生物分离工程第七章色谱技术
合集下载
第七章 色谱分离技术

固定相和流动相、操作条件。
④ 设备简单,操作方便,且不含强烈的操作条件, 因而不容易使物质变性,特别适于不稳定的大分子 有机化合物。
缺点: 处理量小、操作周期长、不能连续操作,因此 主要用于实验室,工业生产上应用较少。
3.色谱法的分类 吸附色谱法
分配色谱法
分离机理
离子交换色谱法 凝胶色谱法
亲和色谱法
(一)基本原理
溶液中某组分的分子在运动中碰到一个固体表 面时,分子会贴在固体表面上,发生吸附作用。
1.发生吸附作用的原理:
固体表面分子(或原子)与固体内部分子(或原子) 所处的状态不同:
固体内部分子(或原子)受临近四周分子的作用力是 对称的,作用力总和为零,即彼此互相抵消,故分子处 于平衡状态。
界面上的分子所受的力不对称,作用力总和不等于零, 合力指向固体内部。
小分子
(二)凝胶过滤介质
基本要求:
不能与原料组分发生除排阻之外的任何其他相 互作用,如电荷作用、化学作用、生物学作用
高物理强度、高化学稳定性 耐高温高压、耐强酸强碱 高化学惰性 内孔径分布范围窄 颗粒大小均一度高
常用的凝胶过滤介质 葡聚糖凝胶 琼脂糖凝胶 聚丙烯酰胺凝胶
1. 葡聚糖凝胶
pH、缓冲液浓度、离子强度
③ 柱操作 柱的大小、长短 ④ 流速的控制 高速度、高效率 ⑤ 清洗 除去不结合的所有物质 ⑥ 洗脱 特异性洗脱(竞争性置换目的物) ⑦ 柱的再非生特异性洗脱(调节pH、离子强度和种类、温度)
(五)亲和色谱法的应用
1.亲和色谱法的特点: 专一、高效、简便、快速
2.应用 ① 分离和纯化各种生物分子 纯化生物大分子,适于从组织或发酵液中分离
色谱法应运而生。
色谱分离是一组相关技术的总称,又叫做色 谱法、层析法,是一种高效而有用的生物分离 技术。
④ 设备简单,操作方便,且不含强烈的操作条件, 因而不容易使物质变性,特别适于不稳定的大分子 有机化合物。
缺点: 处理量小、操作周期长、不能连续操作,因此 主要用于实验室,工业生产上应用较少。
3.色谱法的分类 吸附色谱法
分配色谱法
分离机理
离子交换色谱法 凝胶色谱法
亲和色谱法
(一)基本原理
溶液中某组分的分子在运动中碰到一个固体表 面时,分子会贴在固体表面上,发生吸附作用。
1.发生吸附作用的原理:
固体表面分子(或原子)与固体内部分子(或原子) 所处的状态不同:
固体内部分子(或原子)受临近四周分子的作用力是 对称的,作用力总和为零,即彼此互相抵消,故分子处 于平衡状态。
界面上的分子所受的力不对称,作用力总和不等于零, 合力指向固体内部。
小分子
(二)凝胶过滤介质
基本要求:
不能与原料组分发生除排阻之外的任何其他相 互作用,如电荷作用、化学作用、生物学作用
高物理强度、高化学稳定性 耐高温高压、耐强酸强碱 高化学惰性 内孔径分布范围窄 颗粒大小均一度高
常用的凝胶过滤介质 葡聚糖凝胶 琼脂糖凝胶 聚丙烯酰胺凝胶
1. 葡聚糖凝胶
pH、缓冲液浓度、离子强度
③ 柱操作 柱的大小、长短 ④ 流速的控制 高速度、高效率 ⑤ 清洗 除去不结合的所有物质 ⑥ 洗脱 特异性洗脱(竞争性置换目的物) ⑦ 柱的再非生特异性洗脱(调节pH、离子强度和种类、温度)
(五)亲和色谱法的应用
1.亲和色谱法的特点: 专一、高效、简便、快速
2.应用 ① 分离和纯化各种生物分子 纯化生物大分子,适于从组织或发酵液中分离
色谱法应运而生。
色谱分离是一组相关技术的总称,又叫做色 谱法、层析法,是一种高效而有用的生物分离 技术。
生物分离工程第七章色谱技术亲和色谱

(5)辅酶和磷酸酰苷 各种脱氢酶和激酶需要在辅酶(coenzyme)的存在 下表现其生物催化活性,即脱氢酶和激酶与辅酶之间 具有亲和作用。辅酶主要有辅酶Ⅰ(烟酰胺腺嘌呤二 核苷酸,nicotinamideadenine dinucleotide,NAD)、 辅酶Ⅱ(烟酰胺腺嘌呤二核苷酸磷酸,NAD phosophate,NADP)和三磷酸腺苷(adenosine triphosphate,ATP)等。这些辅酶可用做脱氢酶和激 酶的亲和配基。此外,磷酸腺苷(adenosine 5’monophosphate,AMP)、二磷酸腺苷(adenosine2’, 5’-diphosphate,ADP)的腺苷部分与上述辅酶的结构 类似,与脱氢酶和激酶同样具有亲和结合作用,可用
亲和配基耦联密度测定
耦联密度决定了介质的吸附容量
分光光度法 量差法分析 水解作用分析 元素分析法
间臂分子
当配基的分子量较小时,将其直接固定在载体上,会 由于载体的空间位阻,配基与生物大分子不能发生有 效的亲和吸附作用。 如果在配基与载体之间连接间隔臂,可以增大配基与 载体之间的距离,使其与生物大分子发生有效的亲和 结合。 Steric considerations &
介质活化与耦联
活化 基质的活化是指通过对基质进行一定的化学处理, 使基质表面上的一些化学基团转变为易于和特定配体 结合的活性基团。 溴化氰活化法 溴化氰活化法是最常用的活化方法之一,活化过程 主要是生成亚胺碳酸活性基团,它可以和伯氨(NH2) 反应,主要生成异脲衍生物。反应如下:
活化耦联过程
20ml、2mol/L碳酸氢钠+20g湿琼脂糖,冰浴4-5min 搅拌过程中加入溴化氰,4-5℃10min
第7章 色谱分离技术

(4) 酚-醛型树脂 主要由水杨酸、苯酚和甲醛 缩聚而成,水杨酸和甲醛形成线状结构,苯酚作 为交联剂。
2. 按树脂骨架的物理结构
(1) 凝胶型树脂 (2) 大网格树脂 (3) 均孔树脂
3. 按活性基团分类
1) 阳离子交换树脂 活性基团为酸性, 对阳离子具有交换能力。
(1) 强酸性阳离子交换树脂
超临界流体色谱—流动相是在接近它 的临界温度和压力下工作的液体
三、色谱法的分类
根据固定相的附着方式分类 —固定相装在圆柱管中—柱色谱 —液体固定相涂在纸上—纸色谱(平板色谱)
—固定相涂敷在玻璃或金属板上—薄层色谱
三、色谱法的分类
按分离机理不同,可分为: 吸附色谱法 分配色谱法 离子交换色谱法 凝胶色谱法 亲和色谱法
第7章 色谱分离技术
一、色谱分离技术的概念 色谱(chromatography)分离技术是 一类分离方法的总称,又称色谱法、层析法、 层离法等。它是利用不同组分在固定相和流 动相中的物理化学性质的差别,使各组分在 两相中以不同的速率移动而进一步分离的技 术。
二、色谱分离系统的组成
在色谱法中,表面积较大的固体或附着 在固体上且不运动的液体,静止不动的 一相(称为固定相 ;自上而下运动的一 相(一般是气体或液体)称为流动相 。
展开剂
常用溶剂极性次序为:己烷<环己烷<四 氯化碳<甲苯<苯<氯仿<乙醚<乙酸乙酯< 丙酮<正丙醇<乙醇<甲醇<水<冰醋酸
(2)柱色谱的吸附剂与洗脱剂
吸附剂的选择
一般地说,所选的吸附剂应有最大的比 表面积和足够的吸附能力,它对欲分离 的不同物质应该有不同的解吸能力;与 洗脱剂、溶剂及样品组分不会发生化学 反应;还要求所选的吸附剂颗粒均匀, 在操作过程中不会破裂。
2. 按树脂骨架的物理结构
(1) 凝胶型树脂 (2) 大网格树脂 (3) 均孔树脂
3. 按活性基团分类
1) 阳离子交换树脂 活性基团为酸性, 对阳离子具有交换能力。
(1) 强酸性阳离子交换树脂
超临界流体色谱—流动相是在接近它 的临界温度和压力下工作的液体
三、色谱法的分类
根据固定相的附着方式分类 —固定相装在圆柱管中—柱色谱 —液体固定相涂在纸上—纸色谱(平板色谱)
—固定相涂敷在玻璃或金属板上—薄层色谱
三、色谱法的分类
按分离机理不同,可分为: 吸附色谱法 分配色谱法 离子交换色谱法 凝胶色谱法 亲和色谱法
第7章 色谱分离技术
一、色谱分离技术的概念 色谱(chromatography)分离技术是 一类分离方法的总称,又称色谱法、层析法、 层离法等。它是利用不同组分在固定相和流 动相中的物理化学性质的差别,使各组分在 两相中以不同的速率移动而进一步分离的技 术。
二、色谱分离系统的组成
在色谱法中,表面积较大的固体或附着 在固体上且不运动的液体,静止不动的 一相(称为固定相 ;自上而下运动的一 相(一般是气体或液体)称为流动相 。
展开剂
常用溶剂极性次序为:己烷<环己烷<四 氯化碳<甲苯<苯<氯仿<乙醚<乙酸乙酯< 丙酮<正丙醇<乙醇<甲醇<水<冰醋酸
(2)柱色谱的吸附剂与洗脱剂
吸附剂的选择
一般地说,所选的吸附剂应有最大的比 表面积和足够的吸附能力,它对欲分离 的不同物质应该有不同的解吸能力;与 洗脱剂、溶剂及样品组分不会发生化学 反应;还要求所选的吸附剂颗粒均匀, 在操作过程中不会破裂。
第七章 生物大分子的色谱分离和纯化

吸附色谱分离
是指混合物随流动相通过固定相(吸附剂) 是指混合物随流动相通过固定相(吸附剂)时,由于 固定相对不同物质的吸附力不同而使混合物分离的方法。 固定相对不同物质的吸附力不同而使混合物分离的方法。 吸附剂有氧化铝、硅胶、活性炭、膨润土、磷酸钙、 吸附剂有氧化铝、硅胶、活性炭、膨润土、磷酸钙、 有氧化铝 氧化钛、氢氧化锌凝胶等。 氧化钛、氢氧化锌凝胶等。 新的吸附色谱技术有: 新的吸附色谱技术有:
色谱分离的分类
1. 按分离机理不同分类
吸附色谱分离( Chromatography,AC) 吸附色谱分离(Adsorption Chromatography,AC) 分配色谱( Chromatography,DC) 分配色谱(Distribution Chromatography,DC) 离子交换色谱( Chromatography,IEC) 离子交换色谱(Ion Exchange Chromatography,IEC) 凝胶色谱( Chromatography,GC) 凝胶色谱(Gel Chromatography,GC) 亲合色谱( Chromatography,AFC) 亲合色谱(Affinity Chromatography,AFC)
纯化蛋白的设备和生产成本相当昂贵,以致在 基因工程生产治疗蛋白的生产总成本中,分离和 纯化要占70%~90%。 色谱所分离出的杂蛋白的种类和数量要比传统 的方法多的多,这类蛋白可能有热源、病毒、 DNA和RNA、不准确转化的蛋白、糖化或氧化 产物、聚集体和与目标产品有类似构象的异构体 等,以及某些蛋白的复性工序所带入的新杂质。
凝胶色谱
以凝胶为固定相, 以凝胶为固定相,是一种根据各物质分子 大小不同而进行分离的色谱技术, 大小不同而进行分离的色谱技术,又称为分子 筛色谱( Chromatography, 筛色谱(Molecular Sieve Chromatography, MSC)、空间排阻色谱或尺寸排阻色谱( )、空间排阻色谱或尺寸排阻色谱 MSC)、空间排阻色谱或尺寸排阻色谱(Size Exclusion Chromatography,SEC)。 Chromatography,SEC)
生物工程下游技术第七章_生物大分子的色谱分离和纯化

由分子扩散的阻碍情况; D—组分在流动相中的扩散系数。组份为气体或 液体时,分别以Dg或Dm表示;
B=2D
讨论:
分子量大的组分,Dg小,即B小
Dg 随柱温升高而增加,随柱压降低 而减小;
球状颗粒; 大分子量流 动相; 适当增加流 速; 短柱; 低温。
流动相分子量大,Dg小,即B小;
u增加,组份停留时间短,纵向扩散 小; ( B/u )对于液相色谱,因Dm 较小, B项可勿略。
组分在固定相中物质的 量 ns csVs Vs k' k 组分在流动相中物质的 量 nm cmVm Vm
其中Vm、Vs分别为固定相和流动相的体积
k′也等于组分的调整保留时间与死时间或 调整保留体积与死体积的比值:
t ' R tR t 0 V ' R VR V 0 k' 或k ' t0 t0 V0 V0
系数小的组分,先离开蒸馏塔(色谱柱), 分配系数大的组分后离开蒸馏塔(色谱 柱),从而使分配系数不同的组分彼此得 到分离。
(三)分离过程模拟图
(四)柱效能指标
对于一个色谱柱来说,其分离能力
(叫柱效能)的大小主要与塔板的数目
有关,塔板数越多,柱效能越高。
色谱柱的塔板数可以用理论塔板数和有效
塔板数来表示。
提取液)的石油醚倒入管中。
素,并可分别进行鉴定。色
谱法也由此而得名。
一、色谱分离基本原理:
在色谱法中存在两相,一相是固定不动 的,称作固定相;另一相则不断流过固定相, 称作流动相。 色谱法的分离原理就是利用待分离的
各种物质在两相中的分配系数、吸附能
力等亲和能力的不同来进行分离的。
(含样品的)流动相通过固定相表面,混
B=2D
讨论:
分子量大的组分,Dg小,即B小
Dg 随柱温升高而增加,随柱压降低 而减小;
球状颗粒; 大分子量流 动相; 适当增加流 速; 短柱; 低温。
流动相分子量大,Dg小,即B小;
u增加,组份停留时间短,纵向扩散 小; ( B/u )对于液相色谱,因Dm 较小, B项可勿略。
组分在固定相中物质的 量 ns csVs Vs k' k 组分在流动相中物质的 量 nm cmVm Vm
其中Vm、Vs分别为固定相和流动相的体积
k′也等于组分的调整保留时间与死时间或 调整保留体积与死体积的比值:
t ' R tR t 0 V ' R VR V 0 k' 或k ' t0 t0 V0 V0
系数小的组分,先离开蒸馏塔(色谱柱), 分配系数大的组分后离开蒸馏塔(色谱 柱),从而使分配系数不同的组分彼此得 到分离。
(三)分离过程模拟图
(四)柱效能指标
对于一个色谱柱来说,其分离能力
(叫柱效能)的大小主要与塔板的数目
有关,塔板数越多,柱效能越高。
色谱柱的塔板数可以用理论塔板数和有效
塔板数来表示。
提取液)的石油醚倒入管中。
素,并可分别进行鉴定。色
谱法也由此而得名。
一、色谱分离基本原理:
在色谱法中存在两相,一相是固定不动 的,称作固定相;另一相则不断流过固定相, 称作流动相。 色谱法的分离原理就是利用待分离的
各种物质在两相中的分配系数、吸附能
力等亲和能力的不同来进行分离的。
(含样品的)流动相通过固定相表面,混
生物分离工程-离子交换层析(色谱)-精选文档

羟基磷灰石层析
羟基磷灰石(hydroxyapatite, HAP): 是一种磷酸钙晶体,基本分子结构为
Ca ( PO ) ( OH ) 10 4 6 2
一般认为,HAP的吸附主要基于钙高子和磷酸根离子 的静电引力,即在HAP晶体表面存在两种不同的吸附晶面, 各存在吸附点c点和P点,前者起阴离于交换作用,后者 起阳离于交换作用.因此,在中性pH环境下酸性蛋白质 (pI<7)主要吸附于c点,碱性蛋白质(PI>7)主要吸附于P 点.利用磷酸盐缓冲液(K2HP04+KH2PO4)为流动相洗脱展 开时,磷酸根离子在c点竞争性吸附,交换出酸性蛋白质 ,而K+在P点竞争性吸附,交换出碱性蛋白质。所以HAP层 析通常以磷酸盐缓冲液为流动相,采用提高盐浓度的线 性梯度洗脱法。
多缓冲离子交换剂:
可利用普通的凝胶过滤介质偶联特殊的离子交换基制 备.如Pharmacia公司生产的PBEll8和94即为以Sepharose 6B 为载体的阴离子交换剂,前者与Pharmalyte 匹配使用,后 者与Polybuffer96和Polybuffer 74匹配使用。
Pharmacia生产的另一种多缓冲离子交换剂为Mono P,其离于交换基为具有不同pKa值的弱碱性胺基.Mono P可与上述三种多缓冲剂匹配使用,粒径仅10m,用作 高效层析聚焦柱的固定相。
poros层析介质包括离子交换疏水作用亲和吸附和反相介质等其中前三种介质的孔表面覆面有葡聚糖等亲水性多糖保证介质表面的亲水性和键合相应的配灌注层析的最大特点是分离速度快一般可在数分钟内完成而利用hplc则需数十分钟到一小时
离子交换层析(色谱)
一、原理
离子交换层析(Ion exchange chromatography, IEC)是 利用离子交换剂为固定相,根据荷电溶质与离子交换剂 之间静电相互作用力的差别进行溶质分离的层析法。 荷电溶质在离子交换剂上的分配系数可用下式表示:
生物分离工程 第七章 色谱技术

吸附色谱及其分类和基本原理
什么是分配色谱?
离子交换色谱的分类及应用
凝胶色谱的分离原理及分类 离子交换及疏水作用层析的原理
高效液相色谱的分离原理及应用
蛋白质分离的常用色谱方法有哪些?
色谱技术(分配色谱)
概念:色谱技术是一组相关分离方法的总称,色
谱柱的一般结构含有固定相(多孔介质)和流动
(3)线性洗脱法
线形洗脱法(linear gradient elution)
流动相的离子强度线性增大,因此溶质的分配系数连续降低, 移动速度逐渐增大
特点
难于洗脱的溶质在较小流动相体积下洗脱; 改变流动相离子强度增大速度可调节溶质的洗脱体积; 流动相离子强度(盐浓度)连续增大,不出现干扰峰,操作 范围广; 需要特殊调配浓度梯度的设备
滤介质的要求和影响分离特性的因素
应用:掌握凝胶色谱的应用及特点
(1)定义
凝胶过滤色谱利用凝胶粒子为固定 相,是根据料液中溶质相对分子量的差 别进行分离的液相色谱法
(2)原理
在GFC柱中,分子量大的溶质 不能进入凝胶介质,而沿介质 空隙流过 分子量很小的溶质能够进入所 有的细孔中,其洗脱体积接近 柱体积 分子两介于两者之间的溶质能 够进入部分细孔中
形状
纸色谱 薄层色谱 柱色谱 纸层析
薄层层析
(3)操作压力分类
低压液相色谱(<0.5 MPa)
中压液相色谱(0.5-4.0 MPa)
高压液相色谱(>4.0 MPa)
(4)流动相流动方式分类
轴向流色谱
径向流色谱
(5)分离操作方式分类
什么是分配色谱?
离子交换色谱的分类及应用
凝胶色谱的分离原理及分类 离子交换及疏水作用层析的原理
高效液相色谱的分离原理及应用
蛋白质分离的常用色谱方法有哪些?
色谱技术(分配色谱)
概念:色谱技术是一组相关分离方法的总称,色
谱柱的一般结构含有固定相(多孔介质)和流动
(3)线性洗脱法
线形洗脱法(linear gradient elution)
流动相的离子强度线性增大,因此溶质的分配系数连续降低, 移动速度逐渐增大
特点
难于洗脱的溶质在较小流动相体积下洗脱; 改变流动相离子强度增大速度可调节溶质的洗脱体积; 流动相离子强度(盐浓度)连续增大,不出现干扰峰,操作 范围广; 需要特殊调配浓度梯度的设备
滤介质的要求和影响分离特性的因素
应用:掌握凝胶色谱的应用及特点
(1)定义
凝胶过滤色谱利用凝胶粒子为固定 相,是根据料液中溶质相对分子量的差 别进行分离的液相色谱法
(2)原理
在GFC柱中,分子量大的溶质 不能进入凝胶介质,而沿介质 空隙流过 分子量很小的溶质能够进入所 有的细孔中,其洗脱体积接近 柱体积 分子两介于两者之间的溶质能 够进入部分细孔中
形状
纸色谱 薄层色谱 柱色谱 纸层析
薄层层析
(3)操作压力分类
低压液相色谱(<0.5 MPa)
中压液相色谱(0.5-4.0 MPa)
高压液相色谱(>4.0 MPa)
(4)流动相流动方式分类
轴向流色谱
径向流色谱
(5)分离操作方式分类
第七章 生物大分子的色谱分离和纯化120328

分离度
第二节 装置和操作技术
装置包括:流动相供给、进样、色谱柱和 检测器4大部分。
1.柱色谱系统的组成
色谱介质有各种各样,但柱式色谱系统的组成基本相 似,一般由蠕动泵、色谱柱、检测器、记录仪以及 部分收集器等几个部分构成。
柱层析系统的组成
• 柱式层析系统的组成基本相似。由以下几个部分构成:
疏水作用色层分离法
吸附层析法
金属螯合色层分离法
分配层析法
共价作用色层分离法
凝胶过滤法
⑵ 根据实验技术的分类
低压层析技术
——操作压力小于0.5MPa
中压层析技术
——操作压力在0.5MPa-5MPa之间
高压层析技术 电泳法
——操作压力在5Mpa-40MPa之间 ——靠溶质分子在电场中的移动速度
不同而分离
二﹑有效柱长和最短柱长
不同溶质在其迁移速度大于零,但小于 流动相的线速度时,溶质在色谱柱上的 迁移对分离有贡献,此时溶质迁移所经 历的柱长也对分离有贡献;而当不同溶 质在其迁移速度等于流动相的线速度时, 溶质迁移所经历的柱长对分离无贡献。
二﹑有效柱长和最短柱长 有效柱长(Leff):溶质从开始迁移至其 迁移速度等于流动相速度时,溶质在色 谱柱上迁移的距离。又叫有效迁移距离。 最短柱长(Lmin):混合溶质中使一对最 难分离的溶质1和溶质2的分离度Rs=1时 所需的最短距离。
(1)吸附色谱、 (2)分配色谱、 (3)离子交换色谱、 (4) 凝胶色谱
6.色谱法的特点
(1)高选择性
(2)高效能 (3)高灵敏度可以分析质量分数为10-6 ~10-9 数量级、 检出限量低至10-1l g的物质,适于微量和痕量分析。
7.色谱法的应用 (1)色谱分析广泛应用于极为复杂的混合物成分分 析; (2)液相色谱法,在糖类、氨基酸、农药、染料、 贵金属、有机金属化合物等方面得到了广泛的