标: 1、掌握直线与圆的标准方程与一般方程,能根据问题的条件选择适当的 形式求圆的方程; 2、掌握直线与圆的位置关系,可以应用直线与圆的位置关系求圆的方程 3、理解圆的标准方程与一般方程之间的关系,会进行互化。 教学重难点: 1、掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆 的方程; 2、会求曲线的轨迹方程(圆) 教学过程: 第一部分知识点回顾 一、圆的方程 : 1 .圆的标准方程:x a? y b 2 r2o 2 ?圆的一般方程:x2 y2 Dx Ey F 0(D2+ E2—4F 0) 特别提醒:只有当D2+ E2—4F 0时,方程x2 y2 Dx Ey F 0才表示圆心为(D, E),半径为1~E2~4F的圆 2 2 2 思考:二元二次方程Ax2 Bxy Cy2 Dx Ey F 0表示圆的充要条件是什么? 答案:(A C 0,且 B 0 且D2 E2 4AF 0 ));

3 .圆的参数方程:y a r s°s (为参数),其中圆心为(a,b),半径为 r 。圆的参数方程的主要应用是三角换元: (3) 已知P( 1, -3)是圆y ;;煮(为参数,0 2 )上的点,则圆的 普通方程为,P 点对应的 值为,过P 点的圆的切线方程是 (答:x 2 y 2=4 ; — ; x ,3y 4 0); 3 (4) 如果直线l 将圆:x 22-240平分,且不过第四象限,那么I 的斜率 的取值范围是_ (答: [0 , 2]); (5) 方程x 22 - 0表示一个圆,则实数k 的取值范围为(答:k 丄); (6) 若 M {(x, y) | y 3sos (为参数,0 )}, N (x, y) | y x b , 若MN ,则b 的取值范围是(答:-33& ) 二、点与圆的位置关系:已知点M x 0 ,y 0 及圆C: x-a $ y b ? r 2 r 0 , (1) 点 M 在圆 C 外 |CM | r x 0 a 2 y 。b 2 r 2; (2) 点 M 在圆 C 内 CM| r x 0 a 2 y 。b 2 r 2; (3) 点 M 在圆 C 上 CM r x 0 a $ y 0 r 2。女口 点P(5a+1,12a)在圆(x -1 )2 + y 2=1的内部,则a 的取值范围是(答: 2 ^22, r x r cos , y r sin ; x y t x r cos ,y r sin (0 r .,t)。 X i ,y i ,B X 2,y 2为直径端点的圆方程 x x 1 x X 2 y y 1 y y 2 0 如 (1) 圆C 与圆(X 1)2 y 2 1关于直线y x 对称, 则圆 C 的方程为 (答: x 2 (y 1)2 1); (2) 圆心在直线2x y 3上,且与两坐标轴均相切的圆的标准方程是 (答: (x 3)2 (y 3)2 9或(x 1)2 (y 1)2 1 );

平面解析几何知识点归纳

平面解析几何知识点归纳 ◆知识点归纳 直线与方程 1.直线的倾斜角 规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2 (tan π α≠ =a k ,R k ∈ 斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为1 21 22 1x x y y k P P --= 3.直线方程的几种形式

能力提升 斜率应用 例1.已知函数)1(log )(2+=x x f 且0>>>c b a ,则c c f b b f a a f ) (, )(,)(的大小关系 例2.已知实数y x ,满足)11(222 ≤≤-+-=x x x y ,试求 2 3 ++x y 的最大值和最小值 两直线位置关系 两条直线的位置关系 设两直线的方程分别为: 222111:b x k y l +=或0 :22221111=++C y B x A l ;当21k k ≠或1221B A B A ≠时它们 相交,交点坐标为方程组?? ?+=+=2211b x k y b x k y 或???=++=++00 222 111C y B x A C y B x A

直线间的夹角: ①若θ为1l 到2l 的角,12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ②若θ为1l 和2l 的夹角,则12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ③当0121=+k k 或02121=+B B A A 时,o 90=θ;直线1l 到2l 的角θ与1l 和2l 的夹角α:) 2 (π θθα≤ =或 )2 (π θθπα>-=; 距离问题 1.平面上两点间的距离公式),(),,(222111y x P y x P 则 )()(121221y y x x P P -+-= 2.点到直线距离公式 点),(00y x P 到直线0:=++C By Ax l 的距离为:2 2 00B A C By Ax d +++= 3.两平行线间的距离公式 已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax , 2l :02=++C By Ax ,则1l 与2l 的距离为2 2 21B A C C d +-= 4.直线系方程:若两条直线1l :0111=++C y B x A ,2l :0222=++C y B x A 有交点,则过1l 与2l 交点的直线系方程为)(111C y B x A +++0)(222=++C y B x A λ或 )(222C y B x A +++0)(111=++C y B x A λ (λ为常数) 对称问题 1.中点坐标公式:已知点),(),,(2 211y x B y x A ,则B A ,中点),(y x H 的坐标公式为??? ???? +=+=222121y y y x x x 点),(00y x P 关于),(b a A 的对称点为)2,2(00y b x a Q --,直线关于点对称问题可以化为点关于点对称问

解析几何求轨迹方程的常用方法讲解

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、 C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动圆 圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

相关文档
最新文档