新课标高三数学第一轮复习单元讲座第18讲 随机抽样

合集下载

高考数学一轮复习简单随机抽样知识点

高考数学一轮复习简单随机抽样知识点

高考数学一轮复习简单随机抽样知识点简单随机抽样指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。

以下是简单随机抽样知识点,请考生学习。

1.总体和样本在统计学中, 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。

而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。

“教授”和“助教”均原为学官称谓。

前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。

“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。

唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。

至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。

至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。

高三数学一轮复习精品汇编:随机抽样.doc

高三数学一轮复习精品汇编:随机抽样.doc

第18讲 随机抽样一.【课标要求】1.能从现实生活或其他学科中提出具有一定价值的统计问题;2.结合具体的实际问题情境,理解随机抽样的必要性和重要性;3.在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法;4.能通过试验、查阅资料、设计调查问卷等方法收集数据二.【命题走向】统计是在初中数学统计初步的深化和扩展,本讲的主要内容是随机抽样的方法在总体中抽取样本。

预测高考对本讲的考察是:(1)以基本题(中、低档题为主),多以选择题、填空题的形式出现,以实际问题为背景,综合考察学生学习基础的知识、应用基础知识、解决实际问题的能力;(2)热点是随机抽样方法中的分层抽样、系统抽样方法三.【要点精讲】三种常用抽样方法:1.简单随机抽样:设一个总体的个数为N 。

如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

实现简单随机抽样,常用抽签法和随机数表法(1)抽签法制签:先将总体中的所有个体编号(号码可以从1到N ),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌;抽签:抽签时,每次从中抽出1个号签,连续抽取n 次;成样:对应号签就得到一个容量为n 的样本。

抽签法简便易行,当总体的个体数不多时,适宜采用这种方法(2)随机数表法编号:对总体进行编号,保证位数一致;数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。

在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。

成样:对应号签就得到一个容量为n 的样本结论:① 用简单随机抽样,从含有N 个个体的总体中抽取一个容量为n 的样本时,每次抽取一个个体时任一个体被抽到的概率为N1;在整个抽样过程中各个个体被抽到的概率为N n ; ② 基于此,简单随机抽样体现了抽样的客观性与公平性;③ 简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。

2025届高中数学一轮复习课件《随机抽样、用样本估计总体》ppt

2025届高中数学一轮复习课件《随机抽样、用样本估计总体》ppt

高考一轮总复习•数学
第21页
(3)(2024·江西吉安模拟)总体由编号为 00,01,02,…,48,49 的 50 个个体组成,利用下面 的随机数表选取 6 个个体,选取方法是从随机数表第 6 行的第 9 列和第 10 列数字开始从
数字 3. 数字 3. 左到右依次选取两个数字,则选出的第 3 个个体的编号为 ( )

高考一轮总复习•数学
第10页
2.总体方差和总体标准差 (1)一般式:如果总体中所有个体的变量值分别为 Y1,Y2,…,YN,总体平均数为 Y ,则
总体方差 S2=N1i=N1 (Yi- Y )2.
(2)加权式:如果总体的 N 个变量值中,不同的值共有 k(k≤N)个,不妨记为 Y1,Y2,…,
Yk,其中 Yi 出现的频数为 fi(i=1,2,…,k),则总体方差为 S2=N1i=k1fi(Yi- Y )2.
高考一轮总复习•数学
第12页
3.简单随机抽样样本平均数、方差的计算公式的推广 (1)若数据 x1,x2,…,xn 的平均数为 x ,则数据 mx1+a,mx2+a,mx3+a,…,mxn +a 的平均数是 m x +a; (2)若数据 x1,x2,…,xn 的方差为 s2,则数据 ax1+b,ax2+b,…,axn+b 的方差为 a2s2. 4.分层随机抽样样本均值、方差的计算公式的推广 如果将总体分为 k 层,第 j 层抽取的样本量为 nj,样本均值为 x j,样本方差为 s2j ,j=
高考一轮总复习•数学
第24页
(3)按随机数法,从随机数表第 6 行的第 9 列和第 10 列数字开始从左到右依次选取两个数 字,超出 因为编号由 2 个数字组成.
00~49 及重复的不选,则编号依次为 33,16,20,38,49,32,…,则选出的第 3 个个体的编 号为 20.故选 D.

高三一轮复习 随机抽样PPT学习教案

高三一轮复习  随机抽样PPT学习教案

______第_22_页_/共4_4页______.
(3)系统抽样与简单随
类别
特点
相互联系 适用范围 共同点
简单随 从总体中___逐__个___
总体中的个体
机抽样 抽取
数___较__少_____
系统 抽样
在起始部分
将总体平均分成几部 _按__事__先__确___定__的__规__则_
抽样时, 采用 简单随机抽
(1)系统抽样的概念 在抽样中, 当总体中
个体数较多时, 可将 总体分成均衡的几个 部分, 然后按照预先 制订的规则, 第21页/共44页从每一 部分抽取一个个体,
(2)系统抽样的特点
个体较多

①适用于

____________, 但
__可_能_性_相_等_的总体;
②在整个抽样的过程 中, 每个个体被抽取 到的
高三一轮复习 随机抽样
会计学
1
统计
统计学: 研究客观事物的数量特征和数量关系
,它是关于数据的搜集、整理、归纳和分 析方法的科学。 统计的基本思想:
用样本估计总体,即当总体容量很大 或检测过程具有一定的破坏性时,不直 接去研究总体,而是通过从总体中抽取 一个样本,根据样本的情况去估计总体 的相应情况。
2. 系统抽样的步骤及规则 (1)系统抽样的步骤 假设要从容量为编N号的总体中抽取容
量为n的样本, 步骤为: ② 当N分n(段①_n 是_: 确样编_本 定_号分_容_段量:_间)是先_隔整_k数将., 时对有,编总取号时k体进=可行__的N分n_直_段_N;. 接个利个用体个体自 ③编确号身门定l(l≤初所牌k始);编带号号:的等在第号; 1段码用_,__如___简_学_单__随号__机__抽、__样_准_确定考第证一个号个体、

《随机抽样》课件

《随机抽样》课件
探讨了为什么随机抽样是确保数据准确性和代表性的必要步骤。
随机抽样的类型
1 简单随机抽样
解释了简单随机抽样的 概念和应用场景。
2 分层抽样
介绍了分层抽样的原理 和适用条件。
3 系统抽样
探讨了系统抽样的方法 和在实际研究中的应用。随机抽样的方法如何进行简单随机 抽样
详细介绍了进行简单随机抽 样的步骤和注意事项。
随机抽样的应用
市场调研中的应用
展示了如何利用随机抽样进行 市场调研和消费者洞察。
人口普查中的应用
说明了随机抽样在人口普查中 的作用和意义。
医学研究中的应用
介绍了随机抽样在医学研究中 的重要性和实践案例。
结束语
1 总结随机抽样的重要性
总结了随机抽样在数据分析和研究中的关键作用。
2 强调使用随机抽样的正确姿势
《随机抽样》PPT课件
随机抽样作为一个重要的统计学概念,对于数据分析和研究具有至关重要的 作用。本课程将介绍随机抽样的各种类型、方法、误差及其应用,帮助大家 正确理解和应用随机抽样。
导言
随机抽样的概念
解释了随机抽样的定义和基本原理。
随机抽样的作用
介绍了随机抽样在统计学和数据分析中的重要性。
为什么需要进行随机抽样
提醒大家在实践中正确使用和解读随机抽样结果。
3 对未来应用随机抽样提出展望
展望了随机抽样在未来数据科学和研究领域的发展方向。
如何进行分层抽样
提供了分层抽样的具体方法 和实施细节。
如何进行系统抽样
讲解了系统抽样的步骤和常 见问题。
随机抽样的误差和检验
1
随机抽样误差的含义
阐述了随机抽样误差的定义和影响因素。
2
如何检验随机抽样是否有效

高三数学高三数学随机抽样PPT教学课件

高三数学高三数学随机抽样PPT教学课件

国际和我国的保护条约
《 湿 地 公 约 》 1971 年 制 定 ; 中 国 于
1992年7月31日正式加入《湿地公约》。
《生物多样性公约》 每年2月2日被定为“世界湿地日”
2002年制订《中国湿地保护行动计划》。
我国著名湿地分布
依据《湿地公约》确定重要湿地的 标准,中国已列入《湿地公约》国 际重要湿地名录的湿地有:黑龙江 扎龙、吉林向海、海南东寨港、青 海鸟岛、江西鄱阳湖、湖南东洞庭 湖、香港米埔等七处。
A. 保护,让湿地保持原貌 B. 开发建设,挖掘该地段的经济价值 C.保护性开发,在建设中顾及湿地生态的保护
关于湿地的问卷调查的分析
年龄:20-35 (48.6 % )35-55(30.2 % ) 55以上( 21.2 % )
学历:小学 ( 4.5% ) 初中(9.1 % ) 高中2(7.2 % ) 大 专及大专以上59(.2 % )
问卷调查小组
福州市湿地现状
为了加强福州湿地以及生物多样性保护, 维护湿地生态系统的生态特征和基本功 能,保护和最大限度的发挥湿地生态系 统的各种功能和效益,保证湿地资源的 可持续利用,福州市政府加强对湿地保 护,福州市人大、政协加强监督,科研、 高校积极加强对湿地研究,现在湿地的 保护已经日益受到重视。
2.1 随机抽样
练习:
课后练习:1,2 课堂小结 了解了统计的基本思想,知道什么是简单随机抽样,什么 样的总体适宜用简单随机抽样,知道如何用抽签法或随机数表 法获取样本. 作业: P53 习题2.1 2,3 题
闽江口湿地生存状况调查
实践课
——生物综合

顶 鹤
《 一
——




2024届高考数学第一轮专项复习——随机抽样、统计图表 教学PPT课件

2024届高考数学第一轮专项复习——随机抽样、统计图表 教学PPT课件

之间的独立性检验的简单实际问题.
返回目录
返回目录
返回目录
年份
2023
新高考Ⅰ卷
第9题数据的集
中趋势和离散程

新高考Ⅱ卷
第19题频率分布
直方图
适应性卷
高考预

1. 重点:一
元线性回归分
析.
2. 热点:用
样本估计总
体,独立性检
验.
3. 关注点:百
分位数,分层
随机抽样样本
方差.
返回目录
年份
2022
返回目录
解:设该届冬奥会这几项收入的总和为 x 亿元,则 x (35.4%-10.8%-
12.2%)=27,即0.124 x =27,所以 x ≈218.所以估计该届冬奥会这几
项收入的总和为218亿元.
返回目录
[拓展探究]
3. 某市商品房调查机构随机抽取 n 名市民,针对其居住的户型结构和是

.
返回目录
第2层的总体平均数和样本平均数分别为 =


∑ Yi
=
,=
本平均数分别为 =
+ +…+


+ +…+


∑ yi
=
.总体平均数和样




=
=
=
=
∑ + ∑

,=

∑ + ∑
适用范围;了解分层随机抽样的必要性;掌握总体均值(总体平均数)
与样本均值(样本平均数)的求法;能够读懂频率分布直方图、扇形
图、折线图等各种统计图表,并解决相应问题.
【考情概述】
随机抽样与统计图表是新高考的高频考点之一,难度通

高三数学第一轮复习单元讲座第18讲随机抽样

高三数学第一轮复习单元讲座第18讲随机抽样

高三新数学第一轮复习第十八讲—随机抽样一.知识整合:三种常用抽样方法:1.简单随机抽样:设一个总体的个数为N 。

如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

实现简单随机抽样,常用抽签法和随机数表法。

(1)抽签法制签:先将总体中的所有个体编号(号码可以从1到N ),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌;抽签:抽签时,每次从中抽出1个号签,连续抽取n 次;成样:对应号签就得到一个容量为n 的样本。

抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。

(2)随机数表法编号:对总体进行编号,保证位数一致;数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。

在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。

成样:对应号签就得到一个容量为n 的样本。

结论:① 用简单随机抽样,从含有N 个个体的总体中抽取一个容量为n 的样本时,每次抽取一个个体时任一个体被抽到的概率为N1;在整个抽样过程中各个个体被抽到的概率为Nn ; ② 基于此,简单随机抽样体现了抽样的客观性与公平性;③ 简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。

2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。

系统抽样的步骤可概括为:(1)将总体中的个体编号。

采用随机的方式将总体中的个体编号;(2)将整个的编号进行分段。

为将整个的编号进行分段,要确定分段的间隔k .当n N 是整数时,n N k ;当nN 不是整数时,通过从总体中剔除一些个体使剩下的个体数N ´能被n 整除,这时nN k '=; (3)确定起始的个体编号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高中课程标准实验教科书—数学 [人教版]高三新数学第一轮复习教案(讲座18)—随机抽样一.课标要求:1.能从现实生活或其他学科中提出具有一定价值的统计问题;2.结合具体的实际问题情境,理解随机抽样的必要性和重要性;3.在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法;4.能通过试验、查阅资料、设计调查问卷等方法收集数据。

二.命题走向统计是在初中数学统计初步的深化和扩展,本讲的主要内容是随机抽样的方法在总体中抽取样本。

预测2007年高考对本讲的考察是:(1)以基本题(中、低档题为主),多以选择题、填空题的形式出现,以实际问题为背景,综合考察学生学习基础的知识、应用基础知识、解决实际问题的能力;(2)热点是随机抽样方法中的分层抽样、系统抽样方法。

三.要点精讲三种常用抽样方法:1.简单随机抽样:设一个总体的个数为N 。

如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

实现简单随机抽样,常用抽签法和随机数表法。

(1)抽签法制签:先将总体中的所有个体编号(号码可以从1到N ),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌;抽签:抽签时,每次从中抽出1个号签,连续抽取n 次;成样:对应号签就得到一个容量为n 的样本。

抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。

(2)随机数表法编号:对总体进行编号,保证位数一致;数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。

在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。

成样:对应号签就得到一个容量为n 的样本。

结论:① 用简单随机抽样,从含有N 个个体的总体中抽取一个容量为n 的样本时,每次抽取一个个体时任一个体被抽到的概率为N1;在整个抽样过程中各个个体被抽到的概率为Nn ;② 基于此,简单随机抽样体现了抽样的客观性与公平性;③ 简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。

2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。

系统抽样的步骤可概括为:(1)将总体中的个体编号。

采用随机的方式将总体中的个体编号;(2)将整个的编号进行分段。

为将整个的编号进行分段,要确定分段的间隔k .当n N 是整数时,n N k =;当nN 不是整数时,通过从总体中剔除一些个体使剩下的个体数N ´能被n 整除,这时nN k '=; (3)确定起始的个体编号。

在第1段用简单随机抽样确定起始的个体边号l ;(4)抽取样本。

按照先确定的规则(常将l 加上间隔k )抽取样本:k n l k l k l l )1(,,2,,-+⋅⋅⋅++。

3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫做层。

结论:(1)分层抽样是等概率抽样,它也是公平的。

用分层抽样从个体数为N 的总体中抽取一个容量为n 的样本时,在整个抽样过程中每个个体被抽到的概率相等,都等于Nn ; (2)分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,因此利用它获取的样本更具有代表性,在实践的应用更为广泛。

四.典例解析题型1:统计概念及简单随机抽样例1.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A .1000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本容量是100解析:这个问题我们研究的是运动员的年龄情况,因此应选D 。

答案:D点评:该题属于易错题,一定要区分开总体与总体容量、样本与样本容量等概念。

例2.今用简单随机抽样从含有6个个体的总体中抽取一个容量为2的样本。

问:① 总体中的某一个体a 在第一次抽取时被抽到的概率是多少?② 个体a 不是在第1次未被抽到,而是在第2次被抽到的概率是多少?③ 在整个抽样过程中,个体a 被抽到的概率是多少?解析:(1)31,(2)31,(3)31。

点评:由问题(1)的解答,出示简单随机抽样的定义,问题( 2 )是本讲难点。

基于此,简单随机抽样体现了抽样的客观性与公平性。

题型2:系统抽样例3.为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本。

解析:(1)随机地将这1003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数1000能被样本容量50整除,然后再按系统抽样的方法进行.点评:总体中的每个个体被剔除的概率相等⎪⎭⎫ ⎝⎛10033,也就是每个个体不被剔除的概率相等⎪⎭⎫ ⎝⎛10031000.采用系统抽样时每个个体被抽取的概率都是⎪⎭⎫ ⎝⎛100050,所以在整个抽样过程中每个个体被抽取的概率仍然相等,都是10035010005010031000=⨯。

例4.(2004年福建,15)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 小组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是___________.剖析:此问题总体中个体的个数较多,因此采用系统抽样.按题目中要求的规则抽取即可.∵m =6,k =7,m +k =13,∴在第7小组中抽取的号码是63.答案:63点评:当总体中个体个数较多而差异又不大时可采用系统抽样。

采用系统抽样在每小组内抽取时应按规则进行。

题型3:分层抽样例5.(2006湖北文,19)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组。

在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%。

登山组的职工占参加活动总人数的41,且该组中,青年人占50%,中年人占40%,老年人占10%。

为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本。

试确定(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例;(Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数。

解析:(Ⅰ)设登山组人数为x,游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有40%310%347.5%,10%44x xb x xcx x++==,解得b=50%,c=10%.故a=100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%。

(Ⅱ)游泳组中,抽取的青年人数为320040%604⨯⨯=(人);抽取的中年人数为32004⨯⨯50%=75(人);抽取的老年人数为32004⨯⨯10%=15(人)。

点评:本小题主要考查分层抽样的概念和运算,以及运用统计知识解决实际问题的能力。

例6.(2006四川文,5)甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生()A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人解析:B;点评:根据样本容量和总体容量确定抽样比,最终得到每层中学生人数。

题型4:综合问题例7.(1)(2004年湖南,5)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法分析:此题为抽样方法的选取问题.当总体中个体较多时宜采用系统抽样;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较少时,宜采用随机抽样.依据题意,第①项调查应采用分层抽样法、第②项调查应采用简单随机抽样法.故选B.答案:B(2)(2005湖北卷理第11题,文第12题)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样解析:D。

点评:采用什么样的抽样方法要依据研究的总体中的个体情况来定。

五.思维总结不放回抽样和放回抽样:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样。

随机抽样、系统抽样、分层抽样都是不放回抽样。

相关文档
最新文档