主成分分析方法
大学生数学建模-主成分分析方法

要点三
结合深度学习技术
随着深度学习技术的不断发展,为主 成分分析方法提供了新的思路和方法 。未来研究可以关注如何将深度学习 技术与主成分分析方法相结合,构建 更加高效、准确的模型,以应对更加 复杂的问题和挑战。
THANKS FOR WATCHING
感谢您的观看Βιβλιοθήκη 案例背景介绍案例来源
本案例来自某高校数学建模竞赛,旨在通过主成 分分析方法对一组多维数据进行降维处理。
数据特点
原始数据集包含多个特征,且特征之间存在相关 性,数据维度较高。
建模目标
通过主成分分析,提取数据中的主要特征,降低 数据维度,以便进行后续的数据分析和建模。
数据采集与预处理
数据采集
01
从相关数据源获取原始数据集,确保数据的完整性和准确性。
简化数据结构
主成分分析能够将多个相关变量 转化为少数几个综合变量,简化 数据结构,方便后续分析和建模。
应用于多个领域
主成分分析方法在经济学、金融 学、社会学、医学等多个领域都 有广泛应用,为相关领域的研究 提供了有力支持。
主成分分析方法的概述
01 02
线性变换方法
主成分分析通过线性变换将原始数据转换为新的坐标系,使得新坐标系 下的各主成分之间互不相关,且第一主成分解释原始数据变异的能力最 强,后续主成分依次减弱。
大学生数学建模-主成分分析方法
目录
• 引言 • 主成分分析方法的基本原理 • 主成分分析方法在大学生数学建模中
的应用 • 主成分分析方法的优缺点及适用范围
目录
• 案例分析:基于主成分分析的大学生 数学建模实践
• 总结与展望
01 引言
目的和背景
探究数据内在结构
主成分分析是一种常用的多元统 计方法,通过降维技术探究数据 内在结构,揭示变量之间的关系。
主成分分析法全

• 如果我们将xl 轴和x2轴先平移,再同时 按逆时针方向旋转角度,得到新坐标轴Fl和 F2。Fl和F2是两个新变量。
根据旋转变换的公式:
y y1 1 x1xc1soin sx2 xs2cio ns
y y 1 2 cs o in sc si o n s x x 1 2 U x
设有P维正交向量 a1 a11, a21,, ap1
F1 a11X1 L ap1X p aX
1
V
(F1)
a1a1
a1U
2
Ua1
p
1
a1
u1
,
u2
,L,
up
2
O
u1
u2 M
a1
p
up
p
iauiuia i1
p
i (aui )2 i1
1ip1(aui )2
1)贡献率:第i个主成分的方差在全部方差中所占
比重
i
p
i 1
i
,称为贡献率
,反映了原来P个指标多大
的信息,有多大的综合能力 。
2)累积贡献率:前k个主成分共有多大的综合能力, 用这k个主成分的方差和在全部方差中所占比重
k
p
i i
i1
i1
来描述,称为累积贡献率。
我们进行主成分分析的目的之一是希望用尽可能 少的主成分F1,F2,…,Fk(k≤p)代替原来的P个指 标。到底应该选择多少个主成分,在实际工作中,主 成分个数的多少取决于能够反映原来变量80%以上的信 息量为依据,即当累积贡献率≥80%时的主成分的个数 就足够了。最常见的情况是主成分为2到3个。
F 1
主 成
F2
•• • • •
分 分 析 的 几 何
主成分分析的步骤与实施方法

主成分分析的步骤与实施方法主成分分析(Principal Component Analysis,简称PCA)是一种常用的降维数据分析方法,常用于数据预处理和特征提取。
本文将介绍主成分分析的基本步骤以及实施方法,帮助读者了解并应用于实际问题。
1. 数据预处理在进行主成分分析之前,首先需要进行数据预处理。
数据预处理包括数据清洗、归一化等操作,以确保数据的准确性和可靠性。
常见的数据预处理方法有:(1)数据清洗:排除异常值和缺失值,保证数据的完整性和一致性;(2)数据归一化:将数据转化为同一尺度,消除因为数据量纲不同而导致的误差;(3)数据标准化:将数据按照均值为0,方差为1进行线性变换,使得数据服从标准正态分布。
2. 计算协方差矩阵主成分分析的核心是通过计算协方差矩阵来确定数据之间的相关性。
协方差矩阵可以帮助我们找到数据的主要变化方向,进而找到主要成分。
协方差矩阵的计算步骤如下:(1)假设我们有m个n维数据,将其组成m×n的矩阵X;(2)计算X的协方差矩阵C,公式为:C = (X - μ)(X - μ)T / m,其中μ为X的均值向量;(3)计算协方差矩阵C的特征值和特征向量。
3. 计算主成分通过计算协方差矩阵的特征值和特征向量,我们可以得到数据的主成分。
主成分是协方差矩阵的特征向量按对应的特征值从大到小排列后所得到的矩阵。
计算主成分的步骤如下:(1)选择特征值较大的前k个特征向量,其中k为需要降维的维数;(2)将选择出的k个特征向量组成一个投影矩阵P;(3)对原始数据进行降维处理,将原始数据矩阵X与投影矩阵P相乘,得到降维后的数据矩阵Y。
4. 数据重构主成分分析完成后,我们可以通过数据重构来验证主成分的有效性。
重构后的数据尽量保持与原始数据的一致性,以确保降维后的数据仍能保持原有信息的完整性。
数据重构的步骤如下:(1)根据降维后的数据矩阵Y和投影矩阵P,计算重构矩阵X',公式为:X' = YP' + μ,其中P'为投影矩阵的转置;(2)将重构矩阵X'与原始数据矩阵X进行对比,评估主成分提取的效果。
主成分分析方法

主成分分析方法
主成分分析方法是一种统计学技术,用于通过数据降低维数,它将多变量间的关系简化成少量的主成分,以把原来的多维变量映射到一维或者更少的维度空间。
主成分分析方法既可以用于对描述性数据的研究,也可以用于预测数据模型,它可以帮助估计定量指标与预测变量之间的关系,并降低多变量试验数据的维数。
主成分分析方法是一种数据处理技术,它主要用于减少维数,把原来的多变量压缩成少量的主成分。
它还可以用于描述多变量之间的关系,并降低有关模型之间的维数。
主成分分析方法的基本原理是,先把原来的n个变量分解成n个协方差矩阵,然后把它们求和,计算出协方差矩阵的特征值和特征向量,即主成分,接着,取出最大的特征值对应的特征向量,最后得到第一个主成分。
然后,用第一个主成分代替n个变量来表示n个变量,同时还可以利用空间的关系,把原来的n个变量转换成n-1个新变量,以此类推,一直到只有一个主成分为止。
主成分分析方法具有众多优势。
首先,它可以去除重复的信息,使用降维后的特征向量可以有效减少重复信息。
其次,它可以降低原始数据的数量,因为原始数据的降维,数据量就会减少。
此外,主成分分析方法可以有效去除噪声,因为它可以提取一组准确的特征。
最后,主成分分析方法还可以用于模型预测,它可以帮助估计定量指标与预测变量之间的关系,从而提高预测的准确性。
总之,主成分分析方法具有简单、快速、有效的特点,可以有效
地减少多变量之间的维度,及其在统计学和机器学习领域的广泛应用,极大地提升了研究成果的准确性和可信度。
主成分分析方法

主成分分析方法在经济问题的研究中,我们常常会遇到影响此问题的很多变量,这些变量多且又有一定的相关性,因此我们希望从中综合出一些主要的指标,这些指标所包含的信息量又很多。
这些特点,使我们在研究复杂的问题时,容易抓住主要矛盾。
那么怎样找综合指标?主成分分析是将原来众多具有一定相关性的指标重新组合成一组新的相互无关的综合指标来代替原来指标的统计方法,也是数学上处理降维的一种方法. 一. 主成分分析法简介主成分分析是将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法,又称主分量分析。
在实际问题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。
但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。
人们自然希望变量个数较少而得到的信息较多。
在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。
主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映问题的信息方面尽可能保持原有的信息。
信息的大小通常用离差平方和或方差来衡量。
主成分分析的基础思想是将数据原来的p 个指标作线性组合,作为新的综合指标(P F F F ,,,21 )。
其中1F 是“信息最多”的指标,即原指标所有线性组合中使)var(1F 最大的组合对应的指标,称为第一主成分;2F 为除1F 外信息最多的指标,即0),cov(21 F F 且)var(2F 最大,称为第二主成分;依次类推。
易知P F F F ,,,21 互不相关且方差递减。
实际处理中一般只选取前几个最大的主成分(总贡献率达到85%),达到了降维的目的。
主成分的几何意义:设有n 个样品,每个样品有两个观测变量,,21X X 二维平面的散点图。
n 个样本点,无论沿着1X 轴方向还是2X 轴方向,都有较大的离散性,其离散程度可以用1X 或2X 的方差表示。
主成分分析法

四、主成份分析法旳环节
1)数据归一化处理:数据原则化(Z) 2)Βιβλιοθήκη 算有关系数矩阵R: 3)计算特征值;
特征值越大阐明主要程度越大。
4)计算主成份贡献率及方差旳合计贡献率; 5)计算主成份载荷与特征向量:
主成份旳负荷值大小反应了主成份因子对可测变量旳影响程 度;载荷值越大阐明此变量对主成份旳解释越多,及贡献越大。
• 因子分析 优点:第一它不是对原有变量旳取舍,而是根据原始变 量旳信息进行重新组合,找出影响变量旳共同因子,化简 数据;第二,它经过旋转使得因子变量更具有可解释性, 命名清楚性高。 缺陷 :在计算因子得分时,采用旳是最小二乘法,此法 有时可能会失效。
总之,主成份分析是因子分析旳一种特例。
谢 谢 观 看!
旋转后旳主成份因子载荷矩阵
景区满意度旋转前后成份矩阵图对比
5、碎石图分析
选用主成份旳个数,急转处是拟定主成份旳个数处。
景区满意度碎石图
八、与因子分析法旳区别
1、基本概念
➢ 主成份分析就是将多项指标转化为少数几项综合 指标,用综合指标来解释多变量旳方差- 协方差构 造。综合指标即为主成份。所得出旳少数几种主 成份,要尽量多地保存原始变量旳信息,且彼此 不有关。
注意:进行主成份旳变量之间必须要有有关性, 经过分析后变量之间独立。
二、主成份分析法基本原理
主成份分析就是设法将原来众多具有一定有关性 旳变量(如p个变量),重新组合成一组新旳相互无 关旳综合变量来替代原来变量。怎么处理?
一般数学上旳处理就是将原来p个变量作线性组合 作为新旳综合变量。怎样选择?
假如将选用旳第一种线性组合即第一种综合变量 记为F1,自然希望F1尽量多旳反应原来变量旳信 息。怎样反应?
主成分分析方法

主成分分析方法主成分分析(Principal Component Analysis, PCA)是一种常用的数据降维和特征提取方法,它可以将高维数据转换为低维数据,同时保留数据的主要特征。
在实际应用中,主成分分析方法被广泛应用于数据挖掘、模式识别、图像处理、生物信息学等领域。
本文将介绍主成分分析的基本原理、算法步骤以及应用实例。
1. 基本原理。
主成分分析的基本思想是通过线性变换将原始数据映射到一个新的坐标系中,使得在新的坐标系下,数据的方差最大化。
换句话说,主成分分析就是找到一组新的基,使得数据在这组新的基下的方差最大。
这样做的目的是为了尽可能保留原始数据的信息,同时去除数据之间的相关性,从而达到降维的效果。
2. 算法步骤。
主成分分析的算法步骤可以简单概括为以下几步:(1)数据标准化,对原始数据进行标准化处理,使得各个特征具有相同的尺度。
(2)计算协方差矩阵,对标准化后的数据计算协方差矩阵。
(3)特征值分解,对协方差矩阵进行特征值分解,得到特征值和特征向量。
(4)选择主成分,按照特征值的大小,选择最大的k个特征值对应的特征向量作为主成分。
(5)数据映射,将原始数据映射到所选的主成分上,得到降维后的数据。
3. 应用实例。
主成分分析方法在实际应用中有着广泛的应用,下面以一个简单的实例来说明主成分分析的应用过程。
假设我们有一个包含多个特征的数据集,我们希望对这些特征进行降维处理,以便更好地进行数据分析。
我们可以利用主成分分析方法对这些特征进行降维处理,得到新的特征空间。
在新的特征空间中,我们可以更好地观察数据之间的关系,找到数据的主要特征,从而更好地进行数据分析和建模。
总结。
主成分分析是一种常用的数据降维和特征提取方法,它通过线性变换将原始数据映射到一个新的坐标系中,使得数据的方差最大化。
通过对协方差矩阵进行特征值分解,我们可以得到主成分,并将原始数据映射到主成分上,实现数据的降维处理。
在实际应用中,主成分分析方法有着广泛的应用,可以帮助我们更好地理解和分析数据。
主成分分析法

主成分分析法主成分分析(Principal Component Analysis,简称PCA)是一种常用的降维方法,它通过线性变换将高维数据转换为低维数据,从而提取出数据的最主要特征。
本文将详细介绍主成分分析的原理、应用以及算法流程。
一、原理主成分分析是一种基于统计学的数据降维方法。
其基本思想是将原始数据通过线性变换,得到一组新的不相关变量,即主成分,用来代替原始变量。
这些主成分在不同维度上的方差依次递减,即第一主成分包含最多的原始变量信息,第二主成分包含不重叠的信息量,以此类推。
主成分分析的目标是最大化原始数据的方差,从而保留尽可能多的信息。
首先,通过计算协方差矩阵来评估各个变量之间的相关性,然后通过特征值分解找出协方差矩阵的特征向量,即主成分。
最后,根据特征值的大小来选择保留的主成分个数。
二、应用主成分分析广泛应用于数据预处理、特征提取和数据可视化等领域。
以下是主成分分析的几个典型应用:1. 数据降维:主成分分析可以将高维数据转换为低维数据,从而减少计算量和存储空间,并提高模型的计算效率。
2. 特征提取:主成分分析可以将原始数据中高度相关的特征转换为互不相关的主成分,保留了原始数据的主要信息。
这样可以提高模型的训练速度和泛化能力。
3. 图像压缩:主成分分析可以将图像的冗余信息去除,从而实现图像的压缩和存储。
通过保留图像中的主要特征,可以在减少存储空间的同时保持图像的质量。
4. 数据可视化:主成分分析可以将高维数据映射到二维空间,从而实现数据的可视化。
通过显示主成分的分布,可以更好地理解数据之间的关系,并发现数据中的模式和异常。
三、算法流程主成分分析的算法流程如下:1. 数据标准化:将原始数据进行标准化处理,使得每个变量具有相同的尺度,从而避免变量之间的差异对主成分的影响。
2. 计算协方差矩阵:根据标准化后的数据计算协方差矩阵,该矩阵表示各个变量之间的相关性。
3. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和特征向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ei (i 1, 2, , m) ,要求 ei =1,即
,
其中m e表i2j 示 1向量 的ei第j j个分量。ei
j 1
③ 计算主成分贡献率及累计贡献率
▲贡献率:
i
m
k
k 1
(i 1, 2, , m)
▲累计贡献率:
i
k
k 1
m
k
k 1
(i 1, 2, , m)
(一)计算相关系数矩阵
r11 r12
R
r21
r22
rm1
rm2
r1m
r2m
,j=1,2,…,m)为原变量xi与xj
的相关系数, rij=rji,其计算公式为:
rij
n
(xki xi )(xkj x j )
k 1
n
n
(xki xi )2 (xkj x j )2
k 1
k 1
(3.5.4)
(二)计算特征值与特征向量:
① 解特征方程 I R 0 ,常用雅可比法 (Jacobi)求出特征值,并使其按大小顺序排 列 1 2 , m 0 ;
②
分别求出对应于特征值
的特征向量
主成分的主要功能
数据降维(Dimension Reduction) 变量筛选(Variables Screening)
一、数据处理
采集m维随机向量x=(x1,x2,…,xm)T的n个样品 xi=(xi1,xi2,…,xim)T, i=1,2, …,n, n>m,构造样本 阵X
x1T x2T X= ┇ =
n
yij
n
2
yij y j
yj
i 1
n
,
s
2 j
i 1
n 1
得标准化矩阵Z:
z1T Z= z2T =
znT
z11 z12 ┅ z1m z21 z22 ┅ z2m ┇┇┇ ┇ zn1 zn2 ┅ znm
一、主成分分析的基本原理
假定有n个样本,每个样本共有m个变量, 构成一个n×m阶的数据矩阵(标准化后的 数据)
x11 x12
X
x21
x22
xn1
xn 2
x1m
x2
m
xnm
(3.5.1)
当m较大时,在m维空间中考察问题比较麻 烦。为了克服这一困难,就需要进行降维 处理,即用较少的几个综合指标代替原来 较多的变量指标,而且使这些较少的综合 指标既能尽量多地反映原来较多变量指标 所反映的信息,同时它们之间又是彼此独 立的。
一般取累计贡献率达85—95%的特征值 1, 2 , , p 所对应的第一、第二、…、第p(p≤m)个主成分。
(三)确定主成分
1.主成分表达式:
Fi ei1X1 ei2 X 2 eim X m i 1 p
其中 (ei1, ei2 , , eim )T 为第i个特征值所对应 的特征向量
主成分分析方法
主成分分析的基本原理 主成分分析的计算步骤 主成分分析方法应用实例
主成分分析 ( Principal Components Analysis)
是由Hotelling于1933年首先提出的, 它是利用降维的思想,把多指标转化 为少数几个综合指标的多元统计分析 方法。 从数学角度来看,这是一种降维处理 技术。
定义:记x1,x2,…,xm为原变量指标,F1, F2,…,Fp(p≤m)为新变量指标
F1 e11x1 e12 x2
F2
e21x1
e22 x2
Fp ep1x1 ep2 x2
e1m xm e2m xm
epm xm
(3.5.2)
系数eij的确定原则:
从以上的分析可以看出,主成分分析的
实质就是确定原来变量xj(j=1,2 ,…,m) 在诸主成分Fi(i=1,2,…,p)上的权重 eij ( i=1,2,…,p; j=1,2 ,…,m)。
从数学上容易知道,从数学上可以证明,
它们分别是的相关系数矩阵的p个较大的特征 值所对应的单位化特征向量。
二、计算步骤
x11 x12 ┅ x1m x21 x22 ┅ x2m ┇┇ ┇
xnT
xn1 xn2 ┅ xnm
1.对样本阵X中的元进行如下变换 x ij , 对正指标
Y ij = - x ij, 对逆指标
得 Y= Y ij n×p
其中
2 对Y中元进行如下标准化变换
ij yij y j i 1, 2, , n; j 1, 2, , m sj
1
m
Y1
2
m
Y2
k k
k 1
k 1
p
m
Yp
k
k 1
三、主成分分析实例1
下表是10名初中男学生的身高(cm), 胸围(cm),体重(kg)的数据,试进 行主成分分析。
身高x1 149.5 162.5 162.7 162.2 156.5 156.1 172.0 173.2 159.5 157.7
① Fi与Fj(i≠j;i,j=1,2,…,p)相互 无关;
② F1是x1,x2,…,xm的一切线性组合中方差 最大者,F2是与F1不相关的x1,x2,…,xm的 所有线性组合中方差最大者;
…… Fp是与F1,F2,……,Fp-1都不相关的x1, x2,…xm, 的所有线性组合中方差最大者。
则新变量指标F1,F2,…,Fp分别称为原变量 指标x1,x2,…,xm的第一,第二,…,第p 主成分。
主成分分析的目的与功能
在多变量分析中,分析者所面临的最大难题是 解决众多变量之间的关系问题。进行数据降维 可以用尽可能少的新指标取代原来较多的指标 变量,并能包含原来指标变量所包含的大部分 信息 。
解决多元回归分析中的多重共线性问题。
综合评价中,人们总是尽可能多地选取评价指 标,而这些评价指标之间往往相互重叠,信息 冗余是不可避免的。主成分分析则可以把这众 多指标所蕴含的信息压缩到少数几个主成分指 标,然后给出这几个主成分指标的权重,综合 到一个评价指标中。
2.计算主成分载荷
lij p(Fi ,xj ) i eij (i 1, 2, , p, j 1, 2, , m)
表示主成分与对应变量的相关系数
(四)排序问题:
1.主成分得分
Yi ei1X1 ei2 X 2 eim X m i 1 p
2.综合得分:选取综合评价函数为
Y