海水富营养化评价方法的研究进展与应用现状

海水富营养化评价方法的研究进展与应用现状

水体富营养化程度评价

水体富营养化程度评价 一、实验目的与要求 (1)掌握总磷、叶绿素-a及初级生产率的测定原理及方法。(2)评价水体的富营养化状况。 二、实验方案 1、样品处理 2 、工作曲线绘制 取7支消解管,分别加入磷的标准使用液0.00、0.25、0.50、1.50、2.50、5.00、7.50mL以比色管中,加水至15ml。然后按测定步聚进行测定,扣除空白试验的吸光度后,和对应磷的含量绘制工作曲线。 3、计算 总磷含量以C(mg/L)表示,按下式计算: 式中: M 试样测得含磷量,μg V 测定用水样体积,ml

注意:每个小组做空白2-3个,标线5个,样品3-4个。 图1 采样布点分布 三、实验结果与数据处理 1、工作曲线绘制 根据上表数据,绘制工作曲线如图2所示: 图2 标准工作曲线 从标准工作曲线图可以看出,其相关系数R2 = 0.9969,高于实验室最低要求R2=0.995,可见其相关度较好,可用以求解水样中总磷的浓度。

2、八个水样数据结果与处理 根据上表数据作水中磷质量浓度柱形图,如图2所示: 图2 各组水中总磷质量柱形图 四、实验结果 1、实验结果分析 从实验数据和图2可以看出,第一、三、四、五、八组数据比较准确,因为

这几组平行样数据比较接近,而且跟稀释后所测的浓度也大约呈5倍关系,可以保留作为水中磷质量浓度评价,而其他组数据误差较大,故舍去。根据各组原水样总磷质量浓度求评均整理下表。 从上表数据可以看出,第五组所测的水中总磷浓度较高,根据图1可知第五组采样点为第四饭堂附近,可能是由于饭堂平时清洁所用的洗涤剂含磷较高,排放入河涌的污水导致河水受污染。 2、污染程度分析 表4 总磷与水体富营养化程度的关系 本实验是以水体磷平均浓度平均参数,本次实验所得的监测采样点数据的平均浓度是0.205mg/L,测得的最小浓度为0.142mg/L,测得的最高浓度为0.311mg/L,由表1可知超过0.1mg/L就为水体富营养化,本次实验测得的最低浓度也超出0.1mg/L,本次实验所得数据均说明该水体富营养化。 3、解决措施 该河涌地处大学城内,不受工业排放污染,所以造成该河涌富营养化的主要原因是生活污染,比如饭堂、学生公寓、商业区等,要治理河涌首先还是得从源头抓起,特别是饭堂、学生公寓和商业区,必须监控从这三个地方流出的污水,须进行处理达标后才能排入河涌;其次就是要严格审查各类洗涤剂等,含磷超标的不能进入市场;最后就是要树立环保意识,大家环保觉悟高了,从自己做起,自然就有绿水青山。 五、思考题 (1)查资料说明评价水体富营养化程度的指标有哪些? 答:水体富营养化程度的评价指标分为物理指标、化学指标和生物学指标。物理指标主要是透明度,化学指标包括溶解氧和氮、磷等营养物质浓度等,生物

水体富营养化评价方法

为了进一步认识调查区域水质状况,我们采用了TLI 综合营养指数法运用TP 、TN 、SD 、COD Mn 对其水质进行评价。 综合营养状态指数公式: j 1 ()()m j TLI W TLI j ==?∑∑ (1) TLI(chl)=10(2.5+1.086ln chl ) (2) TLI(TP)=10(9.436+1.624ln TPl ) (3) TLI(TN)=10(5.453+1.694ln TN ) (4) TLI(SD)=10(5.118-1.94ln SD ) (5) TLI(COD)=10(0.109+2.661ln COD ) 式中,TLI (∑)表示综合营养状态指数;TLI (j )代表第j 种参数的营养状态指数;W j 为第j 种参数的营养状态指数的相关权重。以chla 为基准参数,则第j 种参数的归一化的相关权重计算公式为: 221ij m ij j r Wj r ==∑ r ij 为第j 种参数与基准参数chla 的相关系数;m 为评价参数的个数。 中国湖泊的chla 与其他参数之间的相关关系r ij 和r 2ij 见表2。 表1 中国湖泊的chla 与其他参数之间的相关关系r ij 和r 2i 值 参数 chla TP TN SD COD Mn r ij 1 0.84 0.82 -0.83 0.83 r 2ij 1 0.7056 0.6724 0.6889 0.6889

为了说明湖泊富营养状态情况, 采用0~100的一系列连续数字对湖泊营养状态进行分级: TL I < 30 贫营养(Oligotropher) 30≤TL I≤50 中营养(Mesotropher) TL I > 50 富营养(Eutropher) 50< TL I≤60 轻度富营养( lighteutropher) 60< TL I ≤70 中度富营养(Middleeutropher) TL I > 70 重度富营养(Hypereutropher) 在同一营养状态下, 指数值越高, 其营养程度越重。 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!

海水富营养化极其氮的测定(精)

海水富营养化极其氮的测定 组长:李伯东 组员:阮艺斌、、陈雷奇、卢旭、黄丽清、刘连、李晓健、张亚菲 一、概述 富营养化的传统定义:植物由于无机营养盐类输入水体中浓度过高,促使藻类产量增加,水体缺氧。COOKE等将此定义作如下修改,即富营养化是过量的营养物质、有机物质和淤泥的输入,从而导致生物产量增加而体积缩小的过程。两种定义的区别在于后者强调了有机物质和淤泥的输入。 海水中的主要营养物质包括氮、磷、碳等物质,其中磷的主要影响是在叶绿素的光合作用中体现出来,氮和碳主要通过一些化学反应影响海水质量。海水富营养话的主要影响因素包括营养盐类、有机物质及淤泥的污染;湖盆形态的影响;生物群落的作用。 氮和磷引起富营养化的原因 众所周知,矿物元素进入生物体内主要是以离子形式,下面我们着重介绍氮和磷如何引起富营养化。 水中的氮主要以N2、NH4+、NO3—、NO2—和有机氮等几种形式存在,除从空气中溶解少量游离氮外,主要是来源于有机氮。有机氮在生物体经过代谢又以NH3的形式排出,后者在环境中经亚硝化菌和硝化菌的作用,依次转变为NO3—和NO2—,然后又经过反硝化细菌的作用,最终转变为N2。 在有氧情况下,污染水体中氮各形态的变化如下所示: +H2O -2H -2H +H2O -2H NH3NH4OH NH2OH HNO HN(OH)2HNO2 通常,有机氮在水中逐级转化要持续数天才能成为硝态氮。水中氮的各种形态随时间转化的情况如下图。

NH3 NO3—NO2—N2 N2O 在大量缺氧条件下,硝化过程不能进行,(NO3-)- NO2在微生物作用下,发生反硝化作用;使硝酸盐又还原为NH3。这样,通过各种生物反复循环反映,就产生了大量的离子,从而产生大量的营养盐。 水体中磷的存在形式主要以正磷酸盐((PO4)3-、(HPO4)2-、(H2PO4)-)、多聚磷酸盐((P2O7)4-、(P3O10)5-、(P3O9)3-、(HP3O9)2-)、有机磷酸物(葡萄糖—6—磷酸、2—磷—甘油酸,磷肌酸等)、胶态成颗粒态存在的磷化合物组成。水中可溶磷的含量很少,易与Ca2+、Fe3+、Al3+等生成难溶性沉淀物(如Ca5OH(PO3)3、AlPO4、FePO4)多沉积于水体底泥。无机磷在微生物作用下被改造成A TP和ADP进入生物体,它是生物体中生物化学反应的能源。 PO43-ATP 甘油磷酸酯糖+ ADP 甘油 PO43- + 糖 大家都知道A TP是生物体能量的直接来源,磷在生物体内的一个重要作用就是合成ATP,过量的磷存在,就会使植物获得大量的能量,使植物大量繁殖,从而导致富营养化。 危害 如果有大量的氮磷存在就会导致藻类植物的大量繁殖,消耗了大量的溶解氧,使水中缺氧。并使体积缩小,导致大量的鱼虾死亡(见下图)。在很多地区还出现赤潮或水华。我们着重讲一下赤潮的危害。 赤潮的危害:赤潮对海洋生态平衡的破坏;赤潮对海洋渔业和水产资源的破坏;赤潮对人类健康的危害;赤潮损害海洋环境。 据资料显示,2002年厦门海域共发现赤潮4次,其中西海域3次,同安湾1次,与去年持平。西海域赤潮发生范围相对于2001年的100平方公里有所缩小,对我市海洋经济未造成大的损失,但对水产养殖和海洋生态造成了一定的影响。

浅论湖泊富营养化预测及评价的模型的研究

目录 摘要 1 引言…………………………………………………… 2 绪论………………………………………… 2.1 湖泊富营养化的概念及分类………………………… 2.2 国内外水体富营养化污染概况…………………… 3 湖泊富营养化的研究内容……………………………… 3.1 富营养化预测………………………… 3.1.1 预测的目的及内容……………… 3.1.2 预测模型进展概况……………… 3.2 富营养化评价…………………… 3.2.1 评价的目的及意义……………………… 3.2.2 评价的基本步骤………………………… 3.2.3 评价模型进展概况…………………… 3.3 湖泊富营养化模型………………………… 3.3.1 评分模型………… 3.3.2 营养状态指数模型………… 3.3.3 改进的营养状态指数模型……………… 3.3.4 生物多样性评价………… 3.3.5 灰色理论评价模型…………………… 3.3.6 浮游植物与营养盐相关模型………………………… 3.3.7 生态动力学模型……………… 4 结论及展望…………………………………… 4.1 结论………………………… 4.2 展望……………………………… 参考文献…………………………

摘要 本文主要讲述了湖泊富营养化的几种模型,分别有:评分模型、营养状态指数模型、改进的营养状态指数模型、生物多样性评价、灰色理论评价模型、浮游植物与营养盐相关模型、生态动力学模型,针对不同模型分别进行相应介绍,并且对国内外水体富营养化污染做出一定概况,对未来湖泊水体进行了一定程度的展望。 1 引言 水资源是人类赖以生存的基础物质,随着人口增长和社会经济飞速发展,水的需求量急剧增加,而水资源污染也日益严重。我国自20世纪80年代以来,由于经济的急速发展和环保的相对滞后,许多湖泊、水库已经进入富营养化,甚至严重富营养化状态,如滇池、太湖、西湖、东湖、南湖、玄武湖、渤海湾、莱州湾、九龙江、黄浦江等。2000年对我国18个主要湖泊调查研究表明,其中14个已经进入富营养化状态。 2 绪论 2.1 湖泊富营养化的概念及分类 通常,湖泊水库等水体的富营养化[1]是指湖泊水库等水体接纳过量的氮、磷等营养物质,使藻类和其它水生生物大量繁殖,水体透明度和溶解氧发生变化,造成水体水质恶化,加速湖泊水库等水体的老化,从而使水体的生态系统和水功能受到损害。严重的会发生水华和赤潮,给水资源的利用如:饮用,工农业供水,水产养殖、旅游等带来巨大的压力。另一种定义方法[2](Cooke等提出)是由于过量的营养物质、有机物质和淤泥的进入,导致的湖泊水库生物产量增加而体积缩小的过程。该定义除了营养盐以外,还强调了有机物质和底泥的输入。因为有机物质也可以导致水体体积缩小,溶解氧消耗,并通过矿化作用从沉积物中释放营养物质;淤泥的输入也可使水体面积缩小,深度降低,并能吸附营养盐和有机物质沉积到水底部,成为潜在污染源。释放后必然会促进水体生物的大量繁殖,当水体内大量的植物(沉水植物和漂浮植物)以及大量藻类死亡后,释放的有机物和营养物会进一步加剧水体的营养程度。 根据水体营养物质的污染程度,通常分成贫营养、中营养和富营养三种水平。实际上,湖泊水库等水体的富营养化自然条件下也是存在的,不过进程非常缓慢,这就是地理学意义上的富营养化。然而一旦水体接受人类活动的影响,这种转变的速度会大大加快,特别是在平原区域,人口密集,工农业发达,大量污水进入水体,带入大量的营养物质,极大的加速水体富营养化进程。人们通常所说的富营养化是指这种在人为条件的影响下,大量营养盐输入湖泊水库,出现水体有生产能力低的贫营养状态向生产能力高的富营养状态转变的现象。这种富营养化通常称为人为富营养化。 水体富营养化的发生也是逐步进行的。水体在营养盐浓度较低,藻类和其它浮游植物的生物量随着营养盐浓度的增加而相应增加的时期,称为响应阶段,这

水体富营养化及其防治措施

水体富营养化及其防治措施 应化0902班田亚丽 案例:2007年,浙江全省海域共发生赤潮40次,发生面积累计近8500平方千米。其中有毒赤潮生物引发赤潮3次,累计面积约315平方千米。浙江省海洋与渔业局日前发布的2007年度浙江省海洋环境公报指出,2007年,舟山海域和渔山列岛—韭山列岛海域是赤潮高发区。上述两个海域发生赤潮的次数和面积分别占全省的65%和79%。 1、前言 近些年来,环境问题日益严重。酸雨危害加剧,南极臭氧层空洞越来越大,患皮肤癌及其他皮肤病的人数越来越多,全球变暖趋势不改甚至加快,导致很多低于海平面的国家面临被淹没的威胁,会使全球降水量重新分配,冰川和冻土消融,海平面上升等。资源、能源短缺当前,世界上资源和能源短缺问题已经在大多数国家甚至全球范围内出现。森林面积锐减,土地沙漠化,更是早就出现但是一直没有得到解决的问题。我只取一方面加以讨论,就是我们地球上面积最大的海洋,最为严重的水体富营养化的问题,并提出几点防治措施,希望能为环境保护尽一些绵薄之力。 2、水体富营养化的定义及产生 水体富营养化是指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。这种现象在河流湖泊中出现称为水华,在海洋中出现称为赤潮。 国际经济合作与开发组织对水体富营养化开展了一系列的研究工作,最后确定氮、磷等营养物质的输入和富集是水体发生富营养化的最主要原因,大约80%的湖泊富营养化是受磷元素的制约,大约10%的湖泊与氮元素有关, 余下10%的湖泊与其他因素有关。 水体富营养化主要是由于工业废水、生活污水、化肥农药的使用和其他一些污染物中富含氮和磷的污染物进入湖泊海洋中,造成藻类疯狂生长。水体中的藻类本来以硅藻和绿藻为主,蓝藻的大量出现是富营养化的征兆,随着富营养化的发展,最后变为以蓝藻为主,蓝藻是一种细菌,繁殖迅速,生长周期短。藻类及其他浮游生物死亡后被需氧微生物分解,不断消耗水中的溶解氧,或被厌氧微生物分解,不断产生硫化氢等气体,从而使水质恶化,造成鱼类和其他水生生物大

湖泊(水库)富营养化评价方法及分级技术规定

湖泊(水库)富营养化评价方法及分级技术规定 2004-08-11 1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为: 式中:—综合营养状态指数; Wj—第j种参数的营养状态指数的相关权重。 TLI(j)—代表第j种参数的营养状态指数。 以chla作为基准参数,则第j种参数的归一化的相关权重计算公式为: 式中:rij—第j种参数与基准参数chla的相关系数; m—评价参数的个数。 中国湖泊(水库)的chla与其它参数之间的相关关系rij及rij2见下表。 ※:引自金相灿等著《中国湖泊环境》,表中rij来源于中国26个主要湖泊调查数据的计算结果。 营养状态指数计算公式为: ⑴ TLI(chl)=10(2.5+1.086lnchl) ⑵ TLI(TP)=10(9.436+1.624lnTP)

⑶ TLI(TN)=10(5.453+1.694lnTN) ⑷ TLI(SD)=10(5.118-1.94lnSD) ⑸ TLI(CODMn)=10(0.109+2.661lnCOD) 式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。 2、湖泊(水库)富营养化状况评价指标: 叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(CODMn) 3、湖泊(水库)营养状态分级: 采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级: TLI(∑)<30贫营养(Oligotropher) 30≤TLI(∑)≤50中营养(Mesotropher) TLI(∑)>50富营养 (Eutropher) 50<TLI(∑)≤60轻度富营养(light eutropher) 60<TLI(∑)≤70中度富营养(Middle eutropher) TLI(∑)>70重度富营养(Hyper eutropher) 在同一营养状态下,指数值越高,其营养程度越重。 注:此规定由中国环境监测总站生态室负责解释

实验1水体富营养化程度的评价

实验五水体富营养化程度的评价 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成“死海”,或出现“赤潮”现象。 植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。每人每天带进污水中的氮约50 g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。 许多参数可用作水体富营养化的指标, 常用的是总磷、叶绿素-a含量和初级生产率的大小(见表7-1 )。

1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。 2. 评价水体的富营养化状况。 1. 仪器 (1) 可见分光光度计。 (2) 移液管:1 mL、2 mL、10 mL。 (3) 容量瓶:100 mL、250 mL。 (4) 锥型瓶:250 mL。 (5) 比色管:25 mL。 (6) BOD瓶:250 mL。 (7) 具塞小试管:10 mL。 (8) 玻璃纤维滤膜、剪刀、玻棒、夹子。 (9) 多功能水质检测仪。 2. 试剂 (1) 过硫酸铵(固体)。 (2) 浓硫酸。 (3) 1 mol/L 硫酸溶液。 (4) 2 mol/L 盐酸溶液。 (5) 6 mol/L氢氧化钠溶液。 (6) 1%酚酞:1 g酚酞溶于90 mL乙醇中,加水至100 mL。 (7) 丙酮:水(9:1)溶液。

水体富营养化程度的评价

实验八水体富营养化程度的评价 富营养化(Eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量急剧下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可在短期内出现。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些水生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成“死海”,或出现“赤潮”。 植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。每人每天带进污水中的氮约50 g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50~80%流入江河、湖海和地下水体中。 许多参数可用作水体富营养化的指标,常用的有总磷、叶绿素-a含量和初级生产率的大小(见表8-1)。 表8-1 水体富营养化程度划分 富营养化程度初级生产率/mg O2·m·日总磷/ μg·L无机氮/ μg·L 极贫0~136 <0.005 <0.200 贫-中0.005~0.010 0.200~0.400 中137~409 0.010~0.030 0.300~0.650 中-富0.030~0.100 0.500~1.500 富410~547 >0.100 >1.500 一、实验目的 1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。 2. 评价水体的富营养化状况。 二、仪器和试剂 1. 仪器

湖泊(水库)富营养化评价方法及分级技术规定(eco)(精)

附件1: 湖泊(水库)富营养化评价方法及分级技术规定 1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为: ∑=?=∑m j j TLI Wj TLI 1)()( 式中:)(∑TLI —综合营养状态指数; Wj —第j 种参数的营养状态指数的相关权重。 TLI (j )—代表第j 种参数的营养状态指数。 以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公 式为: ∑==m j ij ij j r r W 122 式中:r ij —第j 种参数与基准参数chla 的相关系数; m —评价参数的个数。 中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。 中国湖泊(水库)部分参数与chla 的相关关系r 及r 2值※ ※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查 数据的计算结果。 营养状态指数计算公式为: ⑴ TLI (chl )=10(2.5+1.086lnchl ) ⑵ TLI (TP )=10(9.436+1.624lnTP ) ⑶ TLI (TN )=10(5.453+1.694lnTN )

⑷TLI(SD)=10(5.118-1.94lnSD) )=10(0.109+2.661lnCOD) ⑸TLI(COD Mn 式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。 2、湖泊(水库)富营养化状况评价指标: 叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰 ) 酸盐指数(COD Mn 3、湖泊(水库)营养状态分级: 采用0~100的一系列连续数字对湖泊营养状态进行分级: TLI(∑)<30 贫营养(Oligotropher) 30≤TLI(∑)≤50 中营养(Mesotropher) TLI(∑)>50 富营养(Eutropher) 50<TLI(∑)≤60 轻度富营养(light eutropher) 60<TLI(∑)≤70 中度富营养(Middle eutropher) TLI(∑)>70 重度富营养(Hyper eutropher) 在同一营养状态下,指数值越高,其营养程度越重。 注:此规定由总站生态室负责解释

北海市近岸海域富营养化评价

第19卷第2期海洋环境科学V ol.19,N o.2 2000年5月MARINE ENVIRONM ENTAL SCIENCE M ay,2000 北海市近岸海域富营养化评价 覃秋荣,龙晓红 (广西北海海洋环境监测中心站,北海536000) 摘要:依据1991~1996年北海市近岸海域水质监测资料,选用单项指标分析和营养状态指数法对北海市近 岸海域的富营养化水平进行了分区评价。结果表明,廉州湾水质较差,受无机氮污染较重,廉州湾的营养水平 明显高于南部近岸海域,部分海域属富营养类型 关键词:近岸海域;富营养化;评价 中图分类号:X55;X821文献标识码:A文章编号:1007-6336(2000)02-0043-03 Assessment on eutrophication of Beihai offshore Q IN Q iu-rong,LO NG Xiao-hong (Guangxi Beihai M ari n e Environm ental M onitoring Central Station,Beihai536000,China) Abstract:Based on the monitoring result of w ater quality in Beihai offshore in1991~1996,the assessment on the nutrient level in Beihai offshore w as done,by the anal ysis on single-item and the nutrient status index.The result shown that Lianzhou Bay water quality,w hich w as more seriously polluted by i norganic n i trogen,w as comparatively poor.The nutrient level in Lianzhou Bay was h i gher than in southern offshore sea w ater,some of w hich reached the eutrophication level. Key words:offshore area;eutrophication;assessment 北海市位于北部湾东北岸,南北西三面环海。市区北面海域是廉州湾,为一封闭型海湾,市区南面有北海银滩国家旅游渡假区。近年来随着工农业及旅游业迅速发展,大量生活污水和工业废水排入海域,对海洋环境造成一定影响。廉州湾、银滩海域曾有赤潮发生[1],给渔业和旅游业造成一定的危害。海域富营养化与赤潮形成密切相关[2],为摸清北海市近岸海域水质富营养化状况,提出控制富营养化和赤潮的措施,本文根据广西北海海洋环境监测中心站1991~1996年的监测资料,对北海市近岸海域的廉州湾、南部近岸海域的营养状况作单项指标分析和营养状态指数法评价,同时就沿岸污染源对海水富营养化的影响进行了分析探讨。 1调查区域和方法 北海市近岸海域共布设监测站位16个(图1),其中廉州湾8个(1~8号站位),南部近岸海域8个(9~16号站位),一般每年3、7、10月每月监测一次。样品的采集、固定、保存、分析均按5海洋监测规范6进行。1991~ 1996年共取得监测数据4200个,其中本次评价所采用的无机氮(IN)、无机磷(IP)、COD三个项目数据共1132个。 浅海及内湾水域的营养状况评价国内外已有多种方法,但迄今尚未有统一的方法和标准可循。为使北海近岸海域的营养状况与我 收稿日期:1999-07-15,修改稿收到日期:1999-10-07 作者简介:覃秋荣(1970-),女(壮族),广西贵港人,工程师,从事环境监测及评价工作。

河流富营养化评价标准

河流富营养化评价标准 能够反映湖泊水库营养状态的变量很多 ,但只部分指标可被用于湖库营养状态的评价 ,而且不同国家和地区所选取的指标各不相同 ,其中总磷(TP)、总氮(TN)和叶绿素 a均为必选指标 ,虽然 TP和 TN中只有部分形式能够为藻类所吸收利用 ,但目前国际上大多是采用 TP和 TN指标 ,而不是选用可利用性总磷或者可利用性总氮等指标 ,这是由于营养盐的可利用态与不可利用态之间存在着复杂的转化关系。而其它指标如透明度、溶解氧 (DO)、化学需氧量 (COD)和 pH 等只是在一些国家和地区被应用。 河道型水库营养状态评价指标的选取应遵循以下几个原则: ( 1)是水库富营养化控制的关键性因素; (2)与藻类生长具有明确的机理性关系; (3)指标相对稳定 ,不易受到其它因素的影响; (4)具有富营养化的早期预警功能 ,为水库富营养化控制提供支持。 基于上述原则 ,对现有指标在河道型水库的适用性进行分析.认为总磷是我国大部分河道型水库的限制性要素 ,是水库富营养化控制的关键因子. 氮不仅是某些水库富营养化的控制性要素,而且是河口以及海岸带水体藻类的关键限制因子,为了体现水库对河口的影响及控制作用 ,在制定河道型水库的营养状态标准时应考虑氮元素.叶绿素a能够反映水库中藻类生物量的大小 ,虽然含量受到藻类种类的影响 ,容易在评价时造成一定的偏差 ,仍然是水体富营养化程度的一个重要表征指标. 因此 ,认为总磷、总氮和叶绿素 a仍然是河道型水库的 营养状态评价的关键指标。 透明度也是一个常用的湖泊水库营养状态评价指标 ,这是因为在一般的湖泊水库中 ,透明度变化主要源于水体中悬浮的藻类数量的差异 ,因此 ,它能够很好表征湖库的富营养化程度 ,甚至有人认为透明度是识别湖泊、水库营养状态趋势的最好变量. 但河道型水库与一般的湖泊水库不一样 ,其透明度指标受河流流速、泥沙含量的影响较大 ,与真正意义上的湖泊水库中的透明度不同.以三峡水库为例 , 1年中出现富营养化敏感时期分别是 3~6月和 9~10月 ,而两个时期的透明度存在显著差异 , 9~10月为汛后期 ,平均透明度为0.54 m, 3~6月为汛前期 ,平均透明度为1.76m,原因在于汛期泥沙含量的影响作用 ,使得透明度作为河道型水库的营养状态评价指标中具有一定局限性.因此 ,作者认

浅析近岸海域富营养化与赤潮

2010年第5期TIANJIN SCIENCE&TECHNOL OGY 水体富营养化是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,不过这种自然过程非常缓慢。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化则可以在短时间内出现。水体出现富营养化现象时,浮游藻类大量繁殖,形成水华。因占优势的浮游藻类的颜色不同,水面往往呈现蓝色、红色、棕色、乳白色等。这种现象在海洋中则叫做赤潮或红潮。 在我国,许多海湾呈现富营养化状态。如大连湾、杭州湾、胶州湾等。2001年国家海洋局组织沿海省自治区、直辖市全面实施了全国海洋环境调查。结果表明,我国大部分海域的主要污染物是无机氮、无机磷和石油类,污染区域主要分布在长江口至杭州湾、珠江口、辽河口、鸭绿江口等近岸海域。2001年5月长江口发生大面积赤潮。到2001年,东海区已记录赤潮事件208次。据不完全统计,1972—1998年我国有记载的赤潮达360次,且赤潮发生频率明显增加,发生规模和危害程度也日益加剧。[1] 1导致富营养化的原因 在地表淡水系统中,磷酸盐通常是植物生长的限制因素,而在海水系统中往往是氨氮和硝酸盐限制植物的生长以及总的生产量。导致富营养化的物质,往往是这些水系统中含量有限的营养物质,例如,在正常的淡水系统中磷含量通常是有限的,因此增加磷酸盐会导致植物的过度生长,而在海水系统中磷是不缺的,而氮含量却是有限的,因而含氮污染物加入就会消除这一限制因素,出现植物的过度生长。生活污水和化肥、食品等工业的废水以及农田排水都含有大量的氮、磷及其他无机盐类。天然水体接纳这些废水后,水中营养物质增多,促使自养型生物旺盛生长,特别是蓝藻和红藻的个体数量迅速增加,而其他藻类的种类则逐渐减少。水体中的藻类本来以硅藻和绿藻为主,蓝藻的大量出现是富营养化的征兆,随着富营养化的发展,最后变为以蓝藻为主。藻类繁殖迅速,生长周期短。藻类及其他浮游生物死亡后被需氧微生物分解,不断消耗水中的溶解氧,或被厌氧微生物分解,不断产生硫化氢等气体,从两个方面使水质恶化,造成鱼类和其他水生生物大量死亡。藻类及其他浮游生物残体在腐烂过程中,又把大量的氮、磷等营养物质释放入水中,供新的一代藻类等生物利用。因此,富营养化了的水体,即使切断外界营养物质的来源,水体也很难自净和恢复到正常状态。 关于水体富营养化问题的成因有不同的见解。多数学者认为氮、磷等营养物质浓度升高,是藻类大量繁殖的原因,其中又以磷为关键因素。影响藻类生长的物理、化学和生物因素(如阳光、营养盐类、季节变化、水温、pH值以及生物本身的相互关系)是极为复杂的。因此,很难预测藻类生长的趋势,也难以定出表示富营养化的指标。目前一般采用的指标是:水体中氮含量超过0.2~0.3mg/L,生化需氧量大于10mg/L,磷含量大于0.01~0.02mg/L,pH值为7~9的淡水中细菌总数每毫升超过10万个,表征藻类数量的叶绿素-a含量大于10μmg/L。 1.1陆源径流输入 陆源径流输入包括地表径流输入和地下水输入。河口地区往往是经济发达、人口稠密的地区,大量工农业废水和城市生活污水排入海湾、河口和沿岸海域。其中富含氮、磷的有机质进入水体后,绝大部分在海洋微生物作用下,发生降解,形成各种无机盐类,成为海水中营养盐的主要来源。 1.2大气沉降输入 大气输入是沿岸海域物质的一种重要来源。一部分通过陆地径流(地表和地下)间接带入海洋,另一部分是直接降入沿岸近海水域。磷的大气输入与氮相比相对较小,因此国内外学者对大气输入的讨论大都集中在氮上。 1.3海水养殖废水排放 养殖活动自身产生的有机物如残饵和养殖生物的排泄物,也会影响周边海水环境质量。 1.4水流状态限制 在大部分受磷、氮污染严重的封闭或半封闭海湾,水交换能力弱,水的滞留时间长。[1] 2水体富营养化的控制因子 水体富营养化是一个极其复杂的生态过程,据目前各国研究的结果证明,影响水体富营养化的因子众多,如:营养性物质氮、磷、碳等,以及湖泊、水库的形态特征、地理位置及气象气候 崔凯杰郝洋(天津市滨海新区塘沽环境保护监测站天津300450) 王千(天津市滨海新区塘沽环境保护局天津300450) 浅析近岸海域富营养化与赤潮 【摘要】水体富营养化是全球普遍存在的问题。随着工业化程度的提高、城市化进程的加快和世界人口的不断增 加,人类活动越来越频繁和深刻地影响着海洋环境。其中,近海水域富营养化已经成为沿海国家的一个重要的水环 境问题。阐述了富营养化的成因、控制因子、评价;对赤潮的危害和防治措施进行了论述,并提出防治建议。 【关键词】近岸海域富营养化赤潮危害防治 收稿日期:2010-09-06 环保前线47

富营养化评价方法

总站水字[2009]14号 关于113个环保重点城市湖库型地表水 集中式饮用水源地加测叶绿素a和透明度的通知 各环保重点城市环境监测中心(站): 根据环保部污防司的要求,为做好国家环保重点城市对集中式饮用水源地水质监督性监测工作,客观科学地评价饮用水源水质,湖库型地表饮用水源地增加富营养化状态评价。各环保重点城市在进行2009年集中式饮用水源地水质全部项目监督性监测时,湖库型地表饮用水源地加测叶绿素a和透明度,数据报送顺序见附件1,评价方法见附件2。报送时间及方式参照饮用水源地全部项目监督性监测数据上报的相关要求。 - 1 -

附件:1、集中式饮用水源地水质监测数据表格 2、湖泊(水库)富营养化评价方法及分级技术规定 二〇〇九年二月十一日 - 2 - 主题词:湖库 饮用水源地 加测 通知 抄送:环保部监测司、污防司、各省、自治区、直辖市环境监测中心(站)中国环境监测总站办公室 2009年2月11日印发

附件1: XXXX年XX月XX市集中式饮用水源地水质(地表水)监测数据表格式 *由总站统一编

附件2: 湖泊(水库)富营养化评价方法及分级技术规定 1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为: ∑=?=∑m j j TLI Wj TLI 1) ()(式中:)(∑TLI —综合营养状态指数; Wj —第j 种参数的营养状态指数的相关权重。 TLI(j)—代表第j 种参数的营养状态指数。 以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公式为:∑== m j ij ij j r r W 1 2 2 式中:r ij —第j 种参数与基准参数chla 的相关系数; m—评价参数的个数。 中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。 中国湖泊(水库)部分参数与chla 的相关关系r ij 及r ij 2值 ※ ※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查数据的计算结果。 营养状态指数计算公式为: ⑴ TLI(chl)=10(2.5+1.086lnchl)

水体富营养化环境影响评价

水体富营养化环境影响评价 环境影响评价简称环评,是指对规划和建设项目实施后可能造成的环境影响进行分析、预测和评估,提出预防或者减轻不良环境影响的对策和措施,进行跟踪监测的方法与制度。通俗说就是分析项目建成投产后可能对环境产生的影响,并提出污染防止对策和措施。水体富营养化环境影响评价是规划和建设项目水环境影响评价的重要内容。鉴于此,本文援引其他文献,就水体富营养化环境影响评价予以浅议。 标签:环保水环境环境影响评价 0 引言 水体富营养化主要指人为因素引起的湖泊、水库中氮、磷增加对其水生生态产生不良的影响。富营养化是一个动态的复杂过程。一般认为,水体磷的增加是导致富营养化的主因,但富营养化亦与氮含量、水温及水体特征(湖泊水面积、水源、形状、流速、水深等)有关。 1 流域污染源调查 根据地形图估计流域面积;通过水文气象资料了解流域内年降水量和径流量;调查流域内地形地貌和景观特征,了解城区、农区、森林和湿地的面积和调查污染物点源和面源排放情况。 水中总磷的收支数据可用输出系数法和实际测定法获得。 输出系数法:这种方法是根据湖泊形态和水的输出资料,湖泊周围不同土地利用类型磷输出之和,再加上大气沉降磷的含量,推测湖泊总磷浓度、径流图、湖泊容积和水面积,估计湖泊水力停留时间和更新率,进而估计湖泊总磷的全年负荷量。要预测湖泊总磷浓度,除需要了解水量收支外,还需要了解污水排入磷的含量。 实测法:是精确测定所有水源总磷的浓度和输入、输出水量,需历时一年。湖泊水量收支通用式为:输入量=输出量+△储存量 湖水输入量是河流、地下水输入,湖面大气降水、河流以外的其他地表径流量和污水直接排入量的总和;输出量是河道出水、地下渗透、蒸发和工农业用水的总和。其中河流进出水量、大气降水量和蒸发量一般可从水文气象部门监测资料获得,有关各类水中磷浓度需要定期测定。地下水输入与输出较难确定,但不能忽略。 估计地下水进出量的一种方法就是通过流量网的测量,用下式计算地下水量: Q=K·I·A(8-2)式中,Q——地下水输入或输出量;

湛江湾海水富营养化水平和浮游植物多样性分析

2009年 海洋湖沼通报 T ransactions of Oceano logy and Limnolo gy 3 文章编号:1003-6482(2009)03-0121-06 湛江湾海水富营养化水平和浮游植物多样性分析* 程海鸥1,马启敏1,杨 锋2 (1.中国海洋大学环境科学与工程学院,山东青岛266100; 2.湛江市海洋与渔业环境监测站,广东湛江524039) 摘要:根据2007年8月的水质调查数据,并结合历史调查资料,对湛江湾海水富营养化水平 和浮游植物多样性以及相互关系进行了探讨。结果表明:湛江湾各站位营养状态指数(E)均 >1,海水富营养化异常严重;氮磷比例严重失去平衡,北部海域氮磷污染比南部海域氮磷污 染严重,北部海域赤潮控制因子为磷,南部海域赤潮控制因子为氮;近十年来,营养状态指数 呈现不断上升趋势,原因可能是湛江湾海水无机磷含量迅速上升所至,营养状态指数水平分 布呈现由北向南、由湾内向湾口逐渐减少的趋势。湛江湾浮游植物种类多样性指数(H )变 化范围为1.45~3.4,平均值2.42 0.31,均匀度变化范围为0.48~0.89,平均值为0.67 0.02,浮游植物种类多样性指数(H )和均匀度J水平分布类似,呈现由北向南、由湾内向湾口 逐渐减少的趋势,湛江湾浮游植物种类多样性差异较大;浮游植物种类多样性指数(H )和均 匀度J与营养状态指数的分布总体上成正相关关系。 关键词:湛江湾;富营养化;浮游植物;多样性 中图分类号:Q178;X834 文献标识码:A 引言 湛江湾位于粤西海岸大尺度湾曲处,由东海岛、南三岛和硇州岛所环绕,属亚热带海区,水域生境多样,生物区系复杂,是多种经济鱼、虾、贝类的繁育所。近几年随着湛江市经济社会的快速发展,特别是随着湛江港吞吐量的增加以及临港工业的高度发展,湛江湾海水污染日趋明显,富营养化加重,赤潮时有发生。而近几年来对该海湾的水质状况的研究却鲜有报道。本文根据湛江湾水质调查结果,结合历史调查数据,分析湛江湾海水富营养化水平和浮游植物多样性及其相互关系,为揭示赤潮的发生规律和湛江湾水环境保护提供科学依据。 1 样品采集与分析 2007年8月,为探讨湛江湾海水营养水平及浮游植物多样性,布设16个站位(见图1),进行水质和浮游生物样品采集。水质进行表、底层采样,采集水样经0.45 m滤膜过滤后,根据 海洋监测规范 (GB17378-1998)[2,3]的方法对水样中的COD Mn、NO2--N、NO3--N、NH4+-N, PO43--P等项目进行分析。浮游植物用浮游生物网由底层至表层垂直拖网采集样品,采集到的样品按照 海洋监测规范 (GB17378-1998)用5%福尔马林固定,带回实验室进行鉴定和计数。 (a)营养状态综合指数:目前表示海湾海水富营养化状态的方法有许多[1,5-7],本文采用目 *基金项目:908项目(908-02-02-03)资助 第一作者简介:程海鸥(1985-),山东人,硕士,主要从事海洋环境、环境化学研究 联系方式:159********seagull830818@s ina.com 收稿日期:2008-05-30

海水分析

FHZDZHS0001 海水分析 F-HZ-DZ-HS-0001 海水分析 海洋能调节陆地气候,提供航运通道,起着中国连接世界五大洲的作用,而且蕴藏着丰富的生物资源和矿产资源。海洋的开发利用,将对中国的经济、社会发展有着十分重要的作用。海洋将成为人类获取食物、工业原料和能源的重要场所。 海洋污染是指人类直接或间接地将各种物质或能量传入海洋环境,造成毁坏生物资源、危害人类健康、降低海水使用质量等有害后果。 引起海洋污染的污染源主要有五类:1. 船舶油污染或海事泄漏事故造成的污染;2. 废物的海洋倾倒;3. 陆地排放的陆源废物;4. 海底勘探开发活动;5. 大气源。 为了控制海洋污染,及时了解海洋环境质量,需要进行海洋环境影响的监测,以便对海洋环境质量及时作出评价,并采取相应措施保护海洋生态环境还海洋以生机。 海洋环境监测,除常规水质监测外,要定期进行海洋环境调查监测与评价,此外,也要进行海洋环境污染调查监测、海洋倾废、疏浚物、赤潮和海洋污染事故的应急专项调查监测等。 因此,海洋环境监测项目的确定与海洋污染源密切相关。如船舶油污染、泄漏、陆源油污染排放引起严重污染的指标有油类等项目要监测。如我国沿岸工厂和城市每年直接排放入海的污水超过100亿吨,主要有害有毒物质也超过百万吨,海域环境受到严重污染,海水透明度明显降低,海洋生物中毒,也危害了人类健康,大面积海域呈现富营养化,赤潮频繁发生,对海洋生物资源和渔业生产造成严重损害。为此检测对生物和人体有害的重金属元素如汞、铜、铅、锌、镉、砷、硒、铬等,监测由农药等污染物排放引起污染的666,DDT,BOD,COD等项目。海水富营养化要监测营养物,营养物是指水体中初级生产所需的物质,包括各种形态的氮、磷、硅;因此要监测氮、磷、硅。天然水中的无机氮主要以三种形态存在,即氨氮、亚硝酸盐氮、硝酸盐氮,因此要监测这三种氮。海水中氮磷克分子比为15时被认为比较理想。在自然界中存在的金属均可在不同程度上被发现于海洋、河口等水体中,一般在海水中监测的是具有代表性的元素,如总汞、砷、硒、铜、铅、锌、铬、镉等,海水中这些元素往往与城市污水排放有关。以镉为例,在海洋、河口、河流中镉参与的化学反应都是和磷酸盐相联系的,可能是磷肥所含的主要污染物有关。又如大城市大气环境中高浓度的铅,在降雨过程中对近海和远海表层水中溶解态铅和总铅的浓度有相当大的影响。 一般海水监测项目为水温、盐度、悬浮物、溶解氧、pH值、无机磷、硅酸盐、亚硝酸盐氮、硝酸盐氮、氨氮、无机氮、化学需氧量、石油类、总汞、铜、铅、锌、镉、砷、硒、铬、666、DDT、BOD、COD等项目。有的文献介绍用上述项目作为水质总体评价的评价参数。 本章海水分析共收集了35个海水常规测定项目共64个物理和化学分析方法,同时还收集了50多种痕量元素及稀土元素同时测定的ICP-MS方法。每个常规监测项目至少有一个测定方法,最多有4个测定方法。多数方法给出方法检出限,并有精密度和准确度数据。基本上可以

相关文档
最新文档