ICH M7(step4)基因毒性杂质评估和控制◆中英

ICH M7(step4)基因毒性杂质评估和控制◆中英
ICH M7(step4)基因毒性杂质评估和控制◆中英

ASSESSMENT AND CONTROL OF DNA REACTIVE(MUTAGENIC) IMPURITIES IN PHARMACEUTICALS TOLIMIT POTENTIAL CARCINOGENIC RISK

为限制潜在致癌风险而对药物中DNA活性(诱变性)杂质进行的评估和控制

M7

Current Step 4 version

dated 23 June 2014

This Guideline has been developed by the appropriate ICH Expert Working Group and has been subject to consultation by the regulatory parties, in accordance with the ICH Process. At Step 4 of the Process the final draft is recommended for adoption to the regulatory bodies of the European Union, Japan and USA.

M7

Document History 文件历史

The document is provided "as is" without warranty of any kind. In no event shall the ICH or the authors of the original document be liable for any claim, damages or other liability arising from the use of the document.

The above-mentioned permissions do not apply to content supplied by third parties. Therefore, for documents where the copyright vests in a third party, permission for reproduction must be obtained from this copyright holder.

ASSESSMENT AND CONTROL OF DNA REACTIVE (MUTAGENIC) IMPURITIES IN PHARMACEUTICALS TO LIMIT POTENTIALCARCINOGENIC RISK

为限制潜在致癌风险而对药物中DNA活性(诱变性)杂质进行的评估和控制

ICH Harmonised Tripartite Guideline

ICH三方协调指南

Having reached Step 4 of the ICH Process at the ICH Steering Committee meeting on 5 June 2014, this Guideline is recommended for adoption to the three regulatory parties to ICH

ASSESSMENT AND CONTROL OF DNA REACTIVE (MUTAGENIC) IMPURITIES IN PHARMACEUTICALS TO LIMIT POTENTIALCARCINOGENIC RISK

为限制潜在致癌风险而对药物中DNA活性(诱变性)杂质进行的评估和控制

1. INTRODUCTION概述

The synthesis of drug substances involves the use of reactive chemicals, reagents, solvents, catalysts, and other processing aids. As a result of chemical synthesis or subsequent degradation, impurities reside in all drug substances and associated drug products. While ICH Q3A(R2): Impurities in New Drug Substances and Q3B(R2): Impurities in New Drug Products (Ref. 1, 2) provides guidance for qualification and control for the majority of the impurities, limited guidance is provided for those impurities that are DNA reactive. The purpose of this guideline is to provide a practical framework that is applicable to the identification, categorization, qualification, and control of these mutagenic impurities to limit potential carcinogenic risk. This guideline is intended to complement ICH Q3A(R2), Q3B(R2) (Note 1), and ICH M3(R2): Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorizations for Pharmaceuticals (Ref. 3).

原料药合成牵涉到使用活性化学物质、试剂、溶剂、催化剂和其它工艺助剂,导致在所有原料药及其制剂中会残留有化学合成或其降解产物、杂质。在ICH Q3A(R2)新原料药中的杂质和Q3B(R2)新制剂中的杂质(参考文献1、2)中提供了关于主要杂质定性和控制的指南,对DNA活性杂质给出了有限的指南。本指南的目的是提供实用框架,以应用于这些诱变杂质的鉴别、分类、定性和控制,对潜在致癌风险进行控制。本指南意在补充ICH Q3A(R2)、Q3B(R2)(注解1)和ICH M3(R2)药物人用临床试验和上市许可中的非临床安全性研究(参考文献3)。This guideline emphasizes considerations of both safety and quality risk management in establishing levels of mutagenic impurities that are expected to pose negligible carcinogenic risk. It outlines recommendations for assessment and control of mutagenic impurities that reside or are reasonably expected to reside in final drug substance or product, taking into consideration the intended conditions of human use.

本指南强调在建立诱变性杂质水平时考虑安全性和质量风险管理两方面,该水平应该仅表现出可忽略不计的致癌风险。指南在考虑药物在人用时的条件下,给出了对原料药或制剂中残留或可能残留的诱变性杂质评估和控制的建议。

2. SCOPE OF GUIDELINE 指南适用范围

This document is intended to provide guidance for new drug substances and new drug products during their clinical development and subsequent applications for marketing. It also applies to post-approval submissions of marketed products, and to new marketing applications for products with a drug substance that is present in a previously approved product, in both cases only where:

本指南意在给研发期间和上市申报期间的新原料药和新制剂提供指南。它也适用于已上市药物的批准后申报,以及之前已批准上市的制剂中的同样原料药生产的另一制剂新上市申报。当上述申报符合以下情形时:

—Changes to the drug substance synthesis result in new impurities or increased acceptance criteria for existing impurities;

—原料药合成变更,导致产生新杂质或已有杂质可接受标准增加—Changes in the formulation, composition or manufacturing process result in new degradation products or increased acceptance criteria for existing degradation products;

—配方变更、组分变更或生产工艺变更,导致产生新的降解产物或已有降解产物可接受标准增加

—Changes in indication or dosing regimen are made which significantly affect the acceptable cancer risk level.

—指征变更或给药方案变更,导致可接受癌症风险水平受到重大影响Assessment of the mutagenic potential of impurities as described in this guideline is not intended for the following types of drug substances and drug products: biological/biotechnological, peptide, oligonucleotide, radiopharmaceutical,

fermentation products, herbal products, and crude products of animal or plant origin.

本指南中描述的杂质潜在诱变性评估不适用于以下类型的原料药和制剂:生物/生物技术制品、肽类、寡核苷酸、放射药物、发酵产品、草药制品和动物或植物来源的粗品。

This guideline does not apply to drug substances and drug products intended for advanced cancer indications as defined in the scope of ICH S9 (Ref. 4). Additionally, there may be some cases where a drug substance intended for other indications is itself genotoxic at therapeutic concentrations and may be expected to be associated with an increased cancer risk. Exposure to a mutagenic impurity in these cases would not significantly add to the cancer risk of the drug substance. Therefore, impurities could be controlled at acceptable levels for non-mutagenic impurities.本指南不适用于ICH S9(参考文献4)中所定义的晚期癌症指征用原料药和制剂。另外,可能会有些情况下,制剂用于其它治疗,而其自己本身在治疗浓度下就具有基因毒性,已知其会使癌症风险增加。这些情况下,暴露在具有诱变性的杂质下,不会显著增加原料药的癌症风险。因此,杂质可以被控制在非诱变性杂质的可接受水平。

Assessment of the mutagenic potential of impurities as described in this guideline is not intended for excipients used in existing marketed products, flavoring agents, colorants, and perfumes. Application of this guideline to leachables associated with drug product packaging is not intended, but the safety risk assessment principles outlined in this guideline for limiting potential carcinogenic risk can be used if warranted. The safety risk assessment principles of this guideline can be used if warranted for impurities in excipients that are used for the first time in a drug product and are chemically synthesized.

在本指南中所描述的对杂质潜在诱变性的评估不适用于已上市药物中使用的辅料、调味剂、着色剂和香料。本指南不适用于药物包材中的可浸出杂质,但指南中限制潜在致癌风险的安全风险评估原则在一定情况下是可以使用的。如果辅料是首次用于药物中,且是化学合成的,则本指南的安全风险评估原则可以适用于辅料中的杂质。

3. GENERAL PRINCIPLES通用原则

The focus of this guideline is on DNA reactive substances that have a potential to directly cause DNA damage when present at low levels leading to mutations and therefore, potentially causing cancer. This type of mutagenic carcinogen is usually detected in a bacterial reverse mutation (mutagenicity) assay. Other types of genotoxicants that are non-mutagenic typically have threshold mechanisms and usually do not pose carcinogenic risk in humans at the level ordinarily present as impurities. Therefore to limit a possible human cancer risk associated with the exposure to potentially mutagenic impurities, the bacterial mutagenicity assay is used to assess the mutagenic potential and the need for controls. Structure-based assessments are useful for predicting bacterial mutagenicity outcomes based upon the established knowledge. There are a variety of approaches to conduct this evaluation including a review of the available literature, and/or computational toxicology assessment.

本指南关注的焦点为可与DNA反应的物质,这些物质在较低水平时也可能会直接引起DNA 损伤,导致DNA诱变,从而引发癌症。这类诱变性致癌作用常被细菌逆式突变(诱变)含量检出。其它类型不具有典型诱变性的基因毒性物质则有阈值进行控制,一般以常规水平杂质出现时对人类不具有致癌风险。因此,为了限制暴露于潜在诱变性杂质可能带来的人类癌症风险,我们使用细菌诱变含量来评估诱变可能性及控制的必要性。基于结构进行的评估有助于根据已有的知识来预测细菌诱变性测试结果。有很多方法可以用于实施该评估,包括对可获得的文献资料进行审核,和/或采用计算方式进行毒性评估。

A Threshold of Toxicological Concern (TTC) concept was developed to define an acceptable intake for any unstudied chemical that poses a negligible risk of carcinogenicity or other toxic effects. The methods upon which the TTC is based are generally considered to be very conservative since they involve a simple linear extrapolation from the dose giving a 50% tumor incidence (TD50) to a 1 in 106incidence, using TD50 data for the most sensitive species and most sensitive site of tumor induction. For application of a TTC in the assessment of acceptable limits of mutagenic impurities in drug substances and drug products, a value of 1.5 μg/day corresponding to a theoretical 10-5 excess lifetime risk of cancer, can be

justified. Some structural groups were identified to be of such high potency that intakes even below the TTC would theoretically be associated with a potential for a significant carcinogenic risk. This group of high potency mutagenic carcinogens referred to as the “cohort of concern”, co mprises aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds.

已经建立了TTC概念,用于界定所有未经研究,但具有可忽略的致癌风险或其它毒性效果的化学品的可接受摄入量。基于TTC的方法一般被认为是非常保守的,因为它们牵涉到从给定的50%肿瘤发生率(TD50)简单线性外推到十万分之一发生率,且采用的数据是来自于最敏感物种和最敏感肿瘤部位的TD50数据。在使用TTC评估原料药和制剂中诱变性杂质的可接爱标准时,可以采用1.5μg/天对应于十万分之一生命时长患癌风险。有些结构基团被识别为具有较高的效价,因此即使摄入量低于TTC水平,从理论上来说仍会导致可能的显著癌症风险。这类具有较高效价的基团被称为“关注队列”,包括黄曲霉素类、N-亚硝基化合物,以及烷基-氧化偶氮基化合物。

During clinical development, it is expected that control strategies and approaches will be less developed in earlier phases where overall development experience is limited. This guideline bases acceptable intakes for mutagenic impurities on established risk assessment strategies. Acceptable risk during the early development phase is set at a theoretically calculated level of approximately one additional cancer per million. For later stages in development and for marketed products, acceptable increased cancer risk is set at a theoretically calculated level of approximately one in one hundred thousand. These risk levels represent a small theoretical increase in risk when compared to human overall lifetime incidence of developing any type of cancer, which is greater than 1 in 3.

在临床研发期间,如果整体研发经验有限,在早期临床阶段对控制策略和控制方法的要求会较低。本指南是在已建立的风险评估策略的基础上,制订诱变性杂质的可接受摄入量。在早期研发阶段,可接受风险是建立在患癌率约为百万分之一的理论计算水平上的。在研发后期及上市后,可接受癌症增加风险是建立在患癌率约为十万分之一的理论计算水平上的。相较

于人类整个生命周期罹患各类癌症的发生率(大于三分之一),这两个不同的风险水平在理论上风险稍有增加。

It is noted that established cancer risk assessments are based on lifetime exposures. Less-Than-Lifetime (LTL) exposures both during development and marketing can have higher acceptable intakes of impurities and still maintain comparable risk levels.已注意到所建立的患癌风险评估是根据生命周期内暴露情形的。在研发期间和上市期间低于生命周期(LTL)暴露都可能允许摄入更多杂质,仍保留一定的风险水平。

The use of a numerical cancer risk value (1 in 100,000) and its translation into risk-based doses (TTC) is a highly hypothetical concept that should not be regarded as a realistic indication of the actual risk.

使用量化患癌风险值(十万分之一),并将其转化为根据风险计算的剂量(TTC值)是一种高度假想的概念,不应作为真实风险的一种实际指标。

Nevertheless, the TTC concept provides an estimate of safe exposures for any mutagenic compound.

不管怎样,TTC概念提供了对诱变性化合物下安全暴露的一种估计方法。

However, exceeding the TTC is not necessarily associated with an increased cancer risk given the conservative assumptions employed in the derivation of the TTC value.但是,假出在TTC值计算时采用了保守假设,超出TTC值并不一定会伴随患癌风险增加。The most likely increase in cancer incidence is actually much less than 1 in 100,000. In addition, in cases where a mutagenic compound is a non-carcinogen in a rodent bioassay, there would be no predicted increase in cancer risk. Based on all the above considerations, any exposure to an impurity that is later identified as a mutagen is not necessarily associated with an increased cancer risk for patients already exposed to the impurity. A risk assessment would determine whether any further actions would be taken.

大多数患癌可能性实际远低于十万分之一,另外,如果有一个诱变性化合物在啮齿动物生物含量中显示为非诱变性,则预测其致癌风险不会增加。基于上述这些原因,所有暴露在之后

鉴定为诱变性杂质并不一定伴随已暴露于该杂质的患者癌症风险增加。应进行风险评估来决定是否需要采取进一步行动。

Where a potential risk has been identified for an impurity, an appropriate control strategy leveraging process understanding and/or analytical controls should be developed to ensure that the mutagenic impurity is at or below the acceptable cancer risk level.

如果一个杂质被鉴定为具有潜在风险,则需要采用一个适当的控制策略来平衡工艺知识和/或分析控制,以保证诱变性杂质等于或低于可接受的癌症风险水平。

There may be cases when an impurity is also a metabolite of the drug substance. In such cases the risk assessment that addresses mutagenicity of the metabolite can qualify the impurity.

有时一种杂质可能也是药品的一种代谢产物,这时,对代谢产物的诱变性风险评估可以用于支持该杂质的质量水平。

4. CONSIDERATIONS FOR MARKETED PRODUCTS 已上市药品要考虑的问题

This guideline is not intended to be applied retrospectively (i.e., to products marketed prior to adoption of this guideline). However, some types of post-approval changes warrant a reassessment of safety relative to mutagenic impurities. This section applies to these post-approval changes for products marketed prior to, or after, the adoption of this guideline. Section 8.5 (Lifecycle Management) contains additional recommendations for products marketed after adoption of this guideline.本指南无意回顾性地应用于在指南采纳前已上市的药物。但是,有些类型的批准后变更需要对有关的诱变性杂质安全性重新进行评估。本部分适用于在指南被采纳前后上市药品的该类批准后的变更。第8.5(生命周期管理)包括了对采纳本指南后已上市药品的其它建议。4.1 Post-Approval Changes to the Drug Substance Chemistry, Manufacturing, and Controls 上市后变更---原料药研发、生产和控制

Post-approval submissions involving the drug substance chemistry, manufacturing, and controls should include an evaluation of the potential risk impact associated

with mutagenic impurities from changes to the route of synthesis, reagents, solvents, or process conditions after the starting material. Specifically, changes should be evaluated to determine if the changes result in any new mutagenic impurities or higher acceptance criteria for existing mutagenic impurities. Reevaluation of impurities not impacted by changes is not recommended. For example, when only a portion of the manufacturing process is changed, the assessment of risk from mutagenic impurities should be limited to whether any new mutagenic impurities result from the change, whether any mutagenic impurities formed during the affected step are increased, and whether any known mutagenic impurities from up-stream steps are increased. Regulatory submissions associated with such changes should describe the assessment as outlined in Section 9.2. Changing the site of manufacture of drug substance, intermediates, or starting materials or changing raw materials supplier will not require a reassessment of mutagenic impurity risk.

批准后申报涉及原料药的研发、生产和控制应包括起始物料后的合成路线、试剂、溶剂或工艺条件变更时,诱变性杂质对潜在风险影响的评估。特别是,变更评估要确定其是否会导致任何新的诱变性杂质或已知诱变性杂质会有更高的可接受标准。不建议对不受变更影响的杂质重新进行评估。例如,如果只有一部分生产工艺发生变更,则诱变性杂质的风险评估应局限于该变更是否会产生新的诱变性杂质、在受影响的步骤中是否有诱变性杂质含升高,以及上游步骤中的已知诱变性杂质是否升高。该变更发生时提交的法规申报资料应描述9.2中所列的评估。对原料药、中间体或起始物料的生产场所的变更,或变更原料供应商则不需要对诱变性杂质风险重新进行评估。

When a new drug substance supplier is proposed, evidence that the drug substance produced by this supplier using the same route of synthesis as an existing drug product marketed in the assessor’s region is considered to be sufficient evidence of acceptable risk/benefit regarding mutagenic impurities and an assessment per this guideline is not required. If this is not the case, then an assessment per this guideline is expected.

如果拟提交一个新的原料药供应商,如有证据证明该供应商生产的原料药采用了与审评区域内已上市制剂中所用的原料药具有相同的合成路线,则足以说明关于诱变性杂质其风险/利益是可以接受的,不需要根据本指南进行评估。如果不同这样,则需要根据本指南进行评估。

4.2 Post-Approval Changes to the Drug Product Chemistry, Manufacturing, and Controls 上市后变更---制剂研发、生产和控制

Post-approval submissions involving the drug product (e.g., change in composition, manufacturing process, dosage form) should include an evaluation of the potential risk associated with any new mutagenic degradation products or higher acceptance criteria for existing mutagenic degradation products. If appropriate, the regulatory submission would include an updated control strategy. Reevaluation of the drug substance associated with drug products is not recommended or expected provided there are no changes to the drug substance. Changing the site of manufacture of drug product will not require a reassessment of mutagenic impurity risk.

上市后申报如果涉及制剂(例如、成分、生产工艺、剂型),则应包括对所有新的诱变性降解产物或已有诱变性降解产物更高的可接受标准进行评估。适当时,法规申报资料应包括对控制策略的更新。如果原料药并没有发生变更,则不建议,也不期望对制剂相关的原料药重新进行评估,制剂生产场所变更不需要对诱变性杂质风险重新进行评估。

4.3 Changes to the Clinical Use of Marketed Products 上市后药品临床使用变更Changes to the clinical use of marketed products that can warrant a reevaluation of the mutagenic impurity limits include a significant increase in clinical dose, an increase in duration of use (in particular when a mutagenic impurity was controlled above the lifetime acceptable intake for a previous indication that may no longer be appropriate for the longer treatment duration associated with the new indication), or for a change in indication from a serious or life threatening condition where higher acceptable intakes were justified (Section 7.5) to an indication for a less serious condition where the existing impurity acceptable intakes may no longer be appropriate. Changes to the clinical use of marketed products associated with new routes of administration or expansion into patient

populations that include pregnant women and/or pediatrics will not warrant a reevaluation, assuming no increases in daily dose or duration of treatment.

已上市药品的临床应用变更拒收情节包括,变更所引起的对诱变杂质限度的重新评估中会包括临床使用剂量的显著增加、用药时长的增加(特别是当根据之前的指征,将诱变性杂质控制在超出生命全程使用时可接受摄入量时,可能采用新的指征,其原定摄入量已不再适用于更长的治疗时长。)或者是指征变更是从已论述的在病情较严重或危及生命的病患状态下采用较高可接受摄入量的情况,变成不那么严重的病患情况,原有的杂质可接受摄入量可能不再适当了。如果已上市药品的临床应用变更包涵有使用新的给药途径,或扩大使用患者群,从而包括孕妇和/或小儿,假定日剂量或用药时长不增加,则无法保证重新评估符合要求。

4.4 Other Considerations for Marketed Products 已上市药物的其它需考虑问题Application of this guideline may be warranted to marketed products if there is specific cause for concern. The existence of impurity structural alerts alone is considered insufficient to trigger follow-up measures, unless it is a structure in the cohort of concern (Section 3). However a specific cause for concern would be new relevant impurity hazard data (classified as Class 1 or 2, Section 6) generated after the overall control strategy and specifications for market authorization were established. This new relevant impurity hazard data should be derived from high-quality scientific studies consistent with relevant regulatory testing guidelines, with data records or reports readily available. Similarly, a newly discovered impurity that is a known Class 1 or Class 2 mutagen that is present in a marketed product could also be a cause for concern. In both of these cases when the applicant becomes aware of this new information, an evaluation per this guideline should be conducted.

本指南在某些特殊原因考虑时可以适用于已上市的药品。仅凭杂质存在警示结构是无法启动后续措施的,除非该结构具有队列方面的担忧(第3部分)。所谓的一种特殊顾虑原因可以是在上市产品已建立其总体控制策略和质量标准后所获得的新的相关杂质危害数据(分类为第1或和2类,第6部分)。这些新的相关杂质危害性数据所采用的研究方法应具有高质量科学性,且与相关的法规测试指南相一致,其数据记录或报告应易于获得。类似地,在已上

市药品中发现一个新的杂质,且被确知属于第1类或第2类诱变性,则也属于一种特殊顾虑原因。上述两种情形下,一旦申报人知晓这些新的信息,则需要实施本指南所要求的评估。

5. DRUG SUBSTANCE AND DRUG PRODUCT IMPURITY ASSESSMENT 原料药和制剂杂质评估

Actual and potential impurities that are likely to arise during the synthesis and storage of a new drug substance, and during manufacturing and storage of a new drug product should be assessed.

实际存在和可能存在的杂质是可能在新原料药合成和存贮过程、生产过程中生成。对新制剂的存贮条件应进行评估。

The impurity assessment is a two-stage process:

杂质评估可以分为两个阶段:

—Actual impurities that have been identified should be considered for their mutagenic potential.

—已被鉴定的实际存在的杂质应考虑其潜在诱变性

—An assessment of potential impurities likely to be present in the final drug substance is carried out to determine if further evaluation of their mutagenic potential is required.

—对可能存在于原料药中的潜在杂质进行评估,以确定是否需要对其潜在诱变性进行进一步评估

The steps as applied to synthetic impurities and degradation products are described in Sections 5.1 and 5.2, respectively.

适用于合成杂质和降解产物的方法分别在第5.1和5.2部分进行了描述。

5.1 Synthetic Impurities合成杂质

Actual impurities include those observed in the drug substance above the ICH Q3A reporting thresholds. Identification of actual impurities is expected when the levels exceed the identification thresholds outlined by ICH Q3A. It is acknowledged

that some impurities below the identification threshold may also have been identified.

实际杂质包括原料药中超出ICH Q3A报告阈的杂质。如果杂质水平超过了ICH Q3A中所述的鉴别阈,则需要进行鉴别。有些低于鉴别阈的杂质可能也是经过鉴别的。

Potential impurities in the drug substance can include starting materials, reagents and intermediates in the route of synthesis from the starting material to the drug substance.

原料药中潜在杂质可以包括起始物料、试剂和从起始物料到原料药合成路线中的中间体,The risk of carryover into the drug substance should be assessed for identified impurities that are present in starting materials and intermediates, and impurities that are reasonably expected by-products in the route of synthesis from the starting material to the drug substance. As the risk of carryover may be negligible for some impurities (e.g., those impurities in early synthetic steps of long routes of synthesis), a risk-based justification could be provided for the point in the synthesis after which these types of impurities should be evaluated for mutagenic potential.

应评估起始物料和中间体中的杂质,以及从起始物料到原料药的合成路线中会生成的副产物被带入原料药的风险。由于有些杂质被带入原料药的风险可以忽略(例如,很长的合成路线中较早的合成步骤中的杂质),可以提交对这些杂质在合成路线某一点时基于风险的论述。在合成路线该点之后,此类杂质需要评估其诱变可能性。

For starting materials that are introduced late in the synthesis of the drug substance (and where the synthetic route of the starting material is known) the final steps of the starting material synthesis should be evaluated for potential mutagenic impurities.

对于在原料药合成路线后期才引入的起始物料(以及如果已知起始物料的合成路线),需要评估起始物料合成的最终步骤中的潜在诱变性杂质。

Actual impurities where the structures are known and potential impurities as defined above should be evaluated for mutagenic potential as described in Section 6.

已知其结构的实际杂质和如上所述的潜在杂质应按第6部分要求评估其潜在诱变性。

5.2 Degradation Products 降解产物

Actual drug substance degradation products include those observed above the ICH Q3A reporting threshold during storage of the drug substance in the proposed long-term storage conditions and primary and secondary packaging. Actual degradation products in the drug product include those observed above the ICH Q3B reporting threshold during storage of the drug product in the proposed long-term storage conditions and primary and secondary packaging, and also include those impurities that arise during the manufacture of the drug product. Identification of actual degradation products is expected when the levels exceed the identification thresholds outlined by ICH Q3A/Q3B. It is acknowledged that some degradation products below the identification threshold may also have been identified.

原料药实际降解产物包括原料药在内包装和外包装内,在拟定的长期存贮条件下原料药存贮期间观察到的高于ICH Q3A报告阈值的物质。制剂中实际降解产物包括制剂在内包装和外包装内,在拟定的长期存贮条件下原料药存贮期间观察到的高于ICH Q3B报告阈值的物质,还包括在制剂生产过程中产生的那些杂质。如果降解产物的含量水平超过ICH Q3A/Q3B的鉴别阈,则应进行鉴别。有些低于鉴别阈值的降解产物可能也是经过鉴别的。

Potential degradation products in the drug substance and drug product are those that may be reasonably expected to form during long term storage conditions. Potential degradation products include those that form above the ICH Q3A/B identification threshold during accelerated stability studies (e.g., 40°C/75% relative humidity for 6 months) and confirmatory photo-stability studies as described in ICH Q1B (Ref.

5), but are yet to be confirmed in the drug substance or drug product under long-term storage conditions in the primary packaging.

原料药和制剂中潜在的降解产物是指经过合理推测,在长期存贮条件下可能会形成的物质。潜在降解产物包括在加速稳定性试验中(例如40°C/75%下6个月)和ICH Q1B(参考文

献5)光照稳定性试验中形成的超出ICH Q3A/B的鉴别限,但在原料药和制剂内包装长期存贮条件下尚未确认的物质。

Knowledge of relevant degradation pathways can be used to help guide decisions on the selection of potential degradation products to be evaluated for mutagenicity e.g., from degradation chemistry principles, relevant stress testing studies, and development stability studies.

相关降解途径的知识有助于指导选择性地评估潜在降解产物的诱变性,例如,从降解化学原理、相关强降解试验和研发稳定性研究。

Actual and potential degradation products likely to be present in the final drug substance or drug product and where the structure is known should be evaluated for mutagenic potential as described in Section 6.

实际存在和可能存在于最终原料药或制剂中的降解产物只要知道结构,均应根据第6部分要求评估其诱变可能性。

5.3 Considerations for Clinical Development 临床研发中要考虑的问题

It is expected that the impurity assessment described in Sections 5.1 and 5.2 applies to products in clinical development. However, it is acknowledged that the available information is limited. For example, information from long term stability studies and photo-stability studies may not be available during clinical development and thus information on potential degradation products may be limited. Additionally, the thresholds outlined in ICH Q3A/B do not apply to products in clinical development and consequently fewer impurities will be identified.

要求在临床阶段应用第5.1和5.2部分对杂质进行评估。但是,众所周知可能获得的信息会比较有限。例如,在临床阶段可能还没有长期稳定性研究和光照稳定性试验数据,因此关于潜在降解杂质的资料可能比较有限。另外,在ICH Q3A/B中列出的阈值不适用于临床阶段的药品,因此被鉴别出的杂质会很少。

6. HAZARD ASSESSMENT ELEMENTS 危害性评估要素

CPDB基因毒性杂质列表

A-α-C (CAS 26148-68-5) Acesulfame-K (CAS 55589-62-3) Acetaldehyde (CAS 75-07-0) Acetaldehyde methylformylhydrazone (CAS 16568-02-8) Acetaldoxime (CAS 107-29-9) Acetamide (CAS 60-35-5) Acetaminophen (CAS 103-90-2) Acetohexamide (CAS 968-81-0) Acetone[4-(5-nitro-2-furyl)-2-thiazolyl]hydrazone (CAS 18523-69-8) Acetonitrile (CAS 75-05-8) Acetoxime (CAS 127-06-0) 1′-Acetoxysafrole (CAS 34627-78-6) N′-Acetyl-4-(hydroxymethyl)phenylhydrazine (CAS 65734-38-5) 1-Acetyl-2-isonicotinoylhydrazine (CAS 1078-38-2) 3-Acetyl-6-methyl-2,4-pyrandione (CAS 520-45-6) 1-Acetyl-2-phenylhydrazine (CAS 114-83-0) 4-Acetylaminobiphenyl (CAS 4075-79-0) 1-Acetylaminofluorene (CAS 28314-03-6) 2-Acetylaminofluorene (CAS 53-96-3) 2,7-Acetylaminofluorene (CAS 304-28-9) 4-Acetylaminofluorene (CAS 28322-02-3) 4-Acetylaminophenylacetic acid (CAS 18699-02-0) N-Acetylcysteine (CAS 616-91-1) Acifluorfen (CAS 50594-66-6) Acrolein (CAS 107-02-8) Acrolein diethylacetal (CAS 3054-95-3) Acrolein oxime (CAS 5314-33-0) Acronycine (CAS 7008-42-6) Acrylamide (CAS 79-06-1) Acrylic acid (CAS 79-10-7) Acrylonitrile (CAS 107-13-1) Actinomycin C (CAS 8052-16-2) Actinomycin D (CAS 50-76-0) Adipamide (CAS 628-94-4) Adriamycin (CAS 23214-92-8) AF-2 (CAS 3688-53-7) Aflatoxicol (CAS 29611-03-8) Aflatoxin B1 (CAS 1162-65-8) Aflatoxin, crude (CAS 1402-68-2) Agar (CAS 9002-18-0) Alclofenac (CAS 22131-79-9) Aldicarb (CAS 116-06-3) Aldrin (CAS 309-00-2) Alkylbenzenesulfonate, linear (CAS 42615-29-2)

【医药】如何控制基因毒性杂质

01、何为基因毒性杂质 基因毒性杂质(或遗传毒性杂质,Genotoxic Impurity,GTI)是指能直接或间接损害DNA,引起DNA突变、染色体断裂、DNA重组及DNA 复制过程中共价键结合或插入,导致基因突变或癌症的物质(如卤代烷 烃、烷基磺酸酯类等)。潜在基因毒性杂质(Potential Genotoxic Impurity ,PGI)结构中含有与基因毒性杂质反应活性相似的基团(如肼类、环氧化合物、N-亚硝胺类等),通常也作为基因毒性杂质来评估。基因毒性杂质主要来源于原料药合成过程中的起始物料、中间体、试剂和反应副产物。此外,药物在合成、储存或者制剂过程中也可能会降解产生基因毒性杂质。除此之外,有些药物通过激活正常细胞而产生基因毒性物质导致突变,如化疗药物顺铂等。 02、何为基因毒性杂质“警示结构” 由于杂质结构的多样性,一般很难进行归类,因此,在缺乏安全性数据支持的情况下,法规和指导原则采用“警示结构”用来区分普通杂质和基因毒性杂质。所谓“警示结构”,是指杂质中的特殊基团可能与遗传物质发生化学反应,诱导基因突变或者染色体断裂,因此具有潜在的致癌风险。对于含有警示结构的杂质,应当进行(Q)SAR预测和体内外遗传毒性和致癌性研究,或者将杂质水平控制在毒理学关注阈值(TTC)之下。但是含有警示结构并不能说明该杂质一定具有遗传毒性,而确认有遗传毒性的物质也不一定会产生致癌作用。杂质自身性质和结构特点会对其毒性产生抑制或调节作用。警示结构的重要性在于它提示了可能存在的遗传毒性和致癌性,为进一步的杂质安全性评价与控制指明方向。(关于基因毒杂质警示结构的详细信息可参考欧盟发布的警示结构《Development of

基因毒性杂质作用原理-中文版

遗传毒性致癌物发生致癌和致突变的作用,第一步一般认为都是和DNA发生反应。从机理上理解基因毒性杂质的作用原理,不用死记硬背,就能轻松记住所有的基因毒性杂质。 根据Miller的理论: 致癌物要么是亲电试剂,要么可以代谢成亲电试剂。然后和DNA的亲核基团发生反应。 DNA的亲核活性基团主要有: ?碱基上的氮 ?碱基上的氧 ?磷酸酯骨架 先来看一下DNA的结构 双螺旋的DNA主要含有四个碱基,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶以及磷酸酯的串联骨架。 这些嘧啶和嘌呤上面的氮氧都富有电子,如果遇见一些缺电子的试剂,很容易发生取代等反应。 事实上,DNA的反应种类除了只反应某一处位点外,还会有一些比较复杂的反应类型: ?可以看到有的碱基上不仅含有一个亲核位点,如果一个致癌物有两处亲电位点,反应一处后,还会和碱基的另外一个位点反应,生成一些小环。 ?双亲电基团的另外一个基团也有可能和两个不同的碱基链接,甚至可以和两个螺旋上的不同碱基链接。 ?也会有可能另外一个基团和蛋白质反应,造成DNA-蛋白质的链接。 DNA的反应活性除了亲核性之外,主要受空间结构的影响。

Guanine中的N7位置位于DNA双螺旋的大沟槽处,空间较大,容易和亲电试剂接触,反应活性显然要比Adenine中处于小沟槽中的N3(红色数字)要高。 当然根据结构也能预知,Adenine的N1和Cytosine的N3(绿色数字)位置处于狭窄的分子空间内,又有氢键相连,所以基本上没有反应活性。DNA反应并不都是反应在氧和氮上,比如粉红色的C8位置也能发生反应,不过该反应也是先和相邻的N7反应然后重排到C8。 纯粹的理论说明略显枯燥,下面会详细介绍每一类含有警示结构的致癌物。 酰化试剂 酰基卤化物 酰基卤化物由于卤原子电负性较大,吸引电子,导致羰基碳非常缺电子,一旦和DNA接触,会和腺嘌呤的羰基氧发生酯化反应。 二甲氨基甲酰氯和二乙氨基甲酰氯被IARC归为致癌物2A类。 异氰酸酯是具有多种商业应用的高活性化合物。广泛用于制造聚氨酯泡沫、弹性体、涂料、粘合剂、涂料、杀虫剂和许多其他产品。单芳基异氰酸酯是制造药品和农药的重要中间体。 观察到胞嘧啶、腺嘌呤和鸟嘌呤的外环氨基上的氨和异氰酸酯反应,胸腺嘧啶未检测到加合物。 烷基化直接作用试剂

基因毒性杂质及其警示结构

基因毒性杂质及其警示结构 古语有云:“是药三分毒”。这句话不管在传统中药还是现代化学药都是基本成立的。 对于化学药来说,在活性药物成分(API)的生产过程中,一些起始物料、中间体、试剂和反应副产物不可避免地作为杂质存在于最终产品中,因此一种药物的安全性不仅决定于它本身的毒性情况,也决定于它所含有的杂质的毒性情况。根据国际人用药品注册技术要求协调会(ICH)指南,原料药杂质可分为有机杂质(有关物质)、无机杂质及残留溶剂三个主要类别。而大部分基因毒性(或称为遗传毒性)杂质(Genotoxic Impurities, GTIs)就属于一类特殊的有关物质。 近些年发生过多起由于基因毒性杂质残留而导致的药品召回事件,为确保用药安全,各国及地区的相关组织如欧洲药品管理局(EMA)、美国食品药品管理局(FDA)、国际人用药品注册技术要求协调会(ICH)等相继发布杂质控制的相关规程及指导原则。 2017年6月,原国家食品药品监督管理总局(CFDA)加入ICH,这意味着我国在药品安全方面正式向国际接轨;2019年1月,国家药典委员会官网发布了“关于《中国药典》2020年版四部通则增修订内容(第四批)的公示”,其中就包含有“遗传毒性杂质控制指导原则审核稿(新增)”。因此对国内药企来说,不管是面对国内市场还是走出国门,对基因毒性杂质的控制都是绕不过的坎。 什么是基因毒性杂质? 根据《中国药典》的相关文件定义,基因毒性杂质是指能引起基因毒性的杂质,包括致突变性杂质和其它类型的无致突变性杂质。其主要来源于原料药的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。致突变性杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA 损伤,导致DNA 突变,从而可能引发癌症的遗传毒性杂质;而非致突变机制的遗传毒性杂质在杂质水平的剂量下,一般可忽略其致癌风险。 而潜在基因毒性杂质(Potential Genotoxic Impurities,PGIs)是指其结构中含有与基因毒性杂质反应活性相似的化学结构,即警示结构(Structural alerts, SAs),通常也作为基因毒性杂质来评估。 化合物为何具有基因毒性? Miller夫妇(James A. Miller 和Elizabeth C. Miller)对化合物致癌机理做了深入的研究,在19世纪70年代他们提出了著名的化合物致癌的“亲电理论”。在构成DNA的四个碱基(A,T,G,C)中,有很多的亲核位点,比如嘧啶环和嘌呤上的N和O等,这些位点可以与亲电试剂(如烷基化试剂、酰基化试剂等)反应而产生不可逆的变化,从而引起基因突变,而基因突变是诱发癌症的重要原因。

EMA_关于基因毒性杂质限度指南的问答(中文)

EMA关于基因毒性杂质限度指南的问答 2010-9-23 背景:本问答文件的目的是对2006年出版的基因毒性杂质限度指南 (EMEA/CHMP/QWP/251344/2006)进行相关内容统一和说明。 问答 Q1:该指引并不要求对已批准销售的产品进行基因毒性杂质再评估,除非有一个特定的“重要原因”(cause-for-concern)。请问什么是“重要原因”? A1:如果原料药的生产过程基本上没有改变,就不需要对基因毒性杂质进行重新评价。但是,如果新知识表明有新原因时,例如几年前发现的甲磺酸盐药物可能形成甲磺酸烷基的基因毒性杂质,这需要进行基因毒性杂质的再评估,包括EP药典中收载的所有甲磺酸盐类产品,并出示“生产声明”。 Q2:该指引指出:即使按决策树程序其水平低于毒理学关注阈值(threshold of toxicological concern,TTC),也要尽可能地减少已知或未知的诱变杂质(mutagenic impurity)。如果已知其诱变杂质的水平低于TTC(TTC是一个非常保守的值),为什么要还进一步减少呢?实际上这还涉及定量限在1ppm左右的分析方法,可以这样做但可能没结果,这是否有必要呢? A2:如果一个诱变杂质的水平低于毒理学关注阈值(相当于临床剂量≤1.5微克/天),就没有必要这样做。除非它具有一个高度关注的风险结构:如N -亚硝基,黄曲霉毒素类和氧化偶氮物就需要这样做。 Q3:该指引规定:“当一个潜在的杂质包含“警示结构”(structural alerts)时,应考虑用细菌突变试验对其杂质进行的基因毒性分析”。 i)如果一个杂质能诱发“警示结构”,该杂质的致突变试验(Ames)结果为阴性时,

基因毒性杂质

什么是基因毒性杂质 对于基因毒性杂质的定义主要是指:在以DNA反应物质为主要研究对象的体内/体外试验中,如果 发现它们对DNA有潜在的破坏性,那可称之为基因毒性。 对没有进行体内实验的情况下,也可以根据关联系做一些相关的体外实验去评估该物质在体内的毒性。 如果没有关联评估的,体外基因毒性物质经常被考虑为假定的体内诱变剂和致癌剂。 GUIDELINE ON THE LIMITS OF GENOTOXIC IMPURITIES (EMEA/CHMP/QWP/251344/2006)基因毒性杂质的风险 按照目前的法规来说,(体内)基因毒性物质在任何摄入量水平上对DNA都有潜在的破坏性,这种破坏可能导致肿瘤的产生。因此,对于基因毒性致癌物,不能说“不存在明显的阀值,或是任何的摄入水平都具有致癌的风险”。 可接受风险的摄入量 ?对于那些可以与DNA进行反应的化合物,由于在较低的剂量时机体保护机制可以有效的运行,按照摄入量由高到低所造成的影响进行线性推断是很困难的。目前,对于一个给定诱变剂,我们很难从实验方面证明它的基因毒性存在一个阀值。特别是对某些化合物,它们可以与非DNA靶点进行反应,或一些潜在的突变剂,在与关键靶位结合之前就迅速失去了毒性。由于缺乏支持基因毒性阀值存在的有力证据,而使得我们很难界定一个安全的服用量。 ?所以有必要采取一个新观点:确定一个可接受其风险的摄入量。 ?可接受其风险的摄入量即毒理学阈值一般通用的被定义为 Threshold of Toxicological Concern (TTC) 。具体含义为:一个“1.5ug/day”的TTC值,即相当于每天摄入1.5ug的基因毒性杂质,被认为对于大多数药品来说是可以接受的风险(一生中致癌的风险小于100000分之1)。按照这个阀值,可以根据预期的每日摄入量计算出活性药物中可接受的杂质水平。 ?在特定的条件下一些基因毒性杂质也可以有较高的阈值。如接触时间比较短等,这个需要根据实际情况再进行推算。 ?必须要强调的是TTC是一个风险管理工具,它使用的是概率方法,意思为:假如有一个基因毒性杂质,并且我们对它的毒性大小不太了解,如果它的每日摄入量低于TTC值,那么它的致癌的风险将 不会高于1×10的概率。 ?所以TTC不能被理解为绝对无风险的保障。 有实验依据的TTC值的确认 有足够的(实验性的)证据来支持阀值界定的基因毒性杂质 对于这类有足够的证据来表明其基因毒性阀值的化合物,可以参考“Q3C Note for Guidance on Impurities: Residual Solvents.”中2级溶剂的规定,计算出了一个“允许的日摄入量”(PDE)。 无实验依据的TTC值的确认 没有足够的(试验性的)证据来支持阀值界定的基因毒性杂质 不能进行阀值鉴定的基因毒性杂质的可接受剂量评价应该包括药学的和毒理学的评价。一般来说,如果避免毒性是不可能的,那么药学的评价措施应该以ALARP的( as low as reasonably practicable 尽可能低的合理可行性)控制水平为指导原则。 含有多个基因毒性杂质的评估 EMEACHMP ?结构不同的——单个杂质的限度应该小于1.5ug/day ?结构相似的——杂质总和的限度应该小于1.5ug/day FDA(和EMEA类似) ?单个杂质造成的癌症风险机率应该小于10 ?有相同作用机制的结构相似的杂质,其含量总和应该参考1.5ug/day的限量进行评估。

【心邀生物】基因毒性杂质研究 完整解决方案

【心邀生物】基因毒性杂质研究完整解决方案 毒性亦称生物有害性,一般是指外源性化学物质与生命机体接触或进入生命活性体体内后,能引起直接或间接损害作用的相对能力。 基因毒性(genotoxicity),是指污染物能直接或间接损伤细胞DNA,产生致突变和致癌作用的程度,例如烷化剂和一些致癌物质如苯和肼。其次,起始原料,中间体,API以及副产物和杂质都有可能含有基因毒性危险结构,这些都需要做相应的研究。 近年FDA、EMEA、ICH、USP、CFDA等众多权威机构相继发布了相关的指导原则,明确规定了基因毒性杂质的限度,要求对原料药及制剂生产过程中所产生的基因毒性杂质进行分析和控制。基因毒性杂质的控制与检测是越来越多的医药企业在药物研发过程中关注的重点,以此满足药物注册申报的要求。 心邀生物针对基因毒性杂质研究项目,评估具体化合物的危险度,首先会通过查找美国国家医药图书馆的Toxline或欧盟OECD的SIDS等数据库来确定目标化合物的毒性数据,如:NOEL、LOEL、LD50等。 对于没有毒性研究数据的化合物,可以选择适宜的毒性试验,根据毒性试验结果计算NOEL 和PDE,再按照相应制剂的每日最大服用量计算限度。 总之,我们结合ICH的要求,1)通过符合ICHM7指导原则的软件进行基因毒性预测;2)检索已有基因毒性杂质数据库;3)根据相关数据制定合理的限度。 我们的服务内容: 可提供各种相关法规要求下的基因毒性杂质研究,专注为药物生产过程中可能产生的基因毒性杂质提供评估报告、方法开发、验证及样品检测等一系列完整的解决方案,涵盖起始物料、中间体、原料药、制剂等。

我们的核心优势: -- 强大的技术和管理团队 ①团队核心拥有多年药企研发与管理的经验 ②数据合规:实验室运行全面遵循cGMP管理体系要求 -- 专业一体化的服务平台 ①两大平台:具有化学合成及药物分析领域的丰富经验 ②项目经验:为药企提供基因毒杂质研究、药学质量研究等服务方案,熟练掌握原料药与制剂中有关物质、基因毒性杂质检测的方法 -- 杂质谱分析数据库 ①软件评估:实行基毒评估软件预测 ②数据库:已建立公司内部杂质谱分析数据库,用于基因毒性杂质的研究与分析 心邀生物优势 ■获权威认可:拥有国际国内“CMA”和“CNAS”双重权威认可。 ■一站式全过程:从研发、生产到使用流通,可提供认证评估、检验检测、分析研发等多元化服务。 ■业务范围多元:提供杂质对照品的定制、研发、合成,CRO一致性评价,医药检测,中药检测,药包材,基因毒性研究,杂质研究服务。 ■规模化专业化:100 多名精英团队,9000 平方米实验基地,严苛的实验室质控体系和完善的能力资质。 ■创新研发力强:未知杂质分析、杂质分离纯化、杂质定制合成、基因毒性研究、杂质研究、农残、重金属检测。

基因毒性杂质控制相关文件及指南介绍

2016-11-27字体大小: 基因毒性杂质控制相关文件及指南介绍【基因毒性杂质控制相关文件及指南介绍】 遗传毒性杂质控制指南PhRMA 意见书:测定、检验和控制药物中特定潜在遗传毒性杂质的基本原理 (2006) EMA:遗传毒性杂质限度指南 EMA 安全工作组 (SWP):关于遗传毒性杂质限量指南的问答 FDA 行业指南(草案):原料药和成品药中遗传毒性和致癌性杂质:推荐方法 (2008)。 ICH M7:诱变性杂质评估和控制 遗传毒性试验指南 ICH S2:人用药物的遗传毒性试验和数据解释 EMA:草药物质/制剂遗传毒性评估指南 (2008) 遗传毒性和致癌性物质的风险评估欧盟委员会健康与消费者保护局:遗传毒性和致癌性物质一般风险评估的方法学和途径 (2009) EMA : 2006 年首先颁布了《基因毒性杂质限度指南》,并自 2007 年 1 月 1 日起正式实施。 该指南为限制新活性物质中的基因毒性杂质提供了解决问题的框架和具体做法。弥补了 ICH Q3 不足。引入了毒理学关注阈值 (TTC) 的概念及其取值。 提出了遗传毒性杂质可接受性评估的决策树。 FDA : 2008 年 12 月正式签发:原料药和成品药中遗传毒性和致癌性杂质,推荐方法。 主要内容包括: ? 原料药和制剂中的基因毒性杂质生成的预防办法 ? 基因毒性杂质的分析方法、处理方法和减少方法 ? 上市申请和临床研究申请的可接受限度 ? 草药原料药和制剂中基因毒性杂质评估指南 FDA 和 EMA 指南的比较

相似点不同点 推荐的鉴定和认证潜在遗传性杂质的方法相同 推荐的处理遗传毒性和致癌性杂质的方法相同 FDA 指南包含致癌性杂质TTC 设定为 1.5 μg/天指南允许的 14 天内用药的 TTC 水平为 120 μg , 而非仅针对单次用药 临床试验中短期暴露的 TTC 更高 FDA 指南不允许根据现售药品的短期暴露情况而 提高 TTC ICH M7 【基因毒性杂质的控制策略】 具有阳性致癌数据的诱变杂质(第1类)---计算可接受摄入量( AI ): ? M7 Addendum 中列出的 15 种化合物中有 10 个为该计算方法计算 ? Carcinogenicity Potency Database (CPDB )中列明了 1574 种致癌物质的 TD50 值 毒理学关注门槛---TTC 法(第 2/3 类): ? ICHM7 主要讨论的方法,主要针对第 2/3 类基因毒性杂质,比如低级磺酸酯类等。 ? 有些化合物可能显示出非常高的诱变性(关注的队列),例如,黄曲霉毒素类、 ? N-亚硝基化合物、以及烷基-氧化偶氮结构。则要显著低于 TTC 法可接受摄入量。 有实际阈值证据的诱变性杂质---使用不确定性因子(ICH Q3C 计算允许日暴露量(PDE ): ? 即非线性响应的, M7 Addendum 中列出的 15 种化合物中有 3 个为该计算方法计算。

欧盟关于基因毒性杂质问题的解答

欧盟医药管理局(EMA)发布了《基因毒性杂质限度指引》问答。目的是对《基因毒性杂质限制指引》(EMEA/CHMP/QWP/251344/2006)进行统一与说明,共有9个问答,具体内容如下: 问题1:该指引并不要求对已批准销售的产品进行基因毒性杂质再评估,除非有一个特定的“重要原因”(cause-for-concern)。请问什么是“重要原因”? 回答:如果原料药的生产过程基本上没有改变,就不需要对基因毒性杂质进行重新评价。但是,如果新知识表明有新原因时,例如几年前发现的甲磺酸盐药物可能形成甲磺酸烷基的基因毒性杂质,这需要进行基因毒性杂质的再评估,包括EP药典中收载的所有甲磺酸盐类产品,并出示“生产声明”。 问题2:该指引指出:即使按决策树程序其水平低于毒理学关注阈值(threshold of toxicological concern,TTC),也要尽可能地减少已知或未知的诱变杂质(mutagenic impurity)。如果已知其诱变杂质的水平低于TTC(TTC是一个非常保守的值),为什么要还进一步减少呢?实际上这还涉及定量限在1ppm 左右的分析方法,可以这样做但可能没结果,这是否有必要呢? 回答:如果一个诱变杂质的水平低于毒理学关注阈值(相当于临床剂量≤1.5微克/天),就没有必要这样做。除非它具有一个高度关注的风险结构:如N -亚硝基,黄曲霉毒素类和氧化偶氮物就需要这样做。 问题3:该指引规定:“当一个潜在的杂质包含“警示结构”(structural alerts)时,应考虑用细菌突变试验对其杂质进行的基因毒性分析”。 i)如果一个杂质能诱发“警示结构”,该杂质的致突变试验(Ames)结果为阴性时,是否就足以得出结论:该化合物不属于关注的遗传毒性杂质?是否还需要进一步的确认研究? ii)“警示结构”不存在就足以说明不属于关注杂质呢? iii)假设某杂质属于“警报结构”,但只要加以控制确保其杂质水平低于TTC,不进行常规检测是否可以接受? 回答:

EMEA基因毒性杂质限度指南

20060628 EMEA/CHMP/QWP/251344/2006 基因毒性杂质限度指南(中英文对照) London, 28 June 2006 CPMP/SWP/5199/02 EMEA/CHMP/QWP/251344/2006 The European Agency for the Evaluation of Medicinal Products 欧洲共同体药物评审委员会 (EMEA) COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE 人用药品委员会 (CHMP) GUIDLINE ON THE LIMITS OF GENOTOXIC IMPURITIES 基因毒性杂质限度指南 June 2002-October 2002 DESCUSSION IN THE SAFETY WORKING PARTY 安全工作组之内的讨论 December 2002 TRANSMISSION TO CPMP CPMP传递 December 2002 RELEASE FOR CONSULTATION 专家讨论 DEADLINE FOR COMMENTS March 2003 建议收集最后期限 DISCUSSION IN THE SAFETY WORKING June 2003-February 2004

PARTY AND QUALITY WORKING PARTY 安全工作组和质量工作组之间的讨论 TRANSMISSION TO CPMP 转移给CPMP March 2004 RE-RELEASE FOR CONSULTATION 再次放行给顾问团 June 2004 DEADLINE FOR COMMENTS 收集意见的最后期限 December 2004 DISCUSSION IN THE SAFETY WORKING PARTY AND QUALITY WORKING PARTY 安全工作组和质量工作组之间的讨论 February 2005-May 2006 ADOPTION BY CHMP 被CHMP采用 28 June 2006 DATE FOR COMING INTO EFFECT 生效日期 01January 2007 KEYWORDS 关键词 Impurities; Genotoxicity; Threshold of toxicological concern (TTC); Structure activity relationship (SAR) GUIDLINE ON THE LIMITS OF GENOTOXIC IMPURITIES 基因毒性杂质限度指南 TABLE OF CONTENTS 目录 EXECUTIVE SUMMARY 内容摘要 (3)

杂质基因毒性限度指南问与答-2010

基因毒性杂质限度指南问与答 问题1:该指南并不要求对已批准销售的产品进行基因毒性杂质再评估,除非有一个特别的“引起忧虑的原因”(cause-for-concern)。请问什么是“引起忧虑的原因”? 回答:如果原料药的生产过程基本上没有改变,就不需要对基因毒性杂质进行重新评价。但是,如果新知识表明有新原因时,例如几年前发现的甲磺酸盐药物可能形成甲磺酸烷基的基因毒性杂质,这需要进行基因毒性杂质的再评估,包括EP药典中收载的所有甲磺酸盐类产品,并出示“生产声明”。 问题2:该指南指出:即使按决策树程序其水平低于毒理学关注阈值(threshold of toxicological concern, TTC),也要尽可能地减少已知或未知的诱变杂质(mutagenic impurity)。如果已知其诱变杂质的水平低于TTC(TTC是一个非常保守的值),为什么还要进一步降低呢?实际上这还涉及定量限在1ppm左右的分析方法,可以这样做但可能没结果,这是否有必要呢? 回答:如果一个诱变杂质的水平低于毒理学关注阈值(相当于临床剂量≤1.5微克/天),就没有必要这样做。除非它具有一个高度关注的风险结构:如N - 亚硝基,黄曲霉毒素类和氧化偶氮物就需要这样做。 问题3:该指南规定:“当一个潜在的杂质包含有“警示结构时,应考虑用细菌复原突变试验对其杂质进行基因毒性分析”。 i)如果一个杂质能诱发“警示结构”,该杂质的致突变试验(Ames)结果为阴性时,是否就足以得出结论:该化合物不属于关注的遗传毒性杂质?是否还需要进一步的确认研究? ii)“警示结构”不存在就足以说明该杂质没有疑问了呢? iii)假设某杂质属于“警报结构”,但只要加以控制确保其杂质水平低于TTC,不进行常规检测是否可以接受? 回答: i)是的。只要按Q3A/B的要求做Ames试验显示阴性时,即可认定该杂质不属于“警报结构”,就不需要进一步确认研究。 ii)是的。通过仔细评估,如果“警报结构”不存在,即可认定“疑似杂质”不存在。通常这种评估常用构效关系的评估软件,如DEREK或MCASE软件。

基因毒性杂质

什么是基因毒性杂质对于基因毒性杂质的定义主要是指:在以DNA 反应物质为主要研究对象的体内/ 体外试验中,如果发现它们对DNA 有潜在的破坏性,那可称之为基因毒性。对没有进行体内实验的情况下,也可以根据关联系做一些相关的体外实验去评估该物质在体内的毒性。 如果没有关联评估的,体外基因毒性物质经常被考虑为假定的体内诱变剂和致癌剂。 GUIDELINE ON THE LIMITS OF GENOTOXIC IMPURITIES ( EMEA/CHMP/QWP/251344/2006 ) 基因毒性杂质的风险按照目前的法规来说,(体内)基因毒性物质在任何摄入量水平上对DNA 都有潜在的破坏性,这种破坏可能导致肿瘤的产生。因此,对于基因毒性致癌物,不能说“不存在明显的阀值,或是任何的摄入水平都具有致癌的风险”。 可接受风险的摄入量 对于那些可以与DNA 进行反应的化合物,由于在较低的剂量时机体保护机制可以有效的运行,按照摄入量由高到低所造成的影响进行线性推断是很困难的。目前,对于一个给定诱变剂,我们很难从实验方面证明它的基因毒性存在一个阀值。特别是对某些化合物,它们可以与非DNA 靶点进行反应,或一些潜在的突变剂,在与关键靶位结合之前就迅速失去了毒性。由于缺乏支持基因毒性阀值存在的有力证据,而使得我们很难界定一个安全的服用量。 所以有必要采取一个新观点:确定一个可接受其风险的摄入量。可接受其风险的摄入量即毒理学阈值一般通用的被定义为Threshold of Toxicological Concern (TTC)。具体含义为:一个“ 1.5ug/day ”的TTC 值,即相当于每天摄入1.5ug 的基因毒性杂质,被认为对于大多数药品来说是可以接受的风险(一生中致癌的风险小于100000 分之1 )。按照这个阀值,可以根据预期的每日摄入量计算出活性药物中可接受的杂质水平。 在特定的条件下一些基因毒性杂质也可以有较高的阈值。如接触时间比较短等,这个需要根据实际情况再进行推算。 必须要强调的是TTC 是一个风险管理工具,它使用的是概率方法,意思为:假如有一个基因毒性杂质,并且我们对它的毒性大小不太了解,如果它的每日摄入量低于TTC 值,那么它的致癌的风险将不会高于1× 10 的概率。 所以TTC 不能被理解为绝对无风险的保障。有实验依据的TTC 值的确认有足够的(实验性的)证据来支持阀值界定的基因毒性杂质对于这类有足够的证据来表明其基因毒性阀值的化合物,可以参考“ Q3C Note for Guidance on Impurities: Residual Solvents. ”中2 级溶剂的规定,计算出了一个“允许的日摄入量” (PDE )。 无实验依据的TTC 值的确认没有足够的(试验性的)证据来支持阀值界定的基因毒性杂质不能进行阀值鉴定的基因毒性杂质的可接受剂量评价应该包括药学的和毒理学的评价。一般来说,如果避免毒性是不可能的,那么药学的评价措施应该以ALARP 的(as low as reasonably practicable 尽可能低的合理可行性)控制水平为指导原则。 含有多个基因毒性杂质的评估 EMEACHMP 结构不同的——单个杂质的限度应该小于1.5ug/day 结构相似的——杂质总和的限度应该小于 1.5ug/day FDA (和 EMEA 类似)单个杂质造成的癌症风险机率应该小于10 有相同作用机制的结构相似的杂质,其含量总和应该参考1.5ug/day 的限量进行评估。单个基因毒性杂质可以参考文献来确定。多个基因毒性杂质 (3 个以下)积累的风险相对于单个杂质的风险上升不大,可以忽略。药物中含有3 个基因毒性杂质,不管结构是否相似,在法规中是允许的(只要有充分的数据)。存在四个以及以上的基因毒性杂质的时候,需要根据实际情况考虑。 药学评价应该根据现有的配方选择和生产技术,提供生产方法的合理性。申请人应该指明涉及到的所有具有 基因毒性或有致癌性的化学物质,如所用试剂、中间体、副产品等。更进一步,在药物活性物质中没有出现的基因毒性反应物和有基因毒性结构(alerting structure )的物质,都应该被考虑。实际生产中尽量避免使用该类物质。 如果在合成路线、起始物料方面没有更好选择,则需要提供一个正当的理由。就是物质中能引起基因毒性和致

ICH-M7(step4)基因毒性杂质评估和控制◆中英

ASSESSMENT AND CONTROL OF DNA REACTIVE(MUTAGENIC) IMPURITIES IN PHARMACEUTICALS TOLIMIT POTENTIAL CARCINOGENIC RISK 为限制潜在致癌风险而对药物中DNA活性(诱变性)杂质进行的评估和控制 M7 Current Step 4 version dated 23 June 2014 This Guideline has been developed by the appropriate ICH Expert Working Group and has been subject to consultation by the regulatory parties, in accordance with the ICH Process. At Step 4 of the Process the final draft is recommended for adoption to the regulatory bodies of the European Union, Japan and USA.

M7 Document History 文件历史

The document is provided "as is" without warranty of any kind. In no event shall the ICH or the authors of the original document be liable for any claim, damages or other liability arising from the use of the document. The above-mentioned permissions do not apply to content supplied by third parties. Therefore, for documents where the copyright vests in a third party, permission for reproduction must be obtained from this copyright holder.

相关文档
最新文档