(完整word版)数学分析求极限的方法
求极限的方法

求极限的方法求极限是数学分析中的一种重要方法,用于研究数列和函数在某一点或无穷远处的性质。
极限的概念是分析学中涉及面最广、最重要的一类问题之一。
求极限的方法有很多种,常见的有直接代入法、夹逼定理、基本初等函数性质、洛必达法则等。
下面将从这些方法入手,进行详细阐述。
首先,直接代入法是求极限最简单直接的一种方法。
当函数在极限点处连续时,我们可以直接将极限点代入函数,得到极限的值。
例如,对于函数f(x)=x+1,当x趋近于2时,我们可以直接代入x=2,得到极限的值为f(2)=2+1=3。
同时,在使用直接代入法时要注意避免出现未定义的情况,如分母为0的情况。
其次,夹逼定理也是一种常用的求极限的方法。
夹逼定理是指当一个数列或函数的值始终夹在两个已知数列或函数之间,并且这两个数列或函数的极限相等时,该数列或函数的极限也等于这个共同的极限。
这种方法常用于求无穷小量的极限。
例如,对于数列an=1/n,我们可以通过夹逼定理将其夹在0和1之间,从而求得其极限为0。
第三,基本初等函数性质是求极限时经常用到的工具。
基本初等函数的性质有连续性、有界性、单调性等,这些性质对于求极限时有较大帮助。
例如,当x趋近于无穷时,指数函数的极限必定是无穷大,对数函数的极限必定是无穷小。
最后,洛必达法则是一种常用的求极限的方法,尤其适用于求函数之间的极限。
洛必达法则可以将一个函数的极限转化为求该函数的导数的极限。
具体来说,当函数的极限形式是0/0或无穷/无穷时,我们可以计算函数的导数,并再次求极限。
通过多次应用洛必达法则,可以解决一些较为复杂的极限问题。
总结起来,求极限的方法有很多种,适用于不同类型的函数和数列。
除了前面提到的直接代入法、夹逼定理、基本初等函数性质和洛必达法则之外,还有级数展开法、泰勒展开法等等。
在实际求极限的过程中,我们可以根据具体的问题和函数特点选择合适的方法来求解。
掌握这些方法,对于理解函数和数列的性质,解决一些数学问题都极为有帮助。
求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
(完整word版)高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14 种方法一、极限的定义1. 极限的保号性很重要:设limf (x)A ,x x 0( i )若 A 0 ,则有0 ,使适当 0 | x x 0 |时, f (x) 0 ; ( ii )如有0, 使适当 0 | x x 0 |时, f (x)0,则A0 。
2. 极限分为函数极限、数列极限,此中函数极限又分为限能否存在在:x时函数的极限和 xx 0 的极限。
要特别注意判断极( i )数列 x n 收敛于 a 的充要条件 是它的全部子数列均收敛于 a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”( ii )limf (x)Alimf ( x)limAxxx(iii)lim f ( x)AlimlimAx xx x 0x x 0(iv) 单一有界准则 ( v )两边夹挤准则(夹逼定理 / 夹逼原理) ( vi ) 柯 西 收 敛 准 则 ( 不 需 要 掌 握 )。
极 限 limf ( x) 存 在 的 充 分 必 要 条 件 是 :x x 00,0, 使适当 x 1、 x 2U o ( x 0 )时,恒有 | f ( x 1 ) f ( x 2 ) |二.解决极限的方法以下:1. 等价无量小代换。
只好在乘除 时候使用。
例题略。
..2. 洛必达( L ’ho spital )法例(大题目有时会有示意要你使用这个方法)它的使用有严格的使用前提。
第一一定是X 趋近,而不是 N 趋近,因此面对数列极限时候先要转变为求 x 趋近状况下的极限,数列极限的n 自然是趋近于正无量的,不行能是负无量。
其次 , 一定是函数的导数要存在,假如告诉 f (x )、g (x ), 没告诉能否可导, 不行直接用洛必达法例。
此外,一定是 “0 比 0”或“无量大比无量大” ,而且注意导数分母不可以为 0。
洛必达法例分为 3 种状况:(i )“ 0”“”时候直接用(ii) “0? ”“”,应为无量大和无量小成倒数的关系,因此无量多数写成了无量小的倒数形式了。
求极限方法总结

求极限方法总结极限是数学中非常重要的概念之一,广泛应用于微积分、数学分析等诸多领域。
寻找极限的过程并不总是简单明了的,有时需要运用一些基本的方法和技巧来达到目标。
本文将总结一些常用的求解极限的方法,希望能对读者有所帮助。
首先,我们先介绍一些基本的极限定义。
给定一个函数$f(x)$,当$x$趋近于某个数$a$时,如果$f(x)$的值也趋近于一个确定的数$L$,则称函数$f(x)$在$x$趋近于$a$的过程中具有极限,记作$\lim\limits_{x\to a} f(x)=L$。
在这个定义中,我们可以确立一些基本的思路和方法。
一、直接代入法。
当我们求解一个函数在某点的极限时,首先可以尝试将该点的值代入函数中,看是否可以得到一个确定的值。
如果可以,那么这个值就是该函数在该点的极限。
二、分子分母分开求极限法。
当函数的极限形式类似于$\frac{0}{0}$或$\frac{\infty}{\infty}$时,我们可以尝试将分子和分母分别求极限,然后再进行运算。
这种方法通常需要使用洛必达法则,这是一种非常常用的求解$\frac{0}{0}$或$\frac{\infty}{\infty}$型极限的方法。
三、夹逼准则。
当我们求解一个函数在某点的极限时,如果能够找到两个函数$g(x)$和$h(x)$,使得$g(x)\leq f(x)\leq h(x)$,且$\lim\limits_{x\to a}g(x)=\lim\limits_{x\to a}h(x)=L$,则可以得出$\lim\limits_{x\to a}f(x)=L$。
这种方法常用于解决一些特殊的极限问题。
四、无穷小代换法。
当我们求解一个函数在某点的极限时,如果能够找到一个新的变量$t$,使得$t\to 0$时,$f(x)$可以表示为一个关于$t$的函数,那么我们可以考虑使用$t$来进行替换,然后再求$t$的极限。
这种方法常用于解决一些复杂的极限问题。
数学分析中极限的求法总结

数学分析中极限的求法总结第一篇:数学分析中极限的求法总结数学分析中极限的求法总结1.1 利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。
例:limf(x)=A的ε-δ 定义是指:∀ε>0,∃δ=δ(x0,ε)>0,0<|x-x0|x→x0<δ⇒|f(x)-A|<ε 为了求δ 可先对x0的邻域半径适当限制,如然后适当放大|f(x)-A|≤φ(x)(必然保证φ(x)为无穷小),此时往往要用含绝对值的不等式:|x+a|=|(x-x0)+(x0+a)|≤|x-x0|+|x0+a|<|x0+a|+δ1域|x+a|=|(x-x0)+(x0+a)|≥|x0+a|-|x-x0|>|x0+a|-δ1从φ(x)<δ2,求出δ2后,取δ=min(δ1,δ2),当0<|x-x0 |<δ时,就有|f(x)-A|<ε.x+x+...xn=a.例:设limxn=a则有lim1 2n→∞n→∞nε∣xn-a∣<于是当证明:因为limxn=a,对∀ε>0,∃N1=N1(ε),当n>N1时,n→∞2x+x+...+xn∣x+x+...+xn-na∣12-a∣=12 n>N1nn0<ε<1其中A=∣x1-a∣+∣x2-a∣+∣xN1-α∣是一个定数,再由解得n>2AAε<,n2x+x+...+xnεε⎧⎡2A⎤⎫,故取N=max⎨N1,⎢⎥⎬当n>N12-α<+=ε。
εn22⎩⎣ε⎦⎭1.2 利用极限的四则运算性质求极限定理[1]:若极限limf(x)和limg(x)都存在,则函数f(x)±g(x),f(x)⋅g(x)当x→x0x→x0x→x0时也存在且①lim[f(x)±g(x)]=limf(x)±limg(x)x→x0x→x0x→x0②lim[f(x)⋅g(x)]=limf(x)⋅limg(x)x→x0x→x0x→x0limf(x)f(x)f(x)x→x又若c≠0,则在x→x0时也存在,且有lim.=0x→x0g(x)g(x)limg(x)x→x0利用该种方法求极限方法简单,但要注意条件是每项或每个因子极限存在,0∞一般情况所给的变量都不满足这个条件,例如出现,∞-∞等情况,都0∞不能直接运用四则运算法则,必须对变量进行变形。
数学分析中求极限的几种重要方法

而+@$/=0+ H5* 存在+ # 再对式两边取极限得 5H槡,P5"所以 5)
R5R, H%" 解 得 5H$P槡$P3, 和 5H$R槡$P3, * 舍 去 + " 所
)
)
以+@$/=0+ H$
P槡$ )
P3,
#
' 十一( 利用对数法求极限
形如 3* 0+ 4*0+ 的极限"通常利用指数与对数恒等变形式
H ." )
,+P$
H .P,)+ ))
"证明!{,+ }
收敛"
并求其极限#
证5用数学归纳法可以证明!%d,+ d."* + H$")"3+
事实上
%
d,$
H .d."假设 )
%
d,+
d.d$
"则!
% d, +P$
H .P,)+ ))
d.P.) d.P.H. ))))
令 3* 0+H .P0) "则 3s* 0+H0# ))
关键词数学分析极限方法
一极限的简单概述
极限是数学分析中最基本的概念"因为数学分析的其他
基本的都用到极限来刻画# 如函数在某一点 0% 处连续'函数 在某点 0% 可导'偏导数$定积分$二重积分和三重积分定义' 无穷积分瑕积分$无穷级数的收敛的定义等# 因此极限是贯
穿数学分析的一条主线"它将数学分析的各个知识点联系在
*
7P$+
(完整版)浅析洛必达法则求函数极限

本科学年论文论文题目:用洛必达法则求极限的方法****:***学号: **********专业:数学与应用数学班级:数学1002班****:***完成日期: 2013 年 3月 8 日用洛必达法则求未定式极限的方法内容摘要极限运算是微积分学的基础,在众多求极限方法中,洛必达法则是一种简单而又方便的求极限方法。
但在具体使用过程中,一旦疏忽,解题就很可能出错。
本文就针对利用此法则求极限的过程及解题过程中常见问题,对洛必达法则求函数极限的条件及范围、应用、何时失效做了整体分析与探讨,并举例说明。
除此之外,还介绍了除洛必达法则之外其他求函数极限的方法以及同洛必达法则的比较,最后对洛必达法则进行小结。
关键词:洛必达法则函数极限无穷小量目录一、洛必达法则求极限的条件及适用范围 (1)(一)洛必达法则定理 (1)(二)洛必达法则使用条件 (2)二、洛必达法则的应用 (2)(一)洛必达法则应用于基本不定型 (2)(二)洛必达法则应用于其他不定型 (3)三、洛必达法则对于实值函数失效问题 (5)(一)使用洛必达法则后极限不存在 (5)(二)使用洛必达法则后函数出现循环 (6)(三)使用洛必达法则后函数越来越复杂 (6)(四)使用洛必达法则中求导出现零点 (6)四、洛必达法则与其他求极限方法比较 (6)(一)洛必达法则与无穷小量替换求极限法 (7)(二)洛必达法则与利用极限运算和已知极限求极限 (8)(三)洛必达法则与夹逼定理求极限 (9)五、洛必达法则求极限小结 (10)(一)洛必达法则条件不可逆 (10)(二)使用洛必达法则时及时化简 (11)(三)使用洛必达法则前不定型转化 (11)参考文献 (13)序言数学分析中几乎所有的概念都离不开极限。
因此,极限概念是数学分析的重要概念,极限理论是数学分析的基础理论。
极限法的引入与完善是出于社会实践的需要,是许多人奋斗的结果,不是哪一个数学家苦思冥想出来的。
极限的求法很多,主要包括有:①利用极限的定义;②利用极限的运算法则求极限;③利用极限存在的条件和准则求极限;④利用两个重要极限求极限;⑤利用等价无穷小量和泰勒展开求极限;⑥利用函数的连续性求极限;⑦利用洛必达法则求极限;⑧利用中值定理求极限;⑨利用导数或定积分的定义求极限;⑩利用级数收敛的必要条件求极限。
大学数学经典求极限方法及解析(最全)

求极限的各种方法及解析1.约去零因子求极限例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x 【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 0110113.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim )13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限30sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x【注】本题除了使用分子有理化方法外,及时分离极限式中的非........零因子...是解题的关键 4.应用两个重要极限求极限两个重要极限是1sin lim0=→xxx 和e x nx x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求极限的方法具体方法⒈利用函数极限的四则运算法则来求极限定理1①:若极限)(lim 0x f x x →和)(lim x g xx →都存在,则函数)(x f ±)(x g ,)()(x g x f ⋅当0x x →时也存在且①[])()()()(lim lim lim 0.0x g x f x g x f x x x x x →→→±=±②[])()()()(lim lim lim 0x g x f x g x f x x x x x x →→→⋅=⋅又若0)(lim 0≠→x g x x ,则)()(x g x f 在0x x →时也存在,且有 )()()()(limlim lim 0x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如∞∞、00等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。
例1:求2422lim ---→x x x解:原式=()()()02222lim lim22=+=-+---→→x x x x x x⒉用两个重要的极限来求函数的极限①利用1sin lim=→xxx 来求极限 1sin lim 0=→x xx 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有()()1sin lim 0=→x g x g x x 或()()1sin lim =∞→x g x g x例2:xxx -→ππsin lim解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim==-→→t tx x t x ππ例3:求()11sin 21lim --→x x x解:原式=()()()()()()()211sin 1111sin 122121lim lim =--⋅+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)11(lim 来求极限e x x =+∞→)11(lim 的另一种形式为e =+→ααα1)1(lim .事实上,令.1x =α∞→x .0→⇔α所以=+=∞→x x x e )11(lim e =+→ααα10)1(lim例4: 求xx x 1)21(lim +→的极限解:原式=221210)21()21(lim e x x xx x =⎥⎦⎤+⋅⎢⎣⎡+→利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。
一般常用的方法是换元法和配指数法。
⒊利用等价无穷小量代换来求极限所谓等价无穷小量即.1)()(lim=→x g x f x x 称)(x f 与)(x g 是0x x →时的等价无穷小量,记作)(x f )(~x g .)(0x x →.定理2②:设函数)(),(),(x h x g x f 在)(00x u 内有定义, 且有)(x f )(~x g .)(0x x →① 若,)()(lim 0A x g x f x x =→则A x h x g x x =→)()(lim 0② 若,)()(lim 0B x f x h x x =→则B x g x h x x =→)()(lim 0 证明:①A A x h x f x f x g x h x g x x x x x x =⋅=⋅=→→→1)()()()()()(lim limlim 0②可类似证明,在此就不在详细证明了!由该定理就可利用等价无穷小量代换来求某些函数的极限 例5:求3sin sin tan limx xx x -→的极限解:由 ).cos 1(cos sin sin tan x xxx x -=-而)0(,~sin →x x x ; ,2~cos 12x x -(x 0→);33sin x x -3~x ,(x 0→).故有30sin sin tan lim x x x x -→= lim 0→x 212cos 132=⋅⋅x x x x 注:由上例可以看出,欲利用此方法求函数的极限必须熟练掌握一些常用的 等价无穷小量,如:由于1sin lim 0=→x xx ,故有x sin ).0(,~→x x 又由于,1arctan lim 0=→x xx 故有arctanx x ~,(x 0→). 另注:在利用等价无穷小代换求极限时,应该注意:只有对所求极限中相乘或相除的因式才能用等价无穷小量来代换,而对极限式中的相加或相减的部分则不能随意代换。
如上式中,若因有tanx x ~,);0(→x x sin x ~).0(,→x 而推出30sin sin tan lim x x x x -→=0sin 30lim =-→xxx x 则得到的结果是错误的。
⒋ 利迫敛性来求极限定理3③:设lim 0x x →f(x)= lim 0x x →g(x)=A,且在某),('0δx u o 内有f(x)≤h(x)≤g(x),则lim 0x x →h(x)=A例6:求lim 0-→x x ⎥⎦⎤⎢⎣⎡x 1的极限解:Θ1≤x ⎥⎦⎤⎢⎣⎡x 1<1-x. 且1)1(lim 0=--→x x 由迫敛性知∴lim 0-→x x ⎥⎦⎤⎢⎣⎡x 1=1做此类型题目的关键在于找出大于已知函数的函数和小于已知函数的函数,并且所找出的两个函数必须要收敛于同一个极限。
⒌利用函数的连续性求极限利用函数的连续性求极限包括:如函数)(x f 在0x 点连续,则)()(0lim 0x f x f x x =→及若a x x x =→)(lim 0ϕ且f(u)在点a 连续,则[]⎥⎦⎤⎢⎣⎡=→→)()(lim lim 00x f x f x x x x ϕϕ 例7:求2arcsin 2cos 10lim x xx e -→的极限解:由于lim→x 41arcsin 2cos 12=-x x 及函数()4e uf =在41=u 处连续,故lim 0→x 2arcsin 2cos 1xxe-=20arcsin 2cos 1lim xxx e-→=41e 。
⒍利用洛比达法则求函数的极限在前面的叙述中,我们已经提到了利用等价无穷小量来求函数的极限,在此笔者叙述一种牵涉到无穷小(大)量的比较的求极限的方法。
我们把两个无穷小量或两个无穷大量的比的极限统称为不定式极限,分别记作00型或∞∞型的不定式极限。
现在我们将以导数为工具研究不定式极限,这个方法通常称为洛比达法则。
下面就给出不定式极限的求法。
(1)对于型不定式极限,可根据以下定理来求出函数的极限定理4④:若函数f(x)和函数g(x)满足:①lim 0x x →)(x f =lim 0x x →)(x g =0。
②在点0x 的某空心邻域)(00x u 内两者都可导,且0)('≠x g ③limx x →)(')('x g x f =A 。
(A 可为实数,也可为∞±或∞) 则limx x →)()(x g x f =lim 0x x →)(')('x g x f =A 。
注:此定理的证明可利用柯西中值定理,在此,笔者就不一一赘述了。
例8:求limπ→x xx2tan cos 1+ 解:容易检验f(x)=1+x cos 与g(x)=x 2tan 在π=0x 的邻域里满足定理的条件①和②,又因lim π→x )(')('x g x f =lim π→x x x x2sec tan 2sin -= -lim π→x 212cos 3=x 故由洛比达法则求得,limx x →)()(x g x f =lim 0x x →)(')('x g x f =21在此类题目中,如果limx x →)(')('x g x f 仍是0型的不定式极限,只要有可能,我们可再次利用洛比达法则,即考察极限limx x →)(')('x g x f 是否存在。
当然,这是)('x f 和)('x g 在0x 的某邻域内必须满足上述定理的条件。
例9:求)1ln()21(221lim x x e xx ++-→ 解:利用)1ln(2x +2~x (0→x ),则得 原式=lim→x 221)21(x x e x+-=lim 0→x x x e x2)21(21-+-=lim→x 1222)21(23==+--x e x在利用洛比达法则求极限时,为使计算更加快捷减少运算中的诸多不便,可用适当的代换,如下例, 例10:求lim+→x xex -1解:这是00型不定式极限,可直接运用洛比达法则求解,但是比较麻烦。
如作适当的变换,计算上就会更方便些,故 令,x t =当+→0x 时有+→0t ,于是有lim 0+→x xex-1=111lim lim00-=-=-++→→tt t t ee t (2)∞∞型不定式极限 若满足如下定理的条件,即可由如下定理计算出其极限。
定理5⑤:若函数f(x)和函数g(x)满足:①lim 0+→x x )(x f =lim 0+→x x )(x g =∞②在点0x 的某空心邻域)(00x u +内两者都可导,且0)('≠x g ③lim0+→x x )(')('x g x f =A ,(A 可为实数,也可为∞±或∞)。
则lim0+→x x )()(x g x f =lim 0+→x x )(')('x g x f =A 。
此定理可用柯西中值定理来证明,在此,笔者就不一一赘述了。
例11:求xx x ln lim+∞→ 解:由定理4得,''ln (ln )l0()lim lim lim x x x x x x x x→+∞→+∞→+∞=== 注1:若limx x →)(')('x g x f 不存在,并不能说明lim 0x x →)()(x g x f 不存在。
注2:不能对任何比式极限都按洛比达法则来求解。
首先必须注意它是不是不定式极限;其次是观察它是否满足洛比达法则的其它条件。
下面这个简单的极限lim∞→x xxx sin +=1 虽然是∞∞型的,但若不顾条件随便使用洛比达法则: lim∞→x x x x sin +=lim ∞→x 1cos 1x+就会因右式的极限不存在而推出原式的极限不存在这个错误的结论。
(3)其它类型不定式极限不定式极限还有∞⋅0,∞1,00,0∞,∞-∞等类型。