开关电源元器件检测经验——这篇经验之谈实属惊艳(民熔)

开关电源元器件检测经验——这篇经验之谈实属惊艳(民熔)
开关电源元器件检测经验——这篇经验之谈实属惊艳(民熔)

开关电源元器件检测“秘方”

电阻

1)目视检查,来料包装应完好无破损,标识清晰;

2)色环颜色清晰易于辨认,色环颜色与标称阻值相符,引脚无氧化、发黑; 数字标注正确。

3)阻值与色环标识一致。

4)电阻无断裂,涂覆层脱落;

5)表面不可有油污、水渍及其它脏物。由运输材料引起而且能够被空气吹走的灰尘是可被接收的。

6)用万用表测量阻值。

7)用 30W 或 40W 的电烙铁对电阻器的引脚加锡,焊锡应能完全包裹住引脚为合格。

电容

1、首先确定BOM单要求的规格、容量、误差、耐压值、耐温值及误差值等是否与来料一致。

2、电容量的实际测量值(用LCR METER测量)必须在标准值±误差值范围以内。

3、电容引出脚之间的间距必须与技术资料要求一致。

4、电容商标必须清晰和完整,油漆必须鲜明,不能有污染,外形必须完整无损。

5、电容引出脚中铅锡合金电镀层颜色明亮一致不能出现斑点等氧化现迹象。

6、电容引出脚间间距为1MM以下,其带状排列必须整齐划一,不能有任何参差不齐的现象。

7、测量容量(插件电容)是否在误差范围内,确定种类、规格是否正确。

A、电解电容曾出现过波峰焊后掉皮和包错皮的现象(4.7UF/16V 包错为47UF/16V的皮),绦纶电容规格脚距来错,来错规格导致体积过大影响装配,

B、常见的插件电容有电解电容、瓷片电容、金属膜电容、安规电容、绦纶电容、独石电容,检查插件电容的重点在于它的种类和规格,检查前确定应使用哪一种,然后按要求测量规格(包括体积、脚距)有条件下要试装。

8、参照BOM单用卡尺测量其直径、高度。

9、参照BOM单用稳压电源按耐值正向耐压电测。

10、用电容测试仪器测量其容量。

11、电容的正负极标识不能反、标识的容量要与实际容量一致。贴片电容:

12、检查外观注意是否有氧化和破损现象。

13、用电容表测量其容量是否与在误差范围之内。

14、对特别要求客户,如康创还应注意颜色、形状是否有不一样或与上次不一样的,如有不一样的应及时通知客户确认后使用,并通

告相关人员跟进。

A、贴片电容检查时应特别注意颜色、形状(体积、厚薄度),若在同一次来料中发现有几种颜色、形状的,或者与上次来料不符合的,要马上以书面形式联络客户,确认好后才可以使用,对每次来料与上次来料颜色、形状有差别的都必须留样品,以便下次对照,方便生产及检查。检查电容的电极有无破损的现象,来料中发现有误差、规格、耐压值与BOM单不一样的,一旦发现要马上联络客户。

B、自购贴片电容绝不可马虎,检查前询问清楚同型、客户,找到相应的BOM、样品认真对照料盘上的标识,是否与BOM单一致或与客户提供的来料一致,然后仔细观察形状(体积、厚薄度)、颜色是否与样品相符,对不能确定的反映给品管课长,及相关单位一起确认,并留样品。

C、不同客户的片容是不可以挪用的,在帮生产课确认片容时要特别小心,必须询问调查清楚后才可以下结论。

D、对一块PCB板中同时出现两种容量一样,但误差不一样的要做针对性的记录,留样品,以便跟踪。

E、记录贴片电容的品牌,了解其性能好坏。

F、钽质贴片电容,检查时应注意有丝印一边为正极,常见的钽质电容规格有四种:

A、B、C、D型,A型体积最小;B型体积最大,检料时如不清楚,最好找PCB板试装,检查钽质电容应注意有无破损现象,或一块PCBA 中有两种相同容量的钽质电容,钽质电容是有什么特别的要求,例:

RS0404A-UK

控制板100UF/16V LOW ESR是低阻抗的意思,应该用黄色的,庆德钽质电容曾来错为普通电容和型号来错现象。 G、料盘上的代表符号:

CC41 1805 CG 102 K 500 T N 类型规格材质容量误差耐压值包装

端头材料 H、贴片电容的材质分为:NPO(好)、X7R(一般)、Y5V (差)。

开关电源设计报告

1开关电源主电路设计 1.1主电路拓扑结构选择 由于本设计的要求为输入电压176-264 V 交流电,输出为24V 直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck 电路构成。总体要求是先将AC176-264V 整流滤波,然后再经过BUCK 电路稳压到24V 。考虑到变换器最大负输出功率为1000W ,因此需采用功率级较高的Buck 电路类型,且必须保证工作在CCM 工作状态下,因此综合考虑,本文采用全桥隔离型Buck 变换器。其主电路拓扑结构如下图所示: 图1-1 主电路拓扑结构 1.2开关电源电路稳态分析 下面将对全桥隔离型BUCK 变换器进行稳态分析,主要是推导前级输出电压g V 与后级输出电压V 之间的关系,为主电路参数的设计提供参考。将前级输出电压g V 代替前级电路,作为后级电路的输入,且后级BUCK 变换器工作在CCM 模式,BUCK 电路中的变压器可以用等效电路代替。 由于全桥隔离型BUCK 变换器中变压器二次侧存在两个引出端,使得后级BUCK 电路的工作频率等同于前级二倍的工作频率,如图1-1所示。在S T 2的工作时间内,总共可分为四种开关阶段,其具体分析过程如下: 1) 当S DT t <<0时,此时1Q 、4Q 和5D 导通,其等效电路图如图1-2所示。

i () t R v i ‘ 图1-2 在S DT t <<0时等效电路 g nv v =s (1-1) v nv v g -L = (1-2) R v i i /-C = (1-3) 2) 当S S T t DT <<时,此时1Q ~4Q 全部关断,6D 和5D 导通,其等效电路图如图1-3 所示。此时前级输出g V 为0,假设磁化电流为0,则流过6D 和5D 电流相等,均为L i 2 1 。。 i () t R i ‘ 图1-3 在S S T t DT <<时等效电路 0=s v (1-4) v v -L = (1-5) R v i i /-C = (1-6) 3) 当S S T D t T )( +1<<时,此时2Q 、3Q 和6D 导通,其等效电路图如图1-2所示。

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

东元 海利普开关电源电路分析

两例变频器开关电源电路实例 ——兼论电容C23在电路中的重要作用 先看以下电路实例: 图1 东元7200PA 37kW变频器开关电源电路 CN4 图2 海利普HLPP001543B型15kW变频器开关电源电路

图1、图2电路结构和原理基本上是相同的,下面以图1电路例简述其工作原理。 开关电源的供电取自直流回路的530V直流电压,由端子CN19引入到电源/驱动板。 电路原理简述:由R26~R33电源启动电路提供Q2上电时的起始基极偏压,由Q2的基极电流Ib的产生,导致了流经TC2主绕组Ic的产生,继而正反馈电压绕组也产生感应电压,经R32、D8加到Q2基极;强烈的正反馈过程,使Q2很快由放大区进入饱合区;正反馈电压绕组的感应电压由此降低,Q2由饱合区退出进入放大区,Ic开始减小;正反馈绕组的感应电压反向,由于强烈的正反馈作用,Q2又由放大状态进入截止区。以上电路为振荡电路。D2、R3将Q2截止期间正反馈电压绕组产生的负压,送入Q1基极,迫使其截止,停止对Q2的Ib的分流,R26-R33支路再次从电源提供Q1的起振电流,使电路进入下一个振荡循环过程。 5V输出电压作为负反馈信号(输出电压采样信号)经稳压电路,来控制Q2的导通程度,实施稳压控制。稳压电路由U1基准电压源、PC1光电耦合器、Q1分流管等组成。5V输出电压的高低变化,转化为PC1输入侧发光二极管的电流变化,进而使PC1输出测光电三极管的导通内阻变化,经D1、R6、PC1调整了Q2的偏置电流。以此调整输出电压使之稳定。 这是我的第二本有关变频器维修的书中,对图1电路原理的简述,由于疏漏了对电容C23作用的讲解,给读者带来了一些疑问:1)N2绕组负电压是如何加到Q2基极的?2)电路中C23的作用是什么?3)C23的充、放电回路是怎样走的?这3问题涉及到电路原理的关键部分,无它,开关电管Q2即无法完成由饱和导通→进入放大区→快速截止→重新导通的工作状态转换,三个问题其实又只是一个问题,即图1的C23(或图2中的C38)究竟对电路的工作状态转换起到怎样的重要作用?先不要忙,将这个问题暂且按下不表,先说几句题外话。 在由3844(42/43/34)PWM脉冲芯片为核心构成的开关电源电路,大行其道的今天,像图1、图2这样由两只双极型晶体管构成的开关电源电路(对比于集成器件,或称之为分立元件构成的开关电源),仍占有一席之地,在数个变频器厂家的产品中,得到应用。难道是厂家技术人员有怀旧情结吗?还是为了降低生产成本?其实都不是!采用分立元件做开关电源,设计人员肯定有更全面和深入的考虑。 而我的维修经验而论,我比较倾向和首肯于由分立元件构成的开关电源,理由是其工作可靠性高,故障率低,使用和维修都比较让人放心。电路的质量,并不取决于采用集成器件或分立元件,也不取决于电路采用元器件的数量多少,这些都是形式而非本质。相对于分立元件组成的电路,集电器件是否就具有技术上的先进性和工作上的可靠性?则真的是一个问号,不可一概而论。比较二者电路的设计难度,分立元件的电路,恐怕难度要更高一些。 与分立元件的电源相比,用3844做成的电源电路,更像一个“傻瓜型”电路,有固定的电路模式,与成型外围作成一个电路单元,可以应急取代任意开关电源电路,达到修复目的(有的技术人员已经这样做了)。 电路的元件数量愈少,电路结构越是精简,电路的故障率就越低,这是一个被实践验证的法则。实际维修中,采用图1电路形式的开关电源,故障率和可靠性,要优于用集成器件做成的开关电源。个别电源,停电时还好好儿的,一上电,开关管就炸掉了,说明即使“傻瓜型”电路,在设计上也不可掉以轻心,关

电子工程师的设计经验笔记

电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。

电感是电容的死对头。另外,电感还有这样一个特点:电流和磁场必需同时存在。电流要消失,磁场会消失;磁场要消失,电流会消失;磁场南北极变化,电流正负极也会变化。 电感内部的电流和磁场一直在“打内战”,电流想变化,磁场偏不让变化;磁场想变化,电流偏不让变化。但,由于外界原因,电流和磁场都可能一定要发生变化。给电感线圈加上电压,电流想从零变大,可是磁场会反对,因此电流只好慢慢的变大;给电感去掉电压,电流想从大变成零,可是磁场又要反对,可是电流回路都没啦,电流已经被强迫为零,磁场就会发怒,立即在电感两端产生很高的电压,企图产生电流并维持电流不变。这个电压很高很高,甚至会损坏电子元件,这就是线圈的自感现象。 给一个电感线圈外加一个变化磁场,只要线圈有闭合的回路,线圈就会产生电流。如果没回路的话,就会在线圈两端产生一个电压。产生电压的目的就是要企图产生电流。当两个或多个丝圈共用一个磁芯(聚集磁力线的作用)或共用一个磁场时,线圈之间的电流和磁场就会互相影响,这就是电流的互感现象。 大家看得见,电感其实就是一根导线,电感对直流的电阻很小,甚至能够忽略不计。电感对交流电呈现出很大的电阻作用。 电感的串联、并联非常复杂,因为电感实际上就是一根导线在按一定的位置路线分布,所以,电感的串联、并联也跟电感的位置相关(主要是磁力场的互相作用相关),如果不考虑磁场作用及分布电容、导线电阻(Q值)等影响的话就相当于电阻的串联、并联效果。 交流电的频率越高,电感的阻碍作用越大。交流电的频率越低,电感的阻碍作用越小。 电感和充满电的电容并联在一起时,电容放电会给电感,电感产生磁场,磁场会维持电流,电流又会给电容反向充电,反向充电后又会放电,周而复始……如果没损耗,或能及时的补充这种损耗,就会产生稳定的振荡。 电子工程师必备基础知识(四)

简易风力摆报告设计

设计了一个简易风力摆控制装置,由直流风机组,陀螺仪,直流减速电机以及激光笔等组成。以MSP430F14单片机为核心,用PW波控制控制电机转速,调节风力大小,并以四个风机上下与左右同面两两并在一起对碳素管及激光笔进行工作,使细杆及激光笔在 风机的作用下可进行自由摆动且进一步可控摆动在地上划线,具有很好的重复性,并且可 以设定摆动方向且画短线,已经能够在将风力摆拉起一定角度放开后可以在规定时间内达到平衡。 关键词:风力控制摆、陀螺仪、轴流风机、PWM B速、MSP43C单片机 风力摆控制系统(B题) 1方案设计与选择 1.1设计内容 要求一个下端悬挂有(2~4只)直流风机的细管上端固定在结构支架上,只由风机提供动力,构成一个风力摆,风力摆上安装一个向下的激光笔。通过单片机代码指令控制驱动风机使风力摆按照一定的规律运动,并使激光笔在地面画出要求的轨迹,风力摆结构图如图1所示。 图1风力摆结构图 1.2设计要求 1.2.1基本要求 (1)从静止开始,15s内控制风力摆做类似自由摆运动,使激光笔稳定地在地面画出一条长度不短于50cm的直线段,其线性度偏差不大于土 2.5cm,并且具有较好的重复性; ⑵从静止开始,15s内完成幅度可控的摆动,画出长度在30~60cm间可设置,长度偏差不大于土 2.5cm的直线段,并且具有较好的重复性; (3)可设定摆动方向,风力摆从静止开始,15s内按照设置的方向(角度)摆动,画

出不短于20cm的直线段; (4)将风力摆拉起一定角度(30~45 ° )放开,5s内使风力摆制动达到静止状态。 1.2.2发挥部分 (1) 以风力摆静止时激光笔的光点为圆心,驱动风力摆用激光笔在地面画圆,30s内 需重复3次;圆半径可在15~35cm范围内设置,激光笔画出的轨迹应落在指定半径 ± 2.5cm的圆环内; (2) 在发挥部分(1)后继续作圆周运动,在距离风力摆1~2m距离内用一台50~60W台扇在水平方向吹向风力摆,台扇吹5s后停止,风力摆能够在5s内恢复发挥部分(1)规定的圆周运动,激光笔画出符合要求的轨迹; (3) 其他。 2总体方案设计与选择 2.1单片机选择 方案一:采用STC89S51芯片,该款芯片具有高性能低功耗的特点,具有32位输入/ 输出,可以实现处理、存储等功能⑴,但是其灵活性不高,需实时保护软件现场,否则易丢失信息,存储能力较弱。 方案二:采用MSP430F14芯片,该款芯片具有高性能,低功耗的特点,其抗干扰能力比较强,存储空间较大,稳定性较强。 二者比较之下,选择方案二作为此次设计的核心控制部分。 2.2直流风机选择 方案一:采用12V 4.5A的轴流风机,风力很大,可以将自身轻松吹起,但是体积较大,质量较重。 方案二:采用12V 1.5A的小风机,体积小,质量轻。但是风力足够大,单电机产生 的风力可吹起4个相同电机

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

典型半导体案例失效分析

典型半导体案例失效分析 Author:朱秋高 光宝电子(东莞)有限公司 E-mial: Collins.zhu@https://www.360docs.net/doc/6a13828382.html, 摘要: 开关电源与地之间走线的电感对主开关Mosfet 驱动影响和失效案例 关键词: PWM 驱动信号的布线要点: 在开关转换期间,某些走线 (PCB上的敷铜线路) 电流会瞬间停止,而另外一些走线电流同时瞬间导通(均在开关转换时间100ns 之内发生). 这些走线被认为是开关调整器PCB布线的”关键走线”. 每个开关转换瞬时,这些走线中都产生很高的Di/dt .如图1-1所示,整个线路混杂着细小但不低的电压尖峰.由经验可知,不难理解这是方程V=L*Di/dt 在走线中起作用,L是PCB走线的寄生电感.根据经验,每英寸走线的寄生电感约为20nH 图1-1 确定三种拓扑中的关键走线 噪声尖峰一旦产生,不仅传递到输入/输出(影响电源性能),而且渗透到IC控制单元,使控制功能失稳失常,甚至使控制的限流功能失效,导致灾难性后果. 199

引言: 设计开关调整器PCB时,需知最终产品的好坏完全取决于它的布线,当然,有些开关IC可能会比其他开关IC对干扰更敏感.有时,从不同供应商购得的 “ 同类” 产品也可能有完全不同的噪声敏感度,.此外,某些开关IC结构本身也会比其他IC对噪声更敏感(如电流模式控制芯片比电压模式控制芯片”布线敏感度”高很多). 事实上,用户必须面对这样的现实: 半导体器件生产商不会提供其产品噪声敏感度的资料. 而作为设计人员,往往对布线不够重视,结果将似乎可稳定工作的IC弄得波形震荡,易受干扰,以致误动作,甚至导致灾难性的后果(开关烧掉). 另外,这些问题在调试后期往往很难纠正或补救,因此开始阶段就正确布线非常重要. 试验方法: 1. MOSFET 的驱动信号通常由IC内的驱动级产生,故MOSFET的源极应接至IC接地端.但MOSFET的实际表现并不由施加在栅极与参考间的电压所决定, 而是取决于栅极与源极间的电压,即完全取决于实际的V GS. 实例1,如果源极与地之间的走线有点长的话,在开关转换瞬间它上面会出现很大的电感反冲, 不严重的话只是降低开关转换的速度,严重时会使MOSFET错误地开通或关断,导致管子毁坏. 图1-2 是在关断瞬间可能发生的相当安全的情形.栅极控制MOSFET关断,但源极的PCB走线阻抗刚才也流过了电流,并产生小电压源(尖峰) 以阻止电流减小,电流持续流动直到能量消耗光.这使V GS波形发生改变从而使开关转换速度降低.然而,这种降低转换速度的方法并不值得推荐,根据我所知其结果不可预知,因为它本质上是基于寄生参数的. 图 1-2 关断时源极寄生电感的影响 2. 实例2, 图1-3 是一款使用在网络产品上的电源布线图,我们不难发现驱动信号到MOSFET的栅极之间的走线过长,(约为63mm) .且高频电感离驱动信号非常近,而导致在系统使用时,不时发生MOSFET 烧毁和PCB板大面积烧黑的现象, 200

开关电源与线性电源的区别及用途

开关电源和线性电源的区别,各用在什么场合? 线性电源的调整管工作在放大状态,因而发热量大,效 率低(35%左右),需要加体积庞大的散热片,而且还需要同样 也是大体积的工频变压器,当要制作多组电压输出时变压器会 更庞大。开关电源的调整管工作在饱和和截至状态,因而发热 量小,效率高(75%以上)而且省掉了大体积的变压器。但开 关电源输出的直流上面会叠加较大的纹波(50mV at 5V output typical),在输出端并接稳压二极管可以改善,另外由于开关 管工作是会产生很大的尖峰脉冲干扰,也需要在电路中串连磁 珠加以改善。相对而言线性电源就没有以上缺陷,它的纹波可 以做的很小(5mV以下)。 对于电源效率和安装体积有要求的地方用开关电源为 佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电 检测)多选用线性电源。另外当电路中需要作隔离的时候现在 多数用DC-DC来做对隔离部分供电(DC-DC从其工作原理上来说 就是开关电源)。还有,开关电源中用到的高频变压器可能绕 制起来比较麻烦。 开关电源介绍 开关电源设计 1 电子产品,特别是军用稳压电源的设计是一个系统工程,不但要考虑电源本身参数 设计,还要考虑电气设计、电磁兼容设计、热设计、安全性设计、三防设计等方面。因为 任何方面那怕是最微小的疏忽,都可能导致整个电源的崩溃,所以我们应充分认识到电源 产品可靠性设计的重要性。 2 开关电源电气可靠性设计 2.1 供电方式的选择 集中式供电系统各输出之间的偏差以及由于传输距离的不同而造成的压差降低了供电 质量,而且应用单台电源供电,当电源发生故障时可能导致系统瘫痪。分布式供电系统因 供电单元靠近负载,改善了动态响应特性,供电质量好,传输损耗小,效率高,节约能 源,可靠性高,容易组成N+1冗余供电系统,扩展功率也相对比较容易。所以采用分布式 供电系统可以满足高可靠性设备的要求。 2.2 电路拓扑的选择 开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激 式、推挽式、半桥、全桥等八种拓扑。单端正激式、单端反激式、双单端正激式、推挽式 的开关管的承压在两倍输入电压以上,如果按60%降额使用,则使开关管不易选型。在推 挽和全桥拓扑中可能出现单向偏磁饱和,使开关管损坏,而半桥电路因为具有自动抗不平 衡能力,所以就不会出现这个问题。双管正激式和半桥电路开关管的承压仅为电源的最大 输入电压,即使按60%降额使用,选用开关管也比较容易。在高可靠性工程上一般选用这 两类电路拓扑。 2.3 控制策略的选择 在中小功率的电源中,电流型PWM控制是大量采用的方法,它较电压控制型有如下优 点:逐周期电流限制,比电压型控制更快,不会因过流而使开关管损坏,大大减小过载与 短路的保护;优良的电网电压调整率;迅捷的瞬态响应;环路稳定,易补偿;纹波比电压 控制型小得多。生产实践表明电流控制型的50W开关电源的输出纹波在25mV左右,远优于电 压控制型。 硬开关技术因开关损耗的限制,开关频率一般在350kHz以下,软开关技术是应用谐振

精通开关电源设计

《精通开关电源设计》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算 1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算 图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。 根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。

1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL 为: 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得:

经典LED驱动电源参考设计大集锦(内含设计原理图、实际案例分析)

经典LED驱动电源参考设计大集锦(内含设计原理图、实际案例分析) PI公司的众多LED驱动电源解决方案中,高效率、低功耗,外围简单、可调光、高稳定性是最大的特点,涉及工业、商业、家用等应用领域。不管是应客户需求设计,还是按相关标准设计,还是基于对行业发展趋势把握所做的前瞻性设计,都同样的出色,其方案、设计、想法具有行业指引性。 其众多的驱动电源参考设计中蕴含很多电源基本理论,就算不用其公司的IC也可以作为设计参考,对工程师有超强的指导意义。 1.开关电源设计软件- PI Expert? 操作/设计指南 PI Expert可提供构建和测试工作原型所需的所有必要信息。这些信息包括完整的交互式电路原理图、物料清单(BOM)、电路板布局建议以及详细的电气参数表。PI Expert还可提供完整的变压器设计,包括磁芯尺寸、线圈圈数、适当的线材规格以及每个绕组所用的并绕线数。此外,还可生成详细的绕组机械装配说明。该程序可以将设计时间从数天缩短至几分钟。 2.采用LYTSwitch的带功率因数校正(PFC)的23 W T8电源设计 适用于430 mA V (50 V) T8灯管的隔离式、低输入电压、超薄驱动器设计(DER-338)现已推出。这款新设计采用了PI新推出的LYTSwitch? LED驱动器系列器件LYT4215E。 3.一款高功率因数、可控硅调光的非隔离LED驱动器 PI推出了一份新的设计报告((DER-364),介绍的是一款使用广受好评的LYTSwitch IC设计的高功率因数、可控硅调光的非隔离LED驱动器。其效率额定值高达85%以上,具有无闪烁调光和单向快速启动(<200 ms)的特性。 4.针对T10灯管的最新24 W LED驱动器设计 PI的一款效率达92%的24 W T10灯LED驱动器设计(DER-356)。该设计可极大简化离线式、带功率因数校正的LED电源的生产。 5.适用于可控硅调光A19灯的全新10 W PFC LED驱动器设计 PI发布的关于针对可调光A19灯的全新10 W驱动器设计(DER-328) 6.元件数最少的T8灯管LED驱动器设计–高效率、低THD PI现已推出DER-345–一款针对T8 LED灯的低输入电压、非隔离、高效率、高功率因数LED驱动器设计。 7.适用于A19替换灯的14.5 W可控硅调光的非隔离LED驱动器 Power Integrations的LED设计(DER-341) –适用于A19 LED灯的非隔离式、高效率、高功率因数(PF) LED驱动器。这款新的LED驱动器采用LinkSwitch-PH系列IC中的LNK407EG器件设计而成。

最新开关电源学习笔记

开关电源学习笔记

开关电源学习笔记 阅读书记名称《集成开关电源的设计调试与维修》 开关电源术语: 效率:电源的输出功率与输入功率的百分比。其测量条件是满负载,输入交流电压标准值。 ESR:等效串联电阻。它表示电解电容呈现的电阻值的总和。一般情况下,ESR值越低的电容,性能越好 输出电压保持时间:在开关电源输出电压撤消后,依然保持其额定输出电压的时间。 启动浪涌保护:它属于保护电路。它对电源启动时产生的尖蜂电流起限制作作用。为了防止不必要的功率损耗,在设计这一电路时候,一定要保证滤波电容充满电之前,就起到限流的作用。 隔离电压:电源电路中的任何一部分与电源基板之间的最大电压。或者能够加在开关电源的输入与输出端之间的最大直流电压。 线性调整率:输出电压随负载在指定范围内的变化百分率。条件是线电压和环境温度不变。 噪音和波纹:附加在直流信号上的交流电压的高频尖锋信号的峰值。通常是mV度量。 隔离式开关电源:一般指开关电源。它从输入的交流电源直接进行整流滤波,不使用低频隔离变压器。 输出瞬态响应时间:从输出负载电路产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间。

过载过流保护:防止因负载过重,是电流超过原设计的额定值而造成电源的损坏的电。远程检测:电压检测的一种方法。为了补偿电源输出的电压降,直接从负载上检测输出电压的方法。 软启动:在系统启动时,一种延长开关波形的工作周期的方法。工作周期是从零到它的正常工作点所用的时间。 快速短路保护电路:一种用于电源输出端的保护电路。当出现过压现象时,保护电路启动,将电源输出端电压快速短路。 占空比:开关电源中,开关元件导通的时间和变换工作周期之比。 元件选择和电路设计: 一:输入整流器的一些参数 最大正向整流电流:这个参数主要根据开关电源输出功率决定,所选择的整流二极管的稳态电流容量至少应是计算值的2倍。 峰值反向截止电压(PIV):由于整流器工作在高压的环境,所以它们必须有较高的PIV值。一般600V以上。 要有能承受高的浪涌电流的能力:浪涌电源是用开关管导通时的峰值电流产生。 二:输入滤波电容 输入滤波电容对开关电源的影响 电源输出端的低频交流纹波电压 输出电压的保持时间 滤波电容的计算公式: C=(I*t)/ΔV

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

开关电源的系统设计深度解读

开关电源的系统设计深度解读 开关电源的系统设计深度解读 时间:2013-03-05 214次阅读【网友评论0条我要评论】收藏 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关。

开关电源元器件选型

开关电源元器件选型 A:反激式变换器: 1.MOS管:Id=2Po/Vin; Vdss=1.5Vin(max) 2.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=8Vout 3.缺点:就是输出纹波较大,故不能做大功率(一般≦150W),所以输出电容的容量要大. 4.优点:输入电压范围较宽(一般可做到全电压范围90Vac-264Vac),电路简单. 5.最佳控制方法:应选择电流型IC幷采用电流型控制. B:正激式变换器: 6.MOS管:Id=1.5Po/Vin; Vdss=2Vin(max) 7.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=3Vout 8.缺点:成本上升,如要全电压得加PFC,电路稍比反激复杂. 9.优点:纹丝小,功率可做到0~200W. 10.最佳控制方法:应选择电流型IC幷采用电流型控制. C:推挽式变换器: 11.MOS管: Id=1.2Po/Vin; Vdss=2Vin(max) 12.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout 13.缺点: 成本上升,如要全电压得加PFC,电路稍复杂.不太合适离线式. 14.优点: 功率可做到100W~1000W.DC-DC用此电路很好! 15.最佳控制方法:应选择电流型IC幷采用电流型控制. D:半桥式变换器: 16.MOS管: Id=1.5Po/Vin; Vdss=Vin(max) 17.整流: Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout 18.缺点: 成本上升,如要全电压得加PFC,电路稍复杂. 19.优点: 功率可做到100W~500W. 20.最佳控制方法:应选择电流型IC幷采用电流型控制. E:全桥式变换器: 21.MOS管: Id=1.2Po/Vin; Vdss=Vin(max)

开关电源学习笔记(含推导公式)

《开关电源》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

相关文档
最新文档