高中数学 集合间的基本关系参赛课件
合集下载
集合间的基本关系ppt课件

( B
A.2
)
B.3
C.4
【解析】集合M满足M ⫋ {1,2},集合{1,2}的元素个数为2,
则满足题意的M的个数为22 − 1 = 3.
D.5
例3-7 已知集合A = {x ∈ | − 2 < x < 3},则集合A的所有非空真子集的个数是
( A
)
A.6
B.7
C.14
D.15
【解析】A = {x ∈ | − 2 < x < 3} = {0,1,2},
图形语言:
符号语言:若A⊆B,且B⊆A,则A=B
例如:A={x|x是两条边相等的三角形}
B={x|x是等腰三角形}
B (A)
2、集合相等
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的
任何一个元素都是集合A的元素,此时集合A与集合B中的元素是一样的,那
么集合A与集合B相等,记作:A=B.
【解析】B = {1,2,4,8},可知集合A中的任意一个元素都是集合B中的元素,故
A ⫋ B.用Venn图表示更加直观,如图1.2-8.
图1.2-8
(2)A = {x| − 1 < x < 5},B = {x|0 < x < 5};
【解析】在数轴上表示出集合A,B,如图1.2-9所示,由图可知B ⫋ A.
方法1 (列举法) 满足条件的集合有:{0},{1},{2},{0,1},{0,2},{1,2},共6个.
方法2 (公式法) 集合A的元素个数为3,则集合A的所有非空真子集的个数为
23 − 2 = 6.
高考题型1 集合间关系的判断
例10 指出下列各组集合之间的关系:
(1)A = {1,2,4},B = {x|x是8的正约数};
A.2
)
B.3
C.4
【解析】集合M满足M ⫋ {1,2},集合{1,2}的元素个数为2,
则满足题意的M的个数为22 − 1 = 3.
D.5
例3-7 已知集合A = {x ∈ | − 2 < x < 3},则集合A的所有非空真子集的个数是
( A
)
A.6
B.7
C.14
D.15
【解析】A = {x ∈ | − 2 < x < 3} = {0,1,2},
图形语言:
符号语言:若A⊆B,且B⊆A,则A=B
例如:A={x|x是两条边相等的三角形}
B={x|x是等腰三角形}
B (A)
2、集合相等
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的
任何一个元素都是集合A的元素,此时集合A与集合B中的元素是一样的,那
么集合A与集合B相等,记作:A=B.
【解析】B = {1,2,4,8},可知集合A中的任意一个元素都是集合B中的元素,故
A ⫋ B.用Venn图表示更加直观,如图1.2-8.
图1.2-8
(2)A = {x| − 1 < x < 5},B = {x|0 < x < 5};
【解析】在数轴上表示出集合A,B,如图1.2-9所示,由图可知B ⫋ A.
方法1 (列举法) 满足条件的集合有:{0},{1},{2},{0,1},{0,2},{1,2},共6个.
方法2 (公式法) 集合A的元素个数为3,则集合A的所有非空真子集的个数为
23 − 2 = 6.
高考题型1 集合间关系的判断
例10 指出下列各组集合之间的关系:
(1)A = {1,2,4},B = {x|x是8的正约数};
1.2集合间的基本关系-高一数学课件

符号语言:若A ⊆ B,且B ⊇ A,则A = B.
如果集合A ⊆ B,但存在元素x ∈ B,且x ∉ A,就称集合A是集合
B的真子集,记作A ⫋ B(或B
子集( A ⊆ B )
A).
真子集( A ⫋ B )
相等( A = B )
新知探究
问题3:方程 2 + 1 = 0的实数根组成集合是什么?它的元素有哪些?
求实数m的取值范围.
解:据题意得:A ≠ ∅.
所以,
m + 1 ≤ −2
2m − 1 ≥ 5
m ≤ −3
解得,
m≥3
∴ m无解,即m的解集为∅.
·
+1
·
−2
·
5
·
2 − 1
小结
对任意的 ∈ ,总有 ∈ ,则 ⊆
子集
B
A
或
B
真子集 集合A ⊆ B,但存在x ∈ B,且x ∉ A,则A ⫋ B
+ 1 ≤ 2 + 1
≥2
②当 ≠ ∅时,则 + 1 ≥ −2
即 ≥ −3
2 + 1 ≤ 5
≤3
解得:2 ≤ ≤ 3.
综上可得,实数的取值范围是:{| ≤ 3}
·
·
−2 + 1
·
2 − 1
·
5
练习巩固
变式4-1.已知集合A = {−2 ≤ x ≤ 5},B = {x|m + 1 ≤ x ≤ 2m − 1},若A ⊆ B,
复习导入
元素
研究对象
集合
元素组成的整体
含义
元素的性质
确定性、互异性、无序性
集合的概念
如果集合A ⊆ B,但存在元素x ∈ B,且x ∉ A,就称集合A是集合
B的真子集,记作A ⫋ B(或B
子集( A ⊆ B )
A).
真子集( A ⫋ B )
相等( A = B )
新知探究
问题3:方程 2 + 1 = 0的实数根组成集合是什么?它的元素有哪些?
求实数m的取值范围.
解:据题意得:A ≠ ∅.
所以,
m + 1 ≤ −2
2m − 1 ≥ 5
m ≤ −3
解得,
m≥3
∴ m无解,即m的解集为∅.
·
+1
·
−2
·
5
·
2 − 1
小结
对任意的 ∈ ,总有 ∈ ,则 ⊆
子集
B
A
或
B
真子集 集合A ⊆ B,但存在x ∈ B,且x ∉ A,则A ⫋ B
+ 1 ≤ 2 + 1
≥2
②当 ≠ ∅时,则 + 1 ≥ −2
即 ≥ −3
2 + 1 ≤ 5
≤3
解得:2 ≤ ≤ 3.
综上可得,实数的取值范围是:{| ≤ 3}
·
·
−2 + 1
·
2 − 1
·
5
练习巩固
变式4-1.已知集合A = {−2 ≤ x ≤ 5},B = {x|m + 1 ≤ x ≤ 2m − 1},若A ⊆ B,
复习导入
元素
研究对象
集合
元素组成的整体
含义
元素的性质
确定性、互异性、无序性
集合的概念
《集合间的基本关系》课件

80%
补集的可分离性
若全集U中存在两个互不重叠的 子集A和B,则它们的补集A'和B' 也是互不重叠的。
补集的应用
集合的划分
通过补集可以将全集划分为若 干个互不重叠的子集,从而实 现对全集的划分。
集合的运算
在集合运算中,补集的概念可 以用于简化运算过程,例如在 集合的交、并、差等运算中, 可以通过补集来消除某些元素 。
并集的性质
01
并集具有交换律,即 A∪B=B∪A。
02
03
并集具有结合律,即 (A∪B)∪C=A∪(B∪C) 。
并集的补集律表明,如 果M是全集U,那么 A∪(M-A)=M。
04
并集的幂等律表明, A∪A=A。
并集的应用
并集在数学、逻辑和计 算机科学中都有广泛的 应用。
在集合运算中,并集用 于组合多个集合,满足 某些条件或属性的元素 。
假设A={a, b, c, d},B={b, c, e, f}, 则A∩B={b, c}。
交集的性质
01
02
03
04
空集与任何集合的交集是空集 :即A∩∅=∅。
空集与任何集合的交集是空集 :即A∩∅=∅。
空集与任何集合的交集是空集 :即A∩∅=∅。
空集与任何集合的交集是空集 :即A∩∅=∅。
交集的应用
超集是指一个集合包含另一个集合的所有元素,即如果集合A中的 所有元素都属于集合B,则称集合B为集合A的超集。
03
集合间的相等关系
相等关系的定义
相等关系
如果两个集合A和B的元素完全相同,即A=B,则称集合A与B具有 相等关系。
相等的定义
对于任意两个集合A和B,如果A中的每一个元素都是B中的元素, 且B中的每一个元素都是A中的元素,则称A与B相等,记作A=B。
高中数学集合间的基本关系优秀课件

且2k2表示所有的偶数,2k2-1表示所有的奇数,
∴4k2±1与2k+1(k∈Z)一样,都表示所有奇数. ∴x2=91(4k2±1)=91(2k+1),k∈Z. ∴x2∈A.∴B⊆A.故A=B.应选C. 答案 C
判断集合与集合关系的常用方法:(1)一一列举观察.(2)集合元素特征 法:首先确定“集合的元素是什么〞,弄清元素的特征,再利用集 合元素的特征判断关系.一般地,设A={x|p(x)},B={x|q(x)}.①假设 p(x)推出q(x),那么A⊆B;②假设q(x)推出p(x),那么B⊆A;③假设 p(x),q(x)互相推出,那么A=B;④假设p(x)推不出q(x),q(x)也推不 出p(x),那么集合A,B无包含关系.(3)数形结合法:利用数轴或Venn 图判断.假设A⊆B和A B同时成立,那么A B更能准确表达集合A, B之间的关系.
例 3 已知集合 A={x|x=19(2k+1),k∈Z},B={x|x=49k±19,k∈Z},则 集合 A,B 之间的关系为( )
A.A ⊆ B B.B ⊆ A
C.A=B
D.A≠B
解 当 ∴ 设析 xkx112∈= ∈B设 2B;n,,x当则1∈ n∈kxA12=Z, =2时则 49nk-,2x±11x91=1,==19n91(19∈(2(4k4kZ1n2++±时111)),,),=xkk14921=∈∈ n+19ZZ(19.4. ,n-1)=49n-91,∴x1∈B.∴A⊆B. 由于4k2+1=2×2k2+1,4k2-1=2(2k2-1)+1,
3.假设集合P={x|x≤3},那么D( )
A.-1⊆P
B.{-1}∈P
C.∅∈P
D.{-1}⊆P
解析 ∵P={x|x≤3},
∴-1∈P,故{-1}⊆P,故答案为D.
∴4k2±1与2k+1(k∈Z)一样,都表示所有奇数. ∴x2=91(4k2±1)=91(2k+1),k∈Z. ∴x2∈A.∴B⊆A.故A=B.应选C. 答案 C
判断集合与集合关系的常用方法:(1)一一列举观察.(2)集合元素特征 法:首先确定“集合的元素是什么〞,弄清元素的特征,再利用集 合元素的特征判断关系.一般地,设A={x|p(x)},B={x|q(x)}.①假设 p(x)推出q(x),那么A⊆B;②假设q(x)推出p(x),那么B⊆A;③假设 p(x),q(x)互相推出,那么A=B;④假设p(x)推不出q(x),q(x)也推不 出p(x),那么集合A,B无包含关系.(3)数形结合法:利用数轴或Venn 图判断.假设A⊆B和A B同时成立,那么A B更能准确表达集合A, B之间的关系.
例 3 已知集合 A={x|x=19(2k+1),k∈Z},B={x|x=49k±19,k∈Z},则 集合 A,B 之间的关系为( )
A.A ⊆ B B.B ⊆ A
C.A=B
D.A≠B
解 当 ∴ 设析 xkx112∈= ∈B设 2B;n,,x当则1∈ n∈kxA12=Z, =2时则 49nk-,2x±11x91=1,==19n91(19∈(2(4k4kZ1n2++±时111)),,),=xkk14921=∈∈ n+19ZZ(19.4. ,n-1)=49n-91,∴x1∈B.∴A⊆B. 由于4k2+1=2×2k2+1,4k2-1=2(2k2-1)+1,
3.假设集合P={x|x≤3},那么D( )
A.-1⊆P
B.{-1}∈P
C.∅∈P
D.{-1}⊆P
解析 ∵P={x|x≤3},
∴-1∈P,故{-1}⊆P,故答案为D.
集合间的基本关系ppt课件

知识点二. 真子集 如果集合A⊆B,但存在元素x∈B,且x ∉A,就称集合A是集合B的真子集
B A 记作A⫋B(或B⫌A),读作“A真包含于B”(或“B真包含A”)
(1)若A⫋B且B⫋C,则A⫋C; (2)若A⊆B且A≠B,则A⫋B 在真子集的定义中,A⫋B首先要满足A⊆B,其次至少有一个x∈B,但x∉A.
B
A
01 a 2
x
故满足题意的集合M共有7个.
1.已知集合A={x∈N|-2<x<3},则集合A的所有非空真子集的个数 是( )
A.6
B.7
C.14
D.15
解析:选A.因为A={x∈N|-2<x<3}={0,1,2},所以集合A的元素个数为 3,因此集合A的所有非空真子集的个数是23-2=6,故选A. 2.已知集合A={a1,a2,a3}的所有非空真子集的元素之和等于12,则
(2)集合B与集合A又存在着什么关系?
知识点一 子集
封闭曲线
U
U
2.子集
集合B中的元素是由集合
A中的部分元素构成的。
A={各国参赛运动员} B={中国参赛运动员}
A={-1,0,1,2}
B={-1,0,1}
也就是说:集合B中的元 素都是集合A中的元素。
一般地,对于两个集合A,B,如果集合A__任__意__一__个___ 元素都是 集合B中的元素,就称集合A为集合B的子集,记作_A_⊆__B__(或 B⊇A ) ,读作“A包含于 B”(或“B包含 A”)
新课程标准
核心素养
数学抽象、逻 1.理解集合之间包含与相等的含义,能识别给定集合的子集.
辑推理
2.在具体情境中,了解空集的含义.
数学抽象
1.2集合间的基本关系课件2024-2025学年高一上学期数学人教A版(2019)必修第一册 (1)

前者为集合之间关系,后者为元素与集合之间的关系.
【例5】 用适当的符号填空
1 5______{| < 0}
3 ∅________{ ∈ | 2 + + 1 = 0}
5 ∅________ 0
(7) Q
N
2 0_______{| 2 = 0}
(4) {0,1}_____N
(6) 1,2 ____{| 2 − 3 + 2 = 0}
A
的真子集共有
个,A的非空真子集共有
归纳
【例7】 若 , ⫋ ⊆ ,,, ,写出满足条件的集合A
课堂检测
1.集合 A={-1,0,1},A 的子集中含有元素 0 的子集共有(
A.2 个
B.4 个
C.6 个
D.8 个
)
【解析】 根据题意,在集合 A 的子集中,含有元素 0 的子集有{0}、{0,1}、
【答案】 B
4.设集合 A={x|1<x<2},B={x|x<a},若 A⊆B,则 a 的取值范围是(
A.{a|a≤2}
B.{a|a≤1}
C.{a|a≥1}
D.{a|a≥2}
【解析】 由 A={x|1<x<2},B={x|x<a},A⊆B,则{a|a≥2}.
【答案】 D
)
5.已知集合 A={(x,y)|x+y=2,x,y∈N},试写出 A 的所有子集.
x x a 0 的解集为 ,
则实数 a 的取值范围是_____________.
x a 1 0
(a 0) 的解集为 ,
(2)不等式组
ax 0
则实数 a 的取值范围是_____________.
高一数学-集合间的基本关系ppt课件.ppt

【解析】 由集合相等的概念得 a2-1=0 a2-3a=-2 ,解得 a=1.
写出满足{a,b} A⊆{a,b,c,d}的所有集合A. 【思路点拨】 由题目可获取以下主要信息: ①集合{a,b},{a,b,c,d}已知; ②集合A满足{a,b} A⊆{a,b,c,d}; ③求集合A. 解答本题可根据子集、真子集的概念求解. 【解析】 由题设可知,一方面A是集合{a,b,c,d}的子集, 另一方面A又真包含集合{a,b},故集合A中至少含有两个元素a,b, 且含有c,d两个元素中的一个或两个. 故满足条件的集合有{a,b,c},{a,b,d},{a,b,c,d}.
(3){0}与Ø的区别:{0}是含有一个元素的集合,Ø是不含任 何元素的集合.因此,有Ø⊆{0},不能写成Ø={0},Ø∈{0}.
3.两集合相等的证明 若A、B两个集合是元素较少的有限集,可用列举法将元素 列举出来,说明两个集合的元素完全相同,从而A=B;若A、 B是无限集时,欲证A=B,只需证A⊆B与B⊆A都成立即可.
1.子集、空集的概念的理解 (1)集合A是集合B的子集,不能简单地理解为集合A是由集合 B的“部分元素”所组成的集合。如A=Ø,则集合A不含B中的任 何元素. (2)如果集合A中存在着不属于集合B的元素,那么A不包含于 B,或B不包含A.这有两方面的含义,其一是A、B互不包含,如A ={a,b},B={b,c,d};其二是,A包含B,如A={a,b,c}, B={b,c}.
【解析】 ∵B⊆A,
①当 B=Ø 时,m+1<2m-1,解得 m>2;
②当 B≠Ø 时,有-m+3<12&解得-1<m≤2. 综上可知 m 的取值范围是{m|m>-1}.
(1)分析集合关系时,首先要分析、简化每个集合.(2)此类 问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表 示出来,以形定数,还要注意验证端点值,做到准确无误,一 般含“=”用实心点表示,不含“=”用空心点表示.
写出满足{a,b} A⊆{a,b,c,d}的所有集合A. 【思路点拨】 由题目可获取以下主要信息: ①集合{a,b},{a,b,c,d}已知; ②集合A满足{a,b} A⊆{a,b,c,d}; ③求集合A. 解答本题可根据子集、真子集的概念求解. 【解析】 由题设可知,一方面A是集合{a,b,c,d}的子集, 另一方面A又真包含集合{a,b},故集合A中至少含有两个元素a,b, 且含有c,d两个元素中的一个或两个. 故满足条件的集合有{a,b,c},{a,b,d},{a,b,c,d}.
(3){0}与Ø的区别:{0}是含有一个元素的集合,Ø是不含任 何元素的集合.因此,有Ø⊆{0},不能写成Ø={0},Ø∈{0}.
3.两集合相等的证明 若A、B两个集合是元素较少的有限集,可用列举法将元素 列举出来,说明两个集合的元素完全相同,从而A=B;若A、 B是无限集时,欲证A=B,只需证A⊆B与B⊆A都成立即可.
1.子集、空集的概念的理解 (1)集合A是集合B的子集,不能简单地理解为集合A是由集合 B的“部分元素”所组成的集合。如A=Ø,则集合A不含B中的任 何元素. (2)如果集合A中存在着不属于集合B的元素,那么A不包含于 B,或B不包含A.这有两方面的含义,其一是A、B互不包含,如A ={a,b},B={b,c,d};其二是,A包含B,如A={a,b,c}, B={b,c}.
【解析】 ∵B⊆A,
①当 B=Ø 时,m+1<2m-1,解得 m>2;
②当 B≠Ø 时,有-m+3<12&解得-1<m≤2. 综上可知 m 的取值范围是{m|m>-1}.
(1)分析集合关系时,首先要分析、简化每个集合.(2)此类 问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表 示出来,以形定数,还要注意验证端点值,做到准确无误,一 般含“=”用实心点表示,不含“=”用空心点表示.
1.2集合间的基本关系-2024-2025学年高一数学必修第一册+课件(人教A版2019)

当a=-3时,A={-4,-7,9},B={-8,4,9},且A∩B={9},符合题意.
(2)
集合
⌀
{a}
{a,b}
{a,b,c}
集合的子集
⌀
⌀,{a}
⌀,{a},{b},{a,b}
⌀,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}
子集的个数
1
2
4
8
由此猜想:含n个元素的集合{a1,a2,…,an}的所有子集的个数是2 ?真子集的个数
及非空真子集的个数是2 -2.
确定集合的子集、真子集
设A={x(x-16)(x+5x+4)=0},写出集合A的子集,并指出其中哪些是它的真子集?
解:由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4或x=-1
或x=4.
故集合A={-4,-1,4}.由0个元素构成的子集为∅;
由1个元素构成的子集为{-4},{-1},{4};
由2个元素构成的子集为{-4,-1},{-4,4},{-1,4};
由3个元素构成的子集为{-4,-1,4}.
因此集合A的子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{4,-1,4}.
真子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}.
知识讲解
2.填空
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B
的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作
A=B.
也就是说,若A⊆B,且B⊆A,则A=B.
3.做一做
(2)
集合
⌀
{a}
{a,b}
{a,b,c}
集合的子集
⌀
⌀,{a}
⌀,{a},{b},{a,b}
⌀,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}
子集的个数
1
2
4
8
由此猜想:含n个元素的集合{a1,a2,…,an}的所有子集的个数是2 ?真子集的个数
及非空真子集的个数是2 -2.
确定集合的子集、真子集
设A={x(x-16)(x+5x+4)=0},写出集合A的子集,并指出其中哪些是它的真子集?
解:由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4或x=-1
或x=4.
故集合A={-4,-1,4}.由0个元素构成的子集为∅;
由1个元素构成的子集为{-4},{-1},{4};
由2个元素构成的子集为{-4,-1},{-4,4},{-1,4};
由3个元素构成的子集为{-4,-1,4}.
因此集合A的子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{4,-1,4}.
真子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}.
知识讲解
2.填空
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B
的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作
A=B.
也就是说,若A⊆B,且B⊆A,则A=B.
3.做一做
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
记作:A B.
符号语言:若A B, B A,则A B
7
【说一说★本节新知】
3.真子集
如果集合A B, 但存在元素x B,且x A, 我们称集合A是集合B的真子集.
记作:A B ( 或B A ).
读作:“A真含于B”(或“B真包含 A”)
8
【说一说★本节新知】
4.空集
不含任何元素的集合叫做空集,记为. 规定:空集是任何集合的子集,即 A.
10
【议一议★深化概念】
1.包含关系{a} A与属于关系a A有什么区别?
2.集合A B与集合A B有什么区别?
3. 0, {0},与四者之间有什么关系?
4.试讨论类比法在本节课是如何应用的?
11
【听一听★更上一层】
例1.写出集合a, b的所有子集,并指出哪
些是它的真子集.
解 : 集合{a, b}的所有子集为:
空集是任何非空集合的真子集. 即: B. (B )
9
【说一说★本节新知】
5.子集的有关性质
(1).任何一个集合是它本身的子集,即A A.
(2).对于集合A、B、C,如果A B且B C那么A C. (3).对于集合A、B、C,如果 A B且B C那么A C. (4).对于集合A、B、C,如果 A B且B C那么A C. (5).对于集合A、B、C,如果 A B且B C那么A C. (6).对于集合A、B、C,如果 A B且B C那么A C .
2
【引一引★温故知新】
集合与集合 之间呢?
实数有相等关系 如:5=5
实数有大小关系
如:5<7,5>3
3
【说一说★本节新知】
子集 集合相等 真子集 空集 子集的性质
4
【说一说★本节新知】
1.子集
一般地,对于两个集合A、B,如果集合A中任 意一个元素都是集合B中的元素,我们就说这两个集 合有包含关系,称集合| x k 2 , k Z }. 4
当k Z时,2k 1为奇数,k 2为整数,因为奇数都
是整数,且整数不都是奇数.
M N,故选C.
15
【练一练★巩固提高】
1、2题见课本第7页练习第2、3题
3. x、y是实数,集合M { x, y ,1}, N { x2 , x y, 0}, x
若M N,则x2008 y2008 ( A ).
A.1
B. 1
C .0
D. 1
设A {a, b}, B { x | x A}.请问A与B之间的
关系是什么?
AB
16
【总一总★成竹在胸】
一.本节课的知识网络:
相等
子集 AB
空集
AB
真子集 A B
()
二.本节课主要的思想方法:
性质
性质
类比法 分类讨论思想
集合{a, b, c}的所有子集为: ,{a}, {b}, {c}, {a, b}, {a, c}, {b, c},{a, b, c}.
集合{a, b, c}的所有真子集为: ,{a}, {b}, {c}, {a, b}, {a, c}, {b, c}.
13
【听一听★更上一层】
例2.集合M { x | x k 1 , k Z }, N { x | x k 1 , k Z }.
17
【号一号★课下习之】
作业:P12 A 5;B 2.
18
19
A B (或B A )
读作:“A含于B”(或“B包含A”)
符号语言: 任意x A,有x B,则 A B
5
【说一说★本节新知】
Venn图表示集合的包含关系
在数学中,我们经常用平面上封闭的曲 线的内部表示集合,这种图称为Venn图.
A B
BA
6
【说一说★本节新知】
2.集合相等
如果集合A是集合B的子集(即A B),且集合B 是集合 A的子集(即B A),此时集合A与集合B中的 元素是一样的,我们称集合A与集合B相等.
24
42
则( ).
A.M N B.M N C.M N D.M与N没有相同元素
分析:令k ,1, 0, 1, 2, 3, 得:
M { , 1 , 1 , 3 , 5 , 7 , } 4 44 4 4
令k 3, 2,1, 0, 1, 2, 3, 4,5 得:
N { , 1 , 0, 1 , 1 , 3 , 1, 5 , 3 , 7 , } 4 42 4 424
M N ,故选C.
14
【听一听★更上一层】
例2.集合M {x | x k 1 , k Z}, N {x | x k 1 , k Z}.
24
42
则( ).
A.M N B.M N C.M N
分析:M { x | x 2k 1 , k Z }, 4
D.M与N没有相同元素
1.1.2 集合间的基本关系
1
【三维目标】
一、知识与技能 1. 了解集合间包含关系的意义; 2. 理解子集、真子集的概念和意义; 3. 理解空集的定义; 4. 会判断简单集合的包含关系. 二、过程与方法 1.类比实数间的关系,联想集合间的关系; 2.分别能用自然语言、符号语言、图形语言描述子集的概念. 三、情感、态度与价值观 1.培养数学来源于生活,又为生活服务的思维方式; 2.个体与集体之间,小集体构成大社会的依存关系; 3.发展学生抽象、归纳事物的能力,培养学生辨证的观点.
,{a}, {b}, {a, b} 真子集为:,{a}, {b}
12
【听一听★更上一层】
变式 写出集合a, b,c的所有子集,并指出它的真子集.
解 : 没有元素的子集:; 有1个元素的子集 : {a}, {b}, {c}; 有2个元素的子集 : {a, b}, {a, c},{b, c}; 有3个元素的子集: {a, b, c}.
符号语言:若A B, B A,则A B
7
【说一说★本节新知】
3.真子集
如果集合A B, 但存在元素x B,且x A, 我们称集合A是集合B的真子集.
记作:A B ( 或B A ).
读作:“A真含于B”(或“B真包含 A”)
8
【说一说★本节新知】
4.空集
不含任何元素的集合叫做空集,记为. 规定:空集是任何集合的子集,即 A.
10
【议一议★深化概念】
1.包含关系{a} A与属于关系a A有什么区别?
2.集合A B与集合A B有什么区别?
3. 0, {0},与四者之间有什么关系?
4.试讨论类比法在本节课是如何应用的?
11
【听一听★更上一层】
例1.写出集合a, b的所有子集,并指出哪
些是它的真子集.
解 : 集合{a, b}的所有子集为:
空集是任何非空集合的真子集. 即: B. (B )
9
【说一说★本节新知】
5.子集的有关性质
(1).任何一个集合是它本身的子集,即A A.
(2).对于集合A、B、C,如果A B且B C那么A C. (3).对于集合A、B、C,如果 A B且B C那么A C. (4).对于集合A、B、C,如果 A B且B C那么A C. (5).对于集合A、B、C,如果 A B且B C那么A C. (6).对于集合A、B、C,如果 A B且B C那么A C .
2
【引一引★温故知新】
集合与集合 之间呢?
实数有相等关系 如:5=5
实数有大小关系
如:5<7,5>3
3
【说一说★本节新知】
子集 集合相等 真子集 空集 子集的性质
4
【说一说★本节新知】
1.子集
一般地,对于两个集合A、B,如果集合A中任 意一个元素都是集合B中的元素,我们就说这两个集 合有包含关系,称集合| x k 2 , k Z }. 4
当k Z时,2k 1为奇数,k 2为整数,因为奇数都
是整数,且整数不都是奇数.
M N,故选C.
15
【练一练★巩固提高】
1、2题见课本第7页练习第2、3题
3. x、y是实数,集合M { x, y ,1}, N { x2 , x y, 0}, x
若M N,则x2008 y2008 ( A ).
A.1
B. 1
C .0
D. 1
设A {a, b}, B { x | x A}.请问A与B之间的
关系是什么?
AB
16
【总一总★成竹在胸】
一.本节课的知识网络:
相等
子集 AB
空集
AB
真子集 A B
()
二.本节课主要的思想方法:
性质
性质
类比法 分类讨论思想
集合{a, b, c}的所有子集为: ,{a}, {b}, {c}, {a, b}, {a, c}, {b, c},{a, b, c}.
集合{a, b, c}的所有真子集为: ,{a}, {b}, {c}, {a, b}, {a, c}, {b, c}.
13
【听一听★更上一层】
例2.集合M { x | x k 1 , k Z }, N { x | x k 1 , k Z }.
17
【号一号★课下习之】
作业:P12 A 5;B 2.
18
19
A B (或B A )
读作:“A含于B”(或“B包含A”)
符号语言: 任意x A,有x B,则 A B
5
【说一说★本节新知】
Venn图表示集合的包含关系
在数学中,我们经常用平面上封闭的曲 线的内部表示集合,这种图称为Venn图.
A B
BA
6
【说一说★本节新知】
2.集合相等
如果集合A是集合B的子集(即A B),且集合B 是集合 A的子集(即B A),此时集合A与集合B中的 元素是一样的,我们称集合A与集合B相等.
24
42
则( ).
A.M N B.M N C.M N D.M与N没有相同元素
分析:令k ,1, 0, 1, 2, 3, 得:
M { , 1 , 1 , 3 , 5 , 7 , } 4 44 4 4
令k 3, 2,1, 0, 1, 2, 3, 4,5 得:
N { , 1 , 0, 1 , 1 , 3 , 1, 5 , 3 , 7 , } 4 42 4 424
M N ,故选C.
14
【听一听★更上一层】
例2.集合M {x | x k 1 , k Z}, N {x | x k 1 , k Z}.
24
42
则( ).
A.M N B.M N C.M N
分析:M { x | x 2k 1 , k Z }, 4
D.M与N没有相同元素
1.1.2 集合间的基本关系
1
【三维目标】
一、知识与技能 1. 了解集合间包含关系的意义; 2. 理解子集、真子集的概念和意义; 3. 理解空集的定义; 4. 会判断简单集合的包含关系. 二、过程与方法 1.类比实数间的关系,联想集合间的关系; 2.分别能用自然语言、符号语言、图形语言描述子集的概念. 三、情感、态度与价值观 1.培养数学来源于生活,又为生活服务的思维方式; 2.个体与集体之间,小集体构成大社会的依存关系; 3.发展学生抽象、归纳事物的能力,培养学生辨证的观点.
,{a}, {b}, {a, b} 真子集为:,{a}, {b}
12
【听一听★更上一层】
变式 写出集合a, b,c的所有子集,并指出它的真子集.
解 : 没有元素的子集:; 有1个元素的子集 : {a}, {b}, {c}; 有2个元素的子集 : {a, b}, {a, c},{b, c}; 有3个元素的子集: {a, b, c}.