半导体物理课件1-7章(第一章)

合集下载

半导体物理与器件ppt课件

半导体物理与器件ppt课件

2.23
h h K为波数=2π/λ, λ为波长。 2mE 15 P
2.3薛定谔波动方程的应用

2.3.2无限深势阱(变为驻波方程) 与时间无关的波动方程为:
2 x 2m 2 E V x x 0 2 x
2.13
由于E有限,所以区域I和III 中:
课程主要内容
固体晶格结构:第一章 量子力学:第二章~第三章 半导体物理:第四章~第六章 半导体器件:第七章~第十三章

1
绪论

什么是半导体
按固体的导电能力区分,可以区分为导体、半导体和绝缘体
表1.1 导体、半导体和绝缘体的电阻率范围 材料 电阻率ρ(Ωcm) 导体 < 10-3 半导体 10-3~109 绝缘体 >109
分别求解与时间无关的波动方程、与时间有关的波 动方程可得自由空间中电子的波动方程为:
j j x, t A exp x 2mE Et B exp x 2mE Et




2.22
说明自由空间中的粒子运动表现为行波。 沿方向+x运动的粒子: x, t A exp j kx t
18
2.3薛定谔波动方程的应用

无限深势阱(前4级能量)
随着能量的增加,在任意给 定坐标值处发现粒子的概率 会渐趋一致
19
2.3薛定谔波动方程的应用

2.3.3阶跃势函数
入射粒子能量小于势垒时也有一定概率穿过势垒 (与经典力学不同)

20
2.3薛定谔波动方程的应用

2.3.3阶跃势函数 Ⅰ区域 21 x 2mE 2 1 x 0 2.39 2

半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质

半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质

简化为
J = pqv p
1.6.4 半导体的电阻率ρ
电阻率是半导体材料的一个重要参数,其值为电导率
的倒数。 1
1
ρ= =
σ nqμn + pqμ p
对于强P型和强N型半导体业有相应的简化。
从上面的公式可以看出,半导体电阻率的大小决定于 n, p, μn ,μp的具体数值,而这些参数又与温度有关, 所以电阻率灵敏的依赖于温度,这是半导体的重要 特点之一。
b) P型硅中电子和空穴 的迁移率
载流子的迁移率还要随温度而变化。
硅中载流子迁移率随温度变化的曲线 a) μn b) μp
1.6.3 半导体样品中的漂移电流密度
设一个晶体样品如图所示, 以单位面积为底,以平 均漂移速度v为长度的矩 形体积。先求出电子电 流密度,设电场E为x方 向,在电场的作用下, 电子应沿着-x方向运动。
不论半导体中的杂质激发还是本征激发,都是依靠吸收 晶格热振动能量而发生的。由于晶格的热振动能量是随 温度变化的,因而载流子的激发也要随温度而变化。
载流子激发随温度的变化 a)温度很低 b)室温临近 c)温度较高 d)温度很高
伴随着温度的升高,半导体的费米能级也相应地发 生变化
杂质半导体费米能级随温度的变化 a)N型半导体 b)P型半导体
a)随机热运动 b) 随机热运动和外加电场作用下的运动合成
随机热运动的结果是没有电荷迁移,不能形成电流。
引入两个概念:
1. 大量载流子碰撞间存在一个路程的平均值,称为平 均自由程,用λ表示,其典型值为10-5cm;
2. 两次碰撞间的平均时间称为平均自由时间,用τ表示, 约为1ps;
建立了上述随机热运动的图像后,就可以比较实际地去 分析载流子在外加电场作用下的运动了。

【精品】半导体物理(SEMICONDUCTOR PHYSICS )PPT课件

【精品】半导体物理(SEMICONDUCTOR PHYSICS )PPT课件

第二章 半导体的能带与杂质能级
2.1 半导体中电子共有化运动与能带 2.2 半导体中的电子的E(k)~k关系 有效质量和
k空间等能面 2.3 Si、Ge和GaAs的能带结构 2.4 本征半导体和杂质半导体
2.1 半导体中电子共有化运动与能带
一、孤立原子中的电子状态
1. 单电子原子
En
m0q4 8 ε02h2
1.1 半导体的晶体结构
一、晶体的基本知识
长期以来将固体分为:晶体和非晶体。 晶体的基本特点:
具有一定的外形和固定的熔点,组成晶体的原子(或 离子)在较大的范围内(至少是微米量级)是按一定的方式 有规则的排列而成——长程有序。(如Si,Ge,GaAs)
晶体又可分为:单晶和多晶。 单晶:指整个晶体主要由原子(或离子)的一种规则排列方式
对多电子原子,电子能量同样是不连续的。由主量子 数、角量子数、磁量子数、自旋量子数描述。
二、自由电子状态(一维)
一维恒定势场中的自由电子,遵守薛定谔方程
2 d 2ψ(x) Vψ(x) Eψ(x) 2m0 dx2
如果势场V=0,则此方程的解为
ψ(x) Aei2kx
代表一个沿方向传播的平面波,k具有量子数的作用。 其中Ψ(x)为自由电子的波函数,A为振幅,k为平面波 的波数,k=1/λ, λ为波长。规定k为矢量,称为波矢, 波矢k的方向为波面的法线方向。
• 虽然这两种点缺陷同时存在,但由于在Si、Ge中形成间隙 原子一般需要较大的能量,所以肖特基缺陷存在的可能性 远比弗仑克尔缺陷大,因此Si、Ge中主要的点缺陷是空位
(a) 弗仑克尔缺陷
(b) 肖特基缺陷
图1.11 点缺陷
• 化合物半导体GaAs中,如果成份偏离正常化学比,也会出 现间隙原子和空位。如果Ga成份偏多会造成Ga间隙原子和 As空位;As成份偏多会造成As间隙原子和Ga空位。

半导体器件物理教案课件

半导体器件物理教案课件

半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。

半导体物理课件1-7章(第一章)

半导体物理课件1-7章(第一章)
半导体禁带宽度Eg比较小,数量在1eV左右, 在通常温度下已有不少电子被激发到导带中去,所 以具有一定的导电能力,这是绝缘体和半导体的主 要区别。
室温下,金刚石的禁带宽度为6~7eV,它是绝 缘体;硅为1.12eV,锗为0.67eV,砷化镓为1.43eV, 所以它们都是半导体。
★本征激发:
一定温度下,价带电子依靠热激发获得能量脱 离共价键,成为准自由电子。价带电子激发成 为导带电子的过程,称为本征激发。
•*第8章 半导体表面MIS结构 •*第9章 半导体异质结构 •*第10章 半导体的光学性质和光电与发光现象 •*第11章 半导体的热电性质 •*第12章 半导体磁和压阻效应 •*第13章 非晶态半导体
第1章 半导体中的电子状态
本章重点 •半导体材料中的电子状态及其运动规律
处理方法 •单电子近似——能带理论
Springer (2010) • 7 Donald A. Neamen 《半导体物理与器件》,4th Ed,电子工业出版社 • ……
课程设置:
绪论:
2014年诺贝尔物理学奖被授予了日 本科学家赤崎勇、天野浩和美籍日 裔科学家中村修二
表彰他们发明了蓝色发光二 极管(LED),并因此带来的
1.2.2 半导体中的电子状态和能带
•★自由电子运动规律
动量方程 p m0v
能量方程 E p2
波方程
Φ
(
r
,t
2m0
)=A
e
i
(k
r
t
)
( x )e it
k为波矢,大小等于2/λ
• 方向与波面法线平行,即波的传播方向。
德布罗意假设:一切微观粒子都具有波粒二象性.
具有确定的动量和确定能量的自由粒子,相当于 频率为和波长为的平面波

半导体物理课件

半导体物理课件

结论:磷杂质在硅、锗中电离时,能够释放电子而 产生导电电子并形成正电中心。这种杂质称施主杂 质 。掺施主杂质后,导带中的导电电子增多,增 强了半导体的导电能力。
主要依靠导带电子导电的半导体称n型半导体。
*从Si的电子能量图看:
电离能的计算:
氢原子
En
mq4
(4 0 )2 22
1 n
(2)受主杂质 (Acceptor) p型半导体 Ⅳ族元素硅、锗中掺Ⅲ族元素,如硼(B): *从si的共价键平面图看:
两边取对数并整理,得:
EF
1 2
EC ED
1 2
k0T
ln(
ND 2NC
)
ED起了本征EV 的作用
载流子浓度:
EC EF
EC
EF
n0 NCe k0T NCe k0T e k0T
ND NC
1
2
EC ED
e 2k0T
ND NC
1 2
ED
e 2k0T
2
2
(2)中温强电离区
N
D
n0 ND
(2)EF ~T
(3)EF ~掺杂(T一定,则NC也一定)
T一定,ND越大,EF越靠近EC(低温: ND > NC 时 , ND
(ln ND -ln2 NC)
ND < NC 时, ND
|ln ND -ln2 NC| 中温:由于T的升高, NC增加,使ND < NC , ND
B13:1S22S22P63S23P1 B有三个价电子,当它与周围的四
个Si原子形成共价键时,必须从别 处的硅原子中夺取一个价电子,共价 键中缺少一个价电子,产生空穴。 硼原子接受一个电子后,成为带负 电的硼离子。 B- —负电中心.

(第一章)半导体物理ppt课件

(第一章)半导体物理ppt课件

下这些部分占满的能带中的电子将参与导电。由于绝缘
体的禁带宽度很大,电子从价带激发到导带需要很大能
量,所以通常温度下绝缘体中激发到导带去的电子很少,
导电性差;半导体禁带比较小(数量级为1eV),在通常
温度下有不少电子可以激发到导带中去,所以导电能力
比绝缘体要好。
最新课件
27
§1.3 半导体中电子(在外力下)的运动 及有效质量
§1.1半导体中的电子状态和能带
§1.1.2电子在周期场中的运动——能带论
⒉波函数
德布罗意假设:一切微观粒子都具有波粒二象性。 自由粒子的波长、频率、动量、能量有如下关系
Eh P h k
即:具有确定的动量和确定能量的自由粒子,相当 于频率为ν和波长为λ的平面波,二者之间的关系 如同光子与光波的关系一样。
书中(1-13)
最新课件
16
§1.1半导体中的电子状态和能带
§1.1.2电子在周期场中的运动——能带论
布洛赫曾经证明,满足式(1-13)的波函数一定具有 如下形式:
k(x)uk(x)eikx 书中(1-14)
式中k为波数,u k ( x是) 一个与晶格同周期的周期性函 数,即:
uk(x)uk(xna)
1.3.1半导体导带中E(k)与k 的关系
定性关系如图所示 定量关系必须找出E(k)函数带底附近E(k)与k的关 系
用泰勒级数展开可以近似求出极值附近的E(k)与k 的关系,以一维情况为例,设能带底位于k=0,将 E(k)在E ( kk =) 0E 附(0 近) 按(d 泰d勒)E k k 级0k 数 展1 2(开d d 2 ,E 2k )取k 0 至k2 k项2 ,得到
K=0时能量极小,所以(ddEk)k0k ,0因而

半导体物理课件

半导体物理课件
32
考虑一维情况,根据波函数和薛定谔方程,可 以求得:
v = hk /m0
E = h2k2/2m0
根据上述方程可以看出:对于自由电子能量和 运动状态之间呈抛物线变化关系;即自由电子 的能量可以是0至无限大间的任何值。
33
1.晶体中的薛定谔方程及其解的形式
晶体中电子遵守的薛定谔方程 布洛赫定理及布洛赫波
布洛赫波函数中的波矢k与自由电子波函数 中的一样,描述晶体中电子的共有化运动状 态。
37
2.布里渊区与能带
求解晶体中电子的薛定谔方程,可得如 图1-10(a)所示的E(k)~k关系。
K = n/2a (n = 0, ±1, ±2, …)时能量出 现不连续。
简约布里渊区(图1-10(c))
38
由于k是分立的,所以布里渊区中的能级 是准连续的。
每个能带最多可以容纳2N个电子。
42
三维晶格布里渊区的做法(略) 参见教材P15-P16
43
1.2.3导体、半导体、绝缘体的能带
44
45
46
47
三者的主要区别: 禁带宽度和导带填充程度
金属导带半满 半导体禁带宽度在1eV左右 绝缘体禁带宽且导带空
规律 领会“结构决定性质” 处理方法 单电子近似——能带论
4
单电子近似 假设每个电子是在周期性排列且固定不
动的原子核势场及其它电子的平均势场 中运动。该势场具有与晶格同周期的周 期性势场。
5
1.1 半导体的晶格结构和结合性质
预备知识 晶体(crystal) 由周期排列的原子构成的物体 重要的半导体晶体 单质:硅、锗 化合物:砷化镓、碳化硅、氮化镓
沿磁场方向做匀速运动,速度
v|| vcos
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Electronics 》,电子工业出版社(2002). • 4. K. Seeger,《Physics of Semiconductor: An Introduction》,4th
Ed. Springer-Verlag (2004). • 5. 茹国平,《半导体物理讲义》(2007) • 6. Chihiro Hamaguchi,《Basic Semiconductor Physics》2nd Ed
2.布里渊区与能带
•求解晶体中电子的薛定谔方程,可得E(k)—k关系。 •K = n/a (n = 0, ±1, ±2, …)时能量出现不连续, 形成一系列的允带和禁带。是描述电子共有化运动状 •态的量子数( 给出了原胞之间电子波函数的位相差)
•能带(energy band):包括允带和禁带 •允带(allowed band):允许电子能量存在的能量范围 •禁带(forbidden band):不允许电子存在的能量范围
★与金刚石结构的区别
共价键具有一定的极性(两类原子的电负性不 同),因此晶体不同晶面的性质不同。不同双 原子复式晶格。
常见闪锌矿结构半导 体材料: Ⅲ-Ⅴ族化合物 部分Ⅱ-Ⅵ族化合物, 如硒化汞,碲化汞等 半金属材料。
1.1.3 纤锌矿型结构
与闪锌矿型结构相比 相同点 •以正四面体结构为基础构成 区别 •具有六方对称性,而非立方 •对称性 •共价键的离子性更强
• 分裂的每一个能带称为允带,允 带间的能量范围称为禁带
• 内层原子受到的束缚强,共有化 运动弱,能级分裂小,能带窄;
• 外层原子受束缚弱,共有化运动 强,能级分裂明显,能带宽。
• 晶体中,原子数目N极大,能级 靠的很近,每一个能带中的能级 基本可视为连续,称为“准连续 能带”
★半导体的能带结构
导带 Eg
V (x)(x)
E(x)
•★布洛赫定理及布洛赫波
k (x) uk (x)eikx uk (x) uk (函数与自由电子的波函数 形式相似,代表一个波长为2/k,而在k方向 上传播的平面波;
不同点: 该波的振幅随x作周期性变化,其变化周期与 晶格周期相同----- 一个调幅的平面波。
★硅、锗基本物理参数
一、晶格常数 •硅:0.543089nm •锗:0.565754nm 二、原子密度(个/cm3) •硅:5.00×1022 •锗:4.42×1022 三、共价半径 •硅:0.117nm •锗:0.122nm
1.1.2 闪锌矿型结构和混合键
Ⅲ-Ⅴ族化合物半导体材料 结晶学原胞结构特点:两类原子各自组成的面 心立方晶格,沿空间对角线方向彼此位移四分 之一空间对角线长度套构而成。
★化合键 (bond) (1) 离子键: NaCl (2) 共价键: Ge、Si (3) 混合键: GaAs
★硅、锗晶体: 共价半导体,金刚石结构
Ge +32 2 8 18 4
Si +14 2 8 4
★硅和锗的共价键结构
+4
+4
+4
+4
共价键 共用电子对
★金刚石结构:面心立方
• 每个原子周围有四个最邻近的原子, 这四个原子处于正四面体的顶角上。 • 共价键sp3, 配位数4 • 任一顶角上的原子和中心原子各贡 献一个价电子为该两个原子所共有, 并形成稳定的共价键结构。共价键 夹角:109˚28’
半导体物理
The Physics of Semiconductor
参考书:
• 1. Charles Kittel, 《固体物理导论》,化学工业出版社(2005) • 2. 叶良修,《半导体物理学》,高等教育出版社(1987). • 3. R. M. Warner, B. L. Grung,《Semiconductor-Device
半导体禁带宽度Eg比较小,数量在1eV左右, 在通常温度下已有不少电子被激发到导带中去,所 以具有一定的导电能力,这是绝缘体和半导体的主 要区别。
室温下,金刚石的禁带宽度为6~7eV,它是绝 缘体;硅为1.12eV,锗为0.67eV,砷化镓为1.43eV, 所以它们都是半导体。
★本征激发:
一定温度下,价带电子依靠热激发获得能量脱 离共价键,成为准自由电子。价带电子激发成 为导带电子的过程,称为本征激发。
E(k)
E(0)
1 2
(
d 2E dk 2
) k 0
k
2
•E(0)为导带底能量
1.2.2 半导体中的电子状态和能带
•★自由电子运动规律
动量方程 p m0v
能量方程 E p2 2m0
波方程 Φ(r ,t)=Aei(k r t ) ( x)eit
k为波矢,大小等于2/λ
• 方向与波面法线平行,即波的传播方向。
德布罗意假设:一切微观粒子都具有波粒二象性.
具有确定的动量和确定能量的自由粒子,相当于 频率为和波长为的平面波
★半导体和绝缘体
▪半导体和绝缘体的能带类似,价带被电子占满, 中间为禁带,导带是空带。因此,在外电场作 用下并不导电。但是这只是温度为绝对零度时 的情况。 ▪当外界条件发生变化时,例如:温度升高或有光 照时,满带中有少量电子可能被激发到导带, 使导带底部附近有了少量电子,因而在外电场 作用下,这些电子将参与导电。
• 1.对于自由电子在空间各点电子出现的概率相同; • 而晶体中各点电子出现的概率具有周期性的变化
规律,即描述了晶体电子围绕原子核的运动; • 2.电子不再完全局限在某个原子上,而是可以从
晶胞中的某一点自由的运动到其他晶胞内的对应 点。这种运动就是电子在晶体内的共有化运动; • 3.外层电子共有化运动强,成为准自由电子。 • 4.布洛赫波函数中的波矢k与自由电子波函数中 的一样,描述晶体中电子的共有化运动状态。
金刚石型晶胞在{100} 面上的投影
★金刚石结构结晶学原胞
两个面心立方沿立方体空间对角线互相位移了四分之一 的空间对角线长度套构而成。
★金刚石结构固体物理学原胞
中心有原子的正四面体结构
★金刚石结构原子在晶胞内的排列情况
顶角八个,贡献1个原子; 面心六个,贡献3个原子; 晶胞内部4个; 共计8个原子。
Springer (2010) • 7 Donald A. Neamen 《半导体物理与器件》,4th Ed,电子工业出版社 • ……
课程设置:
绪论:
2014年诺贝尔物理学奖被授予了日 本科学家赤崎勇、天野浩和美籍日 裔科学家中村修二
表彰他们发明了蓝色发光二 极管(LED),并因此带来的
•*第8章 半导体表面MIS结构 •*第9章 半导体异质结构 •*第10章 半导体的光学性质和光电与发光现象 •*第11章 半导体的热电性质 •*第12章 半导体磁和压阻效应 •*第13章 非晶态半导体
第1章 半导体中的电子状态
本章重点 •半导体材料中的电子状态及其运动规律
处理方法 •单电子近似——能带理论
★原子的周期性阵列 理想晶体是由全同的结构单元在空间无限重复 而构成的。
•– 结构单元组成: •单个原子(铜、铁等简单晶体) •多个原子或分子(NaCd2;蛋白质晶体等)
•– 晶体结构用点阵来描述,在点阵的每个阵点上附有 一群原子。 •– 这样一个原子群或原子团称为基元。 •– 基元在空间重复排列就形成晶体结构。
★能带模型:绝热近似和单电子近似
在晶体中则不同,由于原子之间距离很近,相互 作用很强,在晶体中电子在理想的周期势场内作 共有化运动 。
★能带成因:
当N个原子彼此靠近时,根据不相容原理,原来分属于N个 原子的相同的价电子能级必然分裂成属于整个晶体的N个能 量稍有差别的能带。
★原子能级分裂为能带
★能带特点
★空穴的运动
当原子中的价电子激发为 自由电子时,原子中留下空 位,同时原子因失去价电子 而带正电。
当邻近原子中的价电子不 断填补这些空位时形成一种 运动,该运动可等效地看作 是空穴的运动。
注意:空穴运动方向与价电子填补方向相反。
自由电子 — 带负电 半导体中有两种导电的载流子
空 穴 — 带正电
绝缘体的禁带宽度Eg很大,激发电子需要很大 的能量,在通常温度下,能激发到导带中的电子很 少,所以导电性很差。
本征半导体- 载流子主要由本征激发产生
1.3半导体中电子的运动——有效质量
1.3.1半导体中的E(k)与k的关系
•设能带底位于波数k,将E(k)在k=0处按泰勒 级数展开,取至k2项,可得
E(k)
E(0)
(
dE dk
)k 0
k
1 2
(
d2E dk 2
)k 0
k
2
•由于k=0时能量极小,所以一阶导数为0
★氯化钠型结构:IV-VI族半导体材料
VI
IV
★半导体中的晶体结构
(1) 金刚石型:
(2) 闪锌矿型: ZnTe碲化锌,
(3) 纤锌矿型:
(4) 氯化钠型: PbTe碲化铅
Ge、Si 锗,硅 GaAs 砷化镓, ZnS硫化锌、
CdS硫化镉、CdTe 碲化镉 PbS硫化铅, PbSe硒化铅,
1.2半导体中的电子状态和能带
自由电子能量和动量与平面波频率和波矢的关系
E h p k
2
2m0
d2 (x)
dx2
E (x)
v k m0
E 2k2 2m0
自由电子的能量可以是0至无限大间的任何值。
1.晶体中的薛定谔方程及其解的形式
•★晶体中电子遵守的薛定谔方程
V (x) V (x sa) 周期性的势场
2
2m0
d 2(x) dx2
简约布里渊区:En(k)—k
•★布里渊区的特征
(1)每隔1/a的k表示的是同一个电子态; (2)波矢k只能取一系列分立的值,每个k占有的线度为1/L。
相关文档
最新文档