数学分析之数项级数
项级数的概念

项级数的概念项级数是数学中的一个概念,指的是一个无穷序列的和。
在项级数中,每一项都是具有固定模式的数列中的某一项,而项级数的和就是这些数列中所有的项的总和。
项级数可以表示为:S = a1 + a2 + a3 + ... + an + ...其中,a1, a2, a3, ... 是一个数列的项,n 是一项的位置。
举个例子,如果项级数为:1 + 2 + 3 + 4 + ... ,那么a1 = 1,a2 = 2,a3 = 3,... ,n 表示数列中项的编号。
项级数可以分为两类:收敛项级数和发散项级数。
当项级数的和存在且有限时,我们称其为收敛项级数;当项级数的和不存在或为无穷大时,我们称其为发散项级数。
对于收敛项级数,我们常常使用极限的概念来表示。
如果项级数S具有有限的和S,则对于任意的正数ε,存在一个正整数N,使得当n>N时,Sn - S < ε。
其中,Sn 表示项级数的前n项和。
为了更好地理解项级数的概念,我们可以看一些经典的例子。
1. 等差数列:1, 2, 3, 4, ...这是一个常见的等差数列,每一项与前一项之差都相等。
项级数可以表示为:1 + 2 + 3 + 4 + ... ,它是一个发散项级数,和无穷大。
2. 等比数列:1, 1/2, 1/4, 1/8, ...这是一个等比数列,每一项都是前一项的1/2倍。
项级数可以表示为:1 + 1/2 + 1/4 + 1/8 + ... ,它是一个收敛项级数,和为2。
3. 调和级数:1, 1/2, 1/3, 1/4, ...这是一个调和级数,每一项是倒数数列。
项级数可以表示为:1 + 1/2 + 1/3 + 1/4 + ... ,它是一个发散项级数,和无穷大。
4. 幂级数:1, 1/2, 1/4, 1/8, ...这是一个幂级数,每一项都是前一项的1/2倍。
项级数可以表示为:1 + 1/2 + 1/4 + 1/8 + ... ,它是一个收敛项级数,和为2。
数项级数一致收敛

数项级数一致收敛(原创实用版)目录1.数项级数一致收敛的定义2.数项级数一致收敛的性质3.数项级数一致收敛的判定方法4.数项级数一致收敛的实际应用正文一、数项级数一致收敛的定义数项级数一致收敛是指,当级数的各项绝对值趋于 0 时,级数的和趋于一个确定的常数。
换句话说,如果一个级数的各项绝对值都小于某个正数ε,且级数的项数趋向于无穷,那么这个级数就是一致收敛的。
二、数项级数一致收敛的性质一致收敛的级数具有以下性质:1.有界性:级数的每一项都趋于 0,因此级数的和也有界。
2.有序性:当项数增加时,级数的和单调增加或单调减少。
3.极限存在:当级数的项数趋于无穷时,级数的和存在极限。
三、数项级数一致收敛的判定方法判断一个级数是否一致收敛,可以使用以下几种方法:1.ε-δ法:如果对于任意正数ε,总存在正数δ,使得当项数 n>δ时,级数的各项绝对值都小于ε,那么这个级数就是一致收敛的。
2.柯西准则:如果对于任意正数ε,总存在正数 N,使得当项数 n>N 时,级数的各项绝对值都小于ε,那么这个级数就是一致收敛的。
3.列恩哈德准则:如果对于任意正数ε,总存在正数 N,使得当项数n>N 时,级数的各项绝对值的倒数之和趋于 0,那么这个级数就是一致收敛的。
四、数项级数一致收敛的实际应用一致收敛的级数在数学分析中有广泛的应用,例如求和、求积分、求极限等。
在实数域、复数域以及更高级的数学领域,一致收敛的级数都是研究的重要对象。
同时,一致收敛的级数也是许多实际问题的数学模型,如求解数列的和、计算定积分等。
综上所述,数项级数一致收敛是数学分析中的一个基本概念,具有重要的理论和实际意义。
数学分析12.3一般项级数

第十二章 数项级数2 一般项级数一、交错级数概念:若级数各项符号正负相间,即u 1-u 2+u 3-u 4+…+(-1)n+1u n +…(u n >0, n=1,2,…),则称它为交错级数.定理12.11:(莱布尼茨判别法)若交错级数∑∞=+1n n 1n u (-1)满足:(1)数列{u n }单调递减;(2)∞n lim +→u n =0,则该级数收敛.证:交错级数的部分和数列{S n }的奇数项和偶数项分别为: S 2m-1=u 1-(u 2-u 3)-…-(u 2m-2-u 2m-1),S 2m =(u 1-u 2)+(u 3-u 4)…+(u 2m-1-u 2m ). 由条件(1)知上述两式括号内的数皆非负,从而 数列{S 2m-1}递减,数列{S 2m }递增. 又由条件(2)知0<S 2m-1-S 2m =u 2m →0 (m →∞),从而{[S 2m ,S 2m-1]}形成一个区间套, 由区间套定理,存在唯一的一个数S ,使得∞m lim +→S 2m-1=∞m lim +→S 2m =S.∴数列{S n }收敛,即该交错级数收敛.推论:若交错级数满足莱布尼茨判别法的条件,则该收敛级数的余项估计式为|R n |≤u n+1.二、绝对收敛级数及其性质概念:若级数各项绝对值所组成的级数|u 1|+|u 2|+…+|u n |+…收敛, 则称它为绝对收敛级数. 若级数收敛,但不绝对收敛,则称该级数为条件收敛级数.定理12.12:绝对收敛级数一定收敛.证:若级数|u 1|+|u 2|+…+|u n |+…收敛,由柯西收敛准则知, 对任意ε>0,总存在正数N ,使得对n>N 和任意正整数r ,有 |u n+1|+|u n+2|+…+|u n+r |<ε,∴|u n+1+u n+2+…+u n+r |<ε, ∴u 1+u 2+…+u n +…收敛. 得证!例1:证明:级数∑!n a n收敛.证:∵n1n ∞n u u lim++→=1n alim ∞n ++→=0<1,∴原级数绝对收敛.性质1:级数的重排:正整数列{1,2,…,n,…}到它自身的一一映射 f:n →k(n)称为正整数列的重排,相应地对数列{u n }按映射F:u n →u k(n)所得到的数列{u k(n)}称原数列的重排;同样的,级数∑∞=1n k(n)u 也是级数∑∞=1n nu 的重排. 记v n =u k(n),即∑∞=1n k(n)u =v 1+v 2+…+v n +….定理12.13:若级数∑n u 绝对收敛,且其和等于S ,则任意重排后所得到的级数∑n v 也绝对收敛,且有相同的和数.证:不妨设∑n u 为正项级数,用S n 表示它的第n 个部分和, 记T m =v 1+v 2+…+v m 表示级数∑n v 的第m 个部分和.∵级数∑n v 是∑n u 的重排,∴对每一个v k 都等于某一ki u (1≤k ≤m).记n=max{i 1,i 2,…i m }, 则对任何m ,都存在n ,使T m ≤S n .由∞n lim +→S n =S 知,对任何正整数m 有T m ≤S, 即∑n v 收敛,其和T ≤S.又级数∑n u 也是∑n v 的重排,∴S ≤T ,推得T=S.若∑n u 为一般级数且绝对收敛,即正项级数∑n u 收敛,同理可推得 级数∑n v 收敛,∴级数∑n v 收敛. 令p n =2u u nn +,q n =2u u nn -;则当u n ≥0时,p n =u n ,q n =u n ;当u n <0时,p n =0,q n =-u n ≥0. 从而有 0≤p n ≤|u n |,0≤q n ≤|u n |,p n +q n =|u n |,p n -q n =u n . 又∑n u 收敛, ∴∑n p ,∑n q 都是正项的收敛级数,且S=∑n u =∑n p -∑n q .同理得:∑n v =∑'n p -∑'n q ,其中∑'n p ,∑'n q 分别是∑n p ,∑n q 的重排. ∴∑n v =∑'n p -∑'n q =∑n p -∑n q =S. 得证!性质2:级数的乘积:由a ∑n u =∑n au 可推得有限项和与级数的乘积:(a 1+a 2+…+a m )∑∞=1n n u =∑∑∞==1n n m1k k u a .继而可推广到无穷级数之间的乘积:设收敛级数∑n u =A, ∑nv=B.将两个级数中每一项所有可能的乘积列表如下:这些乘积u i v j按各种方法排成不同的级数,如按正方形顺序相加,得u1v1+u1v2+u2v2+u2v1+u1v3+u2v3+u3v3+u3v2+u3v1+…,如下表:或按对角线顺序相加,得u1v1+u1v2+u2v1+u1v3+u2v2+u3v1+…,如下表:定理12.14:(柯西定理) 设绝对收敛级数∑n u=A, ∑n v=B,则由它们中每一项所有可能的乘积u i v j按任意顺序排列所得到的级数∑n w绝对收敛,且其和等于AB.证:设级数∑n w,∑n u,∑n v的部分和分别为:S n =|w 1|+|w 2|+…+|w n |,A m =|u 1|+|u 2|+…+|u m |,B m =|v 1|+|v 2|+…+|v m |. 其中w k =kkj i v u (k=1,2,…,n),m=max{i 1,j 1,i 2,j 2,…,i n ,j n },则必有S n ≤A m B m .∵绝对收敛级数∑n u 与∑n v 的部分和数列{A m }和{B m }都有界, ∴{S n }有界,从而级数∑n w 绝对收敛. 利用绝对收敛级数的可重排性, 将绝对收敛级数∑n w 按正方形顺序重排如下: u 1v 1+(u 1v 2+u 2v 2+u 2v 1)+(u 1v 3+u 2v 3+u 3v 3+u 3v 2+u 3v 1)+…, 把每一括号作一项,得新级数:p 1+p 2+p 3+…+p m +…收敛, 且与∑n w 和数相同,其部分和P m =A m B m . 即有∞m lim +→P m =∞m lim +→A m B m =∞m lim +→A m ∞m lim +→B m =AB. 得证!例2:证明:级数1+2r+…+(n+1)r n +…(|r|<1)绝对收敛,并求其和.证:等比级数∑∞=0n n r =1+r+r 2+…+r n +…=r-11(|r|<1),绝对收敛. 将(∑∞=0n n r )2的所有可能的项按对角线顺序相加得:1+(r+r)+(r 2+r 2+ r 2)+…+(r n +…+r n )+… (括号内共有n+1个r n ) =1+2r+…+(n+1)r n +…=2r)-(11. ∴所求级数绝对收敛,其和为2r)-(11.二、阿贝尔判别法和狄利克雷判别法引理:(分部求和公式,也称阿贝尔变换)设εi ,v i (i=1,2,…,n)为两组实数, 若令T k =v 1+v 2+…+v k (k=1,2,…,n),则有如下分部求和公式成立:∑=n1i ii vε=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .证:以v 1=T 1, v k =(T k -T k-1) (k=2,3,…,n)分别乘以εk (k=1,2,…,n),则∑=n1i ii vε=ε1v 1+ε2v 2+…+εn v n =ε1T 1+ε2(T 2-T 1)+…+εn (T n -T n-1)=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .推论:(阿贝尔引理)若(1)ε1, ε2,…, εn 是单调数组;(2)对任一正整数k(1≤k ≤n)有|T k |=|v 1+v 2+…+v k |≤A ,记ε=kmax {|εk |},有∑=n1k k k v ε≤3εA.证:由(1)知ε1-ε2, ε2-ε3, …, εn-1-εn 同号,于是由分部求和公式及(2)有∑=n1k k kv ε=|(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n |≤A|(ε1-ε2)+(ε2-ε3)+…+(εn-1-εn )|+A|εn |=A|(ε1-εn )|+ A|εn | ≤A(|ε1|+2|εn |)≤3εA.定理12.15:(阿贝尔判别法)若{a n }为单调有界数列,且级数∑n b 收敛, 则级数∑n n b a =a 1b 1+a 2b 2+…+a n b n +…收敛.证:由级数∑n b 收敛,依柯西准则,对任给正数ε, 存在正数N, 使 当n>N 时,对一切正整数p ,都有∑++=pn 1n k kb<ε.又数列{a n }单调有界,∴存在正数M ,使|a n |≤M ,根据阿贝尔引理有∑++=pn 1n k k kb a≤3εM. ∴级数∑n n b a 收敛.注:由阿贝尔判别法知,若级数∑n u 收敛,则下述两个级数:(1)∑p nn u (p>0);(2)∑+1n u n 都收敛.定理12.16:(狄利克雷判别法)若数列{a n }单调递减,且∞n lim +→a n =0,又且级数∑n b 的部分和数列有界,则级数∑n n b a 收敛.例3:证明:若数列{a n }单调递减,且∞n lim +→a n =0,则级数∑sinnx a n 和∑cosnx a n 对任何x ∈(0,2π)都收敛.证:2sin 2x (21+∑=n 1k coskx )=sin 2x +2sin 2x cosx+2sin 2x cos2x+…+2sin 2xcosnx= sin 2x +(sin 23x-sin 2x )+…+[sin(n+21)x-sin(n-21)x]=sin(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k coskx =2x 2sinx 21n sin ⎪⎭⎫ ⎝⎛+-21=21sinnxcot 2x +2cosnx -21.又-21cot 2x -1≤21sinnxcot 2x +2cosnx -21≤21cot 2x ,即当x ∈(0,2π)时,∑cosnx 的部分和数列有界,由狄利克雷判别法知级数∑cosnx an收敛.2sin 2x (∑=n 1k sinkx -21cot 2x )=2sin 2x sinx+2sin 2x sin2x+…+2sin 2x sinnx-cos 2x= (cos 2x-cos 23x) +…+[cos(n-21)x-cos(n+21)x]-cos 2x =-cos(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k sinkx =21cot 2x -2x 2sin x 21n cos ⎪⎭⎫ ⎝⎛+=2x 2sinx 21n cos -2x cos ⎪⎭⎫ ⎝⎛+.又- csc 2x =2x sin 1-≤2x 2sin x 21n cos -2x cos ⎪⎭⎫ ⎝⎛+≤2x sin1=csc 2x ,即当x ∈(0,2π)时,∑sinnx 的部分和数列有界,由狄利克雷判别法知级数∑sinnx an收敛.注:作为例3的特例,级数∑n sinnx 和∑ncosnx对一切x ∈(0,2π)都收敛.习题1、下列级数哪些是绝对收敛,条件收敛或发散的:(1)∑!n sinnx ;(2)∑+-1n n )1(n;(3)∑+n1p n n (-1);(4)∑-n 2sin )1(n ;(5)∑⎪⎪⎭⎫ ⎝⎛+n 1n (-1)n ;(6)∑++1n 1)ln(n (-1)n ;(7)n n 13n 1002n )1(∑⎪⎭⎫ ⎝⎛++-;(8)nn x !n ∑⎪⎭⎫ ⎝⎛. 解:(1)∵!n sinnx <2n 1(n>4);又级数∑2n1收敛,∴原级数绝对收敛. (2)∵1n n)1(limn ∞n +-+→=1≠0;∴原级数发散. (3)∵当p ≤0时,n1p n ∞n n(-1)lim++→≠0;∴原级数发散;当p>1时,n1p n n(-1)+≤p n 1;又级数∑p n1(p>1)收敛,∴原级数绝对收敛. 当0<p ≤1时,令u n =n1p n1+,则n1n u u +=1n 1p n 1p 1)(n n++++=1n 1pn1)1n (n 11n++⎪⎭⎫⎝⎛+<1n 1pn 1n n 11n+⎪⎭⎫ ⎝⎛+=p1)n(n 1n 11n⎪⎭⎫ ⎝⎛++,∵np ∞n n 11lim ⎪⎭⎫ ⎝⎛++→=e p>1, 1n 1∞n n lim ++→=1,∴当n 充分大时,npn 11⎪⎭⎫ ⎝⎛+>1n 1n +,即 p n 11⎪⎭⎫ ⎝⎛+>1)n(n 1n+,从而n1n u u +<1,即u n+1<u n ,∴{u n }在n 充分大后单调减. 又∞n lim +→u n =n1p ∞n n1lim++→=0(0<p ≤1),由莱布尼兹判别法知原级数条件收敛.(4)∵n2n2sin)1(limn ∞n -+→=1, 且级数∑n2发散,∴原级数不绝对收敛. 又{n2sin }单调减,且n2sin lim ∞n +→=0,由莱布尼兹判别法知原级数条件收敛. (5)∵级数∑n(-1)n收敛,而级数∑n1发散,∴原级数发散.(6)∵1n 1)ln(n (-1)n ++>1n 1+(n ≥2),且∑+1n 1发散,∴原级数不绝对收敛.又{1n 1)ln(n ++}单调减且1n 1)ln(n lim ∞n +++→=0,∴原级数条件收敛. (7)记u n =n13n 1002n ⎪⎭⎫⎝⎛++,则n ∞n u lim +→=13n 1002n lim ∞n +++→=32,∴原级数绝对收敛. (8)记u n =n n x !n ⎪⎭⎫ ⎝⎛,则n 1n ∞n u u lim ++→=n∞n 1n n x lim ⎪⎭⎫⎝⎛++→=|e x |, ∴当-e<x<e 时,n1n ∞n u u lim++→<1,原级数绝对收敛; 当x ≥e 或x ≤-e 时,n1n ∞n u u lim++→≥1,即当n 充分大时,|u n+1|≥|u n |>0,∴n ∞n u lim +→≠0,∴原级数发散.2、应用阿贝尔判别法或狄利克雷判别法判断下列级数的收敛性:(1)nn n x 1x n (-1)+⋅∑ (x>0); (2)∑a n sinnx, x ∈(0,2π) (a>0); (3)nnxcos )1(2n∑-, x ∈(0,π).解:(1)∵当x>0时,0<n n x 1x +<n n x x =1,且n n1n 1n x 1xx 1x ++++=1n 1n x 1x x ++++; 若0<x ≤1,则1n 1n x 1x x ++++≤1;若x>1,则1n 1n x1x x ++++>1, 即数列{n n x 1x +}单调有界. 又级数∑n(-1)n收敛,由阿贝尔判别法知原级数收敛. (2)∵当a>0时,数列{a n1}单调递减,且∞n lim +→a n 1=0, 又当x ∈(0,2π)时,∑=n1k sinkx ≤csc 2x,即∑sinnx 的部分和数列有界,由狄利克雷判别法知原级数收敛. (3)∵数列{n 1}单调递减,且∞n lim+→n1=0,又当x ∈(0,π), ∑=n1k 2kkx cos (-1)=∑=+n1k k21cos2kx (-1)≤∑=n 1k k 2(-1)+∑=n1k k 2cos2kx (-1)≤21+∑=n1k cos2kx 21.又由2sinx ∑=n 1k cos2kx =4sin(2n+1)x-4sinx ,得∑=n1k cos2kx =2sinx4sinx -1)x 4sin(2n +≤sinx 2+2, 即对任意x ∈(0,π),级数nx cos )1(2n ∑-有界, 根据狄利克雷判别法知原级数收敛.3、设a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0.证明:级数∑+⋯++na a a (-1)n211-n 收敛.证:由a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0知, {na a a n21+⋯++}单调减且趋于0,由莱布尼茨判别法知原级数收敛.4、设p n =2u u nn +,q n =2u u nn -.证明:若∑n u 条件收敛,则级数∑n p 与∑n q 都是发散的. 证:若∑n u 条件收敛,则∑n u 发散, ∴∑n p =∑+2u u nn =∑2u n +∑2u n,发散; ∑n q =∑-2u u nn =∑2u n -∑2u n,发散.5、写出下列级数的乘积:(1)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx ; (2)⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n 0n n!(-1)n!1. 解:(1)当|x|<1时,两个级数均绝对收敛,乘积按对角线一般项为:w n =k-n k-n n1k 1-k 1)xk -(n (-1)·kx +∑==xn-1∑=+n1k k-n 1)k -k(n (-1), 从而有w 2m =x2m-1∑=+2m1k k-2m 1)k -k(2m (-1)=[-2m+…+(-1)m (m 2+m)+2m+…+(-1)m-1(m 2+m)]=0; w 2m+1=x 2m∑+=++12m 1k 1k -2m 2)k -k(2m (-1)=x 2m[∑+=++12m 1k 1k -2m 1)k -k(2m (-1)+∑+=+12m 1k 1k -2m k (-1)]=-x 2m∑+=+12m 1k k-2m 1)k -k(2m (-1)+x2m∑+=+12m 1k 1k -2m k (-1)=- w 2m +x2m∑+=-12m 1k 1k k (-1)=x2m∑+=-12m 1k 1k k (-1)=x 2m(1-2+3-4+…-2m+2m+1)=(m+1) x 2m.∴⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx =∑∞=+0m 2m 1)x (m . (|x|<1).(2)两个级数均绝对收敛,其乘积按对角线一般项为:w 0=1, w n =k)!-(n (-1)·k!1k -n nk ∑==n!1∑=nk k -n k)!-(n k!n!(-1)=n!1)-(1n=0(n=1,2,…) ∴⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n0n n!(-1)n!1=1.注:二项式n 次幂展开式:(1-1)n=∑=nk k -n k)!-(n k!n!(-1).6、证明级数∑∞=0n n n!a 与∑∞=0n n n!b 绝对收敛,且它们的乘积等于∑∞=+0n nn!b)(a .证:n!a 1)!(n a limn 1n ∞n +++→=1n alim ∞n ++→=0,∴∑∞=0n n n!a 绝对收敛. 同理∑∞=0n nn!b 绝对收敛. 按对角线顺序,其乘积各项为:C 0=1=!0b)(a 0+, ……,C n =k)!-(n b k!a k -n n1k k ⋅∑==n!∑=n 0k k -n k k)!-(n k!n!b a =n!b)(a n +. ∴∑∞=0n n n!a ·∑∞=0n n n!b =∑∞=+0n nn!b)(a .7、重排级数∑+-n1)1(1n ,使它成为发散级数. 解:∑+-n 1)1(1n =1-21+31-41+…+n 1)1(1n +-+…=∑∞=1k 1-2k 1-∑∞=1k 2k 1,∑∞=1k 1-2k 1∵∑∞=1k 2k 1和∑∞=1k 1-2k 1是发散的正项级数,∴存在n 1,使u 1=∑=1n 1k 1-2k 1-21>1,又∑∞+=1n k 11-2k 1发散,∴存在n 2>n 1,使u 2=∑+=21n 1n k 1-2k 1-41>21,同理存在n 3>n 2,使u 3=∑+=32n 1n k 1-2k 1-61>31,…,u i+1=∑++=1i i n 1n k 1-2k 1-1)2(i 1+>1i 1+,可得原级数的一个重排∑∞=1i i u . ∵u i >i 1,且∑i 1发散,∴∑∞=1i i u 必发散.8、证明:级数∑-n)1(]n [收敛.证:记A L ={n|[n ]=L}, L=1,2,…,显然A L 中元素n 满足L 2≤n<(L+1)2,且A L 中元素个数为2L+1. 记U L =∑∈-L A n ]n [n )1(,则有u L =∑∈-LA n Ln )1(=(-1)L V L , 其中V L =∑∈L A n n 1,则V L -V L+1=∑=+2L0s 2s L 1-∑+=++1)2(L 0s 2s)1(L 1=∑=++++2Ls 22s])1s)[(L (L 1L 2-1L 2)1(L 12+++-2L 2)1(L 12+++≥∑=+++2L0s 22L]2)1[(L 1L 2-L 2)1(L 22++=222L]2)1[(L L]2)12[(L -1)L 2(L 2+++++=2222L]2)1[(L L)2-1-L 2L -L L 2(2++-+=222L]2)1[(L 1)-3L L (2++->0(当L ≥4时). ∴当L ≥4时, { V L }是单调下降数列. 当n ∈A L 时,21)(L 1+<n 1≤2L 1, ∴21)(L 1L 2++<V L ≤2L 1L 2+,可见∞L lim +→V L =0,从而∑∞=1L L u =∑∞=1L L LV (-1)收敛. 设级数∑∞=-1n ]n [n )1(的部分和为S N ,记级数∑∞=1n n u 的部分和为U M ,则S N =∑=-N1n ]n [n )1(,U M =∑=M1n n u ,任一个S N 均被包含在某相邻两个部分和U M , U M+1之间,即有|S N -U M |≤|U M+1-U M |,由级数∑∞=1n n u 收敛,知∞M lim +→U M+1-U M =0,∴∞N lim +→S N -U M =0,即极限∞N lim +→S N =∞N lim +→U M =∑∞=1n n u 存在,∴级数∑-n)1(]n [收敛.。
数学分析数项级数_2022年学习资料

§2数项级数的收敛性及其基本性质-无穷项函数相加,对每一个固定的X,每一项便变成-一个数,因此,我们从无穷 数相加谈起,这种级-数称为数项级数,或简称为无穷级数。-定义-设有数列:山1,u2,3,L,un,L-用加 把这些数依次连接起来所得的式子-4+2+4+L+un+L-这仅是一种形-式上的相加。-称为无穷级数或数项级 ,简称级数。-记为:∑w或∑4-k=
1-31-2P-1-1-动1-六21--这里用到-2一<1当p>1这就证明了部分和-数列有上界,故-启p1 技数
比较判别法-定理10.6-比较判别法设有两个正项级数-∑4,=4+42+L,-n=l-∑=出+%+L,-n 1-若对充分大的n(即存在N,当n>N时有-un≤CVn-其中c>0与n无关,则-1当∑收敛时,∑4收敛; ∑“发散时,∑发散。
k可以取任意大,因而无上界。故卫=1时,级数-三发散(级教三}-也称为调和级数。-当p<1时,由于对任意正 数k,有≥-因此-会是因-右边的部分和数列无上界推出左边也无上界,-在p<1也发散。-当p>1时,设2≤n 2k+l-类似于前面的做法,有
n=1+水++儿+-=1+++++++L-+2加+2+L十女-<1+÷+京儿+六+品-=++儿+°j
问题:-1.无穷多项相加究竟是什么意思?加得起来吗?-2.对这种无穷项相加的“无穷级数”,它的运算-规律与 有限和”有什么异同?-历史上:-很多是“形式运算”,后来由于应用的深入-和广泛,形式运算常出现矛盾:
数学分析数项级数

数学分析数项级数数项级数是由一组数相加而成的序列。
数项级数在数学中有着非常重要的地位,常用于研究数学分析、微积分和数论等领域。
首先,我们来定义数项级数。
数项级数是由一组实数a1, a2,a3, ... 组成的序列,将其相加得到的序列表示为:S1 = a1, S2 = a1 + a2, S3 = a1 + a2 + a3, ... 一般地,第n个部分和Sn为Sn = a1 +a2 + ... + an。
我们首先来讨论数项级数的部分和序列。
部分和序列是数项级数中非常重要的概念。
如果部分和序列Sn收敛于一个实数S,即lim(n→∞)Sn = S,那么我们称该数项级数是收敛的,并称S为该数项级数的和。
如果部分和序列Sn不收敛,我们称该数项级数是发散的。
接下来,我们来研究一些收敛数项级数的性质。
首先是数项级数的有界性。
如果数项级数收敛,那么它的部分和序列一定是有界的。
这是因为收敛数列的定义就包含了它的部分和序列是有界的。
其次,我们来看数项级数的比较判别法。
这是判断数项级数的敛散性的一种常用方法。
如果对于一个正数b来说,数项级数绝对值的部分和序列Sn满足Sn≤b,那么我们称该数项级数是收敛的。
该方法常用于判定数项级数在无穷大时的敛散性。
再次,我们来看数项级数的比值判别法。
如果数项级数的部分和序列Sn满足lim(n→∞) ,Sn+1 / Sn, = L,那么我们有下面的结论:1)当L<1时,数项级数是收敛的;2)当L>1时,数项级数是发散的;3)当L=1时,该方法无法判定数项级数的敛散性。
最后,我们来看数项级数的积分判别法。
对于一个连续递减的正函数f(x),如果数项级数的部分和序列Sn与函数f(x)的积分∫(n→∞) f(x) dx之间存在以下关系:1)当∫(n→∞) f(x) dx收敛时,数项级数也是收敛的;2)当∫(n→∞) f(x) dx发散时,数项级数也是发散的。
以上是数项级数的一些基本概念和性质。
数学分析数项级数

傅里叶级数在信号处理、图像处理、通信等领域有着广泛的应用。通过傅里叶变换,可 以将信号从时域转换到频域,从而更好地理解和处理信号。
泰勒级数
01
泰勒级数的定义
泰勒级数是无穷级数,用于逼近一个 函数。泰勒级数展开式由多项式和无 穷小量组成,可以用来近似表示任意 函数。
02
泰勒级数的性质
数学分析数项级数
目录
• 数项级数的基本概念 • 数项级数的性质 • 数项级数的求和法 • 数项级数的应用 • 数项级数的扩展
01
数项级数的基本概念
级数的定义
定义
级数是无穷数列的和,表示为Σ,其 中每一项都是正项或负项。
特点
级数中的每一项都是无穷小量,但整 个级数的和可能是有限的或无限的。
级数的分类
泰勒级数具有收敛性、唯一性和可微 性等重要性质。这些性质使得泰勒级 数成为分析函数的有力工具。
03
泰勒级数的应用
泰勒级数在数学分析、物理和工程等 领域有着广泛的应用。通过泰勒展开 ,可以更好地理解和分析函数的性质 ,如求函数的极限、证明不等式等。
感谢您的观看
THANKS
有穷级数
所有项的和是有限的,例如1+2+3+...+100。
无穷级数
所有项的和是无限的,例如1+1/2+1/3+...。
级数的收敛与发散
收敛
级数的和是有限的,即级数 收敛。
发散
级数的和是无限的,即级数 发散。
判定方法
通过比较测试、柯西收敛准 则等判定级数的收敛与发散 。
02
数项级数的性质
收敛级数的性质
数项级数的扩展
幂级数
数学分析级数

项级数, 且存在某正数 N0 及常数 l,
(i) 若对一切 n N0, 成立不等式
n un l 1,
(9)
则级数 un 收敛;
(ii) 若对一切 n N0, 成立不等式
n un 1,
(10)
则级数 un 发散.
前页 后页 返回
证 由(9)式有un ln , 因为等比级数 l n 当 1 l 1 时收敛, 故由比较原则, 这时级数 un 也收敛, 对
(5)
前页 后页 返回
则级数 un 收敛.
(ii) 若对一切 n N0, 成立不等式
un1 1,
(6)
un
则级数 un发散.
证 (i) 不妨设不等式 (5) 对一切 n 1 成立,于是有
u2 q, u3 q, , un q, .
u1
u2
un1
前页 后页 返回
把前n-1个不等式按项相乘后,得到
u n n
n 1 4n 4
根据推论1,级数收敛.
前页 后页 返回
例7 讨论级数 nxn1( x 0) 的敛散性.
解 因为
un1 un
(n 1)xn nx n1
x
n1 n
x(n
),
根据推论1,当 0 < x <1时级数收敛;当 x>1时级数发
散; 而当 x = 1时, 所考察的级数是 n, 它显然也是
散性做出判断.
例如 对
1 n2
和
1 n
,
都有
前页 后页 返回
n un 1(n ), 但
1 n2
是收敛的,
而
1 却是 n
发散的.
若(11)式的极限不存在, 则可根据根式 n un 的上极限
高数第九章数项级数

n
dx 1 1 1 (1 p1 ) 1 p 1 x p1 n p1
即sn有界,
则P 级数收敛.
当p 1时, 收敛 P 级数 当p 1时, 发散
中央财经大学
数学分析
例 2 证明级数
n 1
1 是发散的. n( n 1)
证明
1 1 , n( n 1) n 1
un1 N , 当n N时, 有 , un
un1 即 un
(n N )
中央财经大学
数学分析
当 1时, 取 1 ,
使r 1,
uN 2 ruN 1 ,
uN m r
uN 3 ruN 2 r 2 uN 1 ,
中央财经大学
1 (1) sin ; n n 1
数学分析
5.比值审敛法(达朗贝尔 D’Alembert 判别法):
设
n 1
un 1 (常数或 ) n u un 是正项级数,如果 lim n
则 1时级数收敛; 1 时级数发散; 1 时失效.
证明 当为有限数时, 对 0,
n dx 1 设 p 1, 由图可知 p n1 p n x 1 1 1 sn 1 p p p 2 3 n 2 dx n dx o 1 1 p n1 p x x
y
y
1 ( p 1) xp
1
2
3
4
x
中央财经大学
数学分析
1 1
1 而级数 发散, n 1 n 1
级数
n 1
1 发散. n( n 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推 论 如 果 加 括 弧 后 所 成 的 级 数 发 散 ,则 原 来 级 数 也 发 散 .
性质4 (级数收敛的必要条件)
当 n无限,它 增的 大u 一 时 n趋般 于 ,即 项 零
级数收敛 ln im un 0.
证 s un 则 u nsn sn 1, n1 ln i u m nln i s m nln i s m n 1 ss0.
当q1时, ln i m qnln i m sn
如果q 1时
收敛 发散
当q1时, snn a 级数发散 当q1时,级a 数 a a a 变 为
ln im sn不存在 级数发散
综上 aqn
当q 1 时,收敛;
n0
当q 1 时,发散.
例2 讨论数项级数
11 1
(* )
1223 n (n 1 )
1 1 1 . m mp m
因此, 对 任 意 0,可 取 N1, 当m>N及任意正
整数 p,由上式可得 u m 1u m 2 u m pm 1,
依 级 数 收 敛 的 柯 西 准 则 , 知 级 数 n 1 2收敛.
1
注 级数 n 1 n ( n 1 ) 的收敛性已由例2的证明过程所
( c u n d v n ) cu n dv n . 根据级数收敛的柯西准则, 级数 un 的收敛与否与
级数前面有限项的取值无关.从而可得到以下定理. 定理12.3 去掉、增加或改变级数的有限项并不改变 级数的敛散性.
性质3 若级数 un收敛,则 un也收敛
n1
nk1
(k1).且其逆亦真.
Chapt 12 数项级数
级数是数学分析三大组成部分之一, 是逼近理论的基础,是研究函数、进行近 似计算的一种有用的工具. 级数理论的主要 内容是研究级数的收敛性以及级数的应用.
教学目标:
1.熟练掌握级数的收敛性; 2.熟练掌握正项级数收敛的判别; 3.掌握一般项级数收敛的判别.
则结果是1.两个结果的不同向我们提出了两个基本 问题:“无限个数相加”是否存在“和”;如果存在, “和”等于什么? 由此可见,“无限个数相加”不能 简单地与有限个数相加作简单的类比,需要建立新 的理论.
例 1 讨论等比级数(几何级数)
aqn a aq aq2 aqn (a 0)
n0
的收敛性.
解 q 1时
s n a a a q 2 q a n 1 q
a aq n a aqn , 1 q 1q 1q
当q1时, lim qn0 n
ln im sna 1qnn 2n1 2
,
2n1
n1 2n 1
1 ,n 2
,
因 而 ( 1) n 1 1 .
i 1
2
无穷级数收敛性举例:1904年,瑞典数学家科赫 (Koch)做出一雪花曲线.
做法:先给定一个正三角形,然后在每条边上对 称的产生边长为原边长的1/3的小正三角形.如此 类推在每条凸边上都做类似的操作,就得到 “Koch雪花曲线”.
A1;
依次类推
观察雪花分形过程
设三角形
周长为 P1 3 ,
面积为
A1
3; 4
第一次分叉:
周长为P2
4 3
P1,
面积为A2
A1
3
1 9
A1;
依次类推
第 n次分叉: 周长为 Pn(4 3)n1P1 n1,2, 面积为 A nA n13{4n2[1 9 ()n1A 1]}
A 1 3 1 9 A 1 3 4 ( 1 9 ) 2 A 1 3 4 n 2 ( 1 9 ) n 1 A 1 A 1 { 1 [1 3 1 3 (9 4 ) 1 3 (9 4 )2 1 3 (9 4 )n 2 ]}
n1
n1
写成s u1 u2 u3
即 常数项级数收敛(发散)nl im sn存在(不存在)
余项 rnssn u n 1 u n 2 un i
i1
即 sn s 误差为 rn (ln im rn0)
上述定义很自然,和人们的直观认识是一致的. 它的不足之处是一些很简单的级数,在此意义下 却没有和.例如级数
定理12.4 在收敛级数的项中任意加括号, 既不改变 级数的收敛性,也不改变它的和.
证 设 u n 为 收 敛 级 数 , 其 和 为 S .下 面 证 明 u n加
括号后的级数 (u nk11 unk )收敛, 且其和也是 k1
S . 为 此 , 记 v 1 u 1 u n 1 , v 2 u n 1 1 u n 2 ,,
总存在正整数N,使得当m N以及对任意的正
整数p,都有 | um1 um2 ...ump |.
级数发散的充要条件是:存在某正数0,对任何
正整数N,总存在正整数m0( N)和p0,有
| um01 um02 ...um0p0 |0.
Cauchy收敛准则是一个普遍的原则,它 适用于一切级数,而不考虑某些级数的特殊 规律.正因为如此,用它去判别某些具体级 数的敛散性并不方便.因此,我们必须针对 某些级数的特殊规律,给出相应的判别法.
的收敛性.
解 级数(*)的第n个部分和为
Sn11 2213
1 n(n1)
11 2 1 21 3 n 1n 1 1
1
n
1
1
.
由于 lni m Snlni m 1n1 11,
因此级数 (*) 收敛,且其和为 1.
例 3 判别无穷级数
1 1
1
的收敛性.
13 35
(2n 1) (2n 1)
解 un(2n1)1(2n1)12(2n112n11),
sn 1 1 3 3 1 5 (2 n 1 )1 (2 n 1 )
1 ( 1 1 ) 1 ( 1 1 ) 1 (11) 2 32 35 2 2 n 12 n 1
1(1 1 ), 2 2n1
lni m snlni m 1 2(12n11)
(常数项)无穷级数
n
snu1u2 un ui
i1
部分和数列 s1 u1, s2u1u2,
s 3 u 1 u 2 u 3 , ,
s n u 1 u 2 u n ,
2 级数的收敛与发散
当n无限增大时,如果级数 un 的部分和
n1
数列 sn 有极限 s ,
即
lim
n
sn
s
则称无穷级数
un 收敛,这时极限 s叫做级数 un 的和.并
观察雪花分形过程
设三角形
周长为 面积为
P1 3 ,
A1
3; 4
观察雪花分形过程
设三角形
周长为 P1 3 ,
面积为
A1
3; 4
第一次分叉:
周长为P2
4 3
P1,
面积为A2
A1
3
1 9
A1;
依次类推
观察雪花分形过程
设三角形
周长为 P1 3 ,
面积为
A1
3; 4
第一次分叉:
周长为P2
4 3
证 u k 1 u k 2 u k n n u k 1 u k 2 u k n
snksk,
则 ln im n ln i s m n k ln i s m kssk .
类似地可以证明在级数前面加上有限项不
影响级数的敛散性.
注 去掉、增加或改变级数的有限项虽不改变该级
n2,3,
于是有
ln im Pn
1
lim
n
An
A1
(1
1
3
4)
A1(153)253.
9
结论:雪花的周长是无界的,而面积有界. “Koch雪花曲线”的性质:
面积有限而周长无限.
不要以为雪花曲线仅仅是人脑想出来的一 种“病态”曲线,科学家们发现,这类曲线能 应用于研究自然界的许多现象,例如地球大陆 的海岸线等.这门新兴的数学学科称为分形.
u n a 1 ( a 2 a 1 ) ( a 3 a 2 ) ( a n a n 1 ) .( 5 )
n 1
这时数列{ a n } 与级数 (5) 具有相同的敛散性, 且当
{ a n } 收敛时,其极限值就是级数(5)的和.
定理(级数收敛的柯西准则)
级数un收敛的充要条件是:任给正数, n1
{ S n } 收 敛 , 且 l n i m S n S . 故 由 子 列 性 质 , { S n k } 也 收 敛 ,
且 l k i m S n k S , 即 级 数 v k 收 敛 , 且 它 的 和 也 等 于 S .
注 从级数加括号后的收敛,不能推断它在未加括号
时也收敛. 例如 ( 1 1 ) ( 1 1 ) ( 1 1 ) 0 0 0 0 ,
例4 运用级数收敛的柯西准则证明级数
1 n2
收敛.
证 由于
u m 1 u m 2 u m p
1
1
1
(m1)2 (m2)2 (mp)2
1 1
1
m (m 1 ) (m 1 )(m 2 ) (m p 1 )(m p )
m 1 m 1 1 m 1 1 m 1 2 m 1 p 1 m 1 p
数的敛散性,但在收敛时,其和一般还是要变的.
由定理12.3知, 若级数un收敛, 其和为S,则级数 n1
u n 1 u n 2
( 8 )
也 收 敛 , 且 其 和 R n S S n . ( 8 ) 式 称 为 级 数 u n 的
第 n 个余项(简称余项), 它表示以部分和 Sn 代替S 时所产生的误差.
1 2
,
级 数 收 , 和敛 为 1. 2
注 由于级数(1)的收敛或发散(简称敛散性),是由它