AHP(层次分析法)基础教程 绝对打分方法
管理决策9.4讲义-层次分析法( AHP 法)

9.4 层次分析法(AHP法)
(1)层次分析法的求解步骤
第一步:确定决策目标,建立层次结构模型。
第二步:由决策人两两比较构造判断矩阵。
第三步:求取判断矩阵的最大特征值和特征向量。
第四步:判断矩阵的一致性检验。
第五步:层次总排序。
(2)应用举例
例9-2下面应用层次分析法,利用各种定性、定量指标之间的相对重要程度,对瓶罐玻璃行业中72家企业进行绩效评价,首先计算出19个指标在企业绩效中的权重,之后对企业进行绩效打分及排序。
并指出影响企业绩效优劣的关键指标,以期决策者在这些方面提出改进,为企业增强自身核心竞争能力、参与全行业的竞争、制定可持续发展战略奠定基础。
层次分析法(AHP法)

一致性检验是层次分析法 中非常重要的步骤,可以 保证分析结果的可靠性
04
CATALOGUE
层次单排序
特征向量法
总结词
通过计算判断矩阵的特征向量来确定各因素权重的方法。
详细描述
特征向量法是层次分析法中确定权重的一种常用方法。它基于线性代数原理,通过计算判断矩阵的特 征值和特征向量,得到各因素的权重值。这种方法能够反映各因素之间的相对重要性,广泛应用于决 策分析和多目标优化等领域。
要点一
总结词
通过计算判断矩阵的最大特征值对应的特征向量来确定各 因素权重的方法。
要点二
详细描述
最大特征值法也是层次分析法中确定权重的一种常用方法 。它基于矩阵论原理,通过计算判断矩阵的最大特征值和 对应的特征向量,得到各因素的权重值。这种方法能够反 映各因素之间的相对重要性,并且在判断矩阵一致性检验 中具有重要作用。最大特征值法在多目标决策、系统评价 等领域有广泛的应用。
03
CATALOGUE
构造判断矩阵
标度定义
标度2
两个元素相比,前者比后者稍 重要
标度4
两个元素相比,前者比后者强 烈重要
标度1
两个元素相比,具有相同的重 要性
标度3
两个元素相比,前者比后者明 显重要
标度5
两个元素相比,前者比后者极 端重要
判断矩阵的构造
01
通过专家咨询、比较等方法,对每一层次各元素相对重要性给 出判断
02
将判断结果整理成矩阵形式
判断矩阵的元素aij表示第i个元素与第j个元素相对重要性的比值
03
判断矩阵的一致性检验
一致性检验是检验各元素 重要性判断是否具有逻辑 一致性
当CR<0.1时,认为判断 矩阵的一致性是可以接受 的;否则,需要对判断矩 阵进行调整
AHP(层次分析法)方法、步骤

归一化后的特征向量W= (w1, w2, …,wn) T
AW= λ W max
由此得到的特征向量W= (w1, w2, …,wn) T 就作 为对应评价单元的权重向量。 λmax和W的计算一般采用幂法、和法和方根法
2009.11
方根法
m
bn aibni i 1
2009.11
(4)评价层次总排序计 算结果的一致性
设:CI为层次总排序一致性指标: RI为层次总排序随机一致性指标。
其计算公式为:CI m aiCIi i 1
CIi为Ai相应的B层次中判断矩阵的一致性指标。 m RI ai RIi i 1
RIi为Ai相对应的B层次中判断矩阵随机一致性指标 并取 CR CI
在单层次判断矩阵A中,当
aij
aik a jk
时,称判断矩阵为一致性矩阵。
进行一致性检验的步骤如下:
(a)计算一致性指标C.I.:C.I. max n ,式中n为判断矩阵阶数。
n 1 (b)计算平均随机一致性指标R.I.
R.I.是多次重复进行随机判断矩阵特征值的计算后取算术平均数得到的 ,下表给出1~15维矩阵重复计算1000次的平均随机一致性指标:
max 4
d3 W23
d4 w24
d5 w25
C.R.=0
C1
C2
C3
d1 d2 d3 d4 d5
2009.11
(3)计算各元素的总权重
准则 权重 方案 d1 d2 d3 d4 d5
C1
0.105
0.491 0.232 0.092 0.136 0.046
C2
0.637
0 0.055 0.564 0.118 0.265
层次分析法AHP法ppt课件

18
目标层
工作选择
准则层 方案层
贡收 发 声 工 生 作活 环环
献入 展 誉 境 境
可供选择的单位P1’ P2 , Pn
19
建立层次结构模型的思维过程的归纳
1
w2
wn
wi wi wk
wj
wk w j
wn
wn
1
w1 w2
27
即 aik akj aij i, j 1,2,, n
A
但在例2的成对比较矩阵中, a23 7, a21 2, a13 4 a23 a21 a13
在正互反矩阵A中,若 aik akj aij ,(A 的元素具有 传递性)则称A为一致阵。
旅游问题的成对比较矩阵共有6个(一个5阶,5个3阶)2。6
3 层次单排序及其一致性检验
用权值表示影响程度,先从一个简单的例子看如何确 定权值。
例如 一块石头重量记为1,打碎分成n小块,各块的重
量分别记为:w1,w2,…wn
则可得成对比较矩阵
1
w1 w2
w1
wn
由右面矩阵可以看出,
w2
A
w1
层次分析法所要解决的问题是关于最低层对最高层的相 对权重问题,按此相对权重可以对最低层中的各种方案、 措施进行排序,从而在不同的方案中作出选择或形成选择 方案的原则。
20
2 构造判断(成对比较)矩阵
在建立递阶层次结构以后,上下层次之 间元素的隶属关系就被确定了。假定上一层 次 的 元 素 Ck 作 为 准 则 , 对 下 一 层 次 的 元 素 A1, …, An 有支配关系,我们的目的是在准则 Ck 之下按它们相对重要性赋予 A1, …, An 相 应的权重。
第八章 AHP 层次分析法(上课用)

基本的思路
先分解后综合的系统思想, 整理和综合人们的主观判断, 先分解后综合的系统思想, 整理和综合人们的主观判断, 的系统思想 使定性分析与定量分析有机结合,实现定量化决策。 使定性分析与定量分析有机结合,实现定量化决策。 首先将所要分析的问题层次化, 首先将所要分析的问题层次化,根据问题的性质和要达到 层次化 的总目标,将问题分解成不同的组成因素, 的总目标,将问题分解成不同的组成因素,按照因素间的 相互关系及隶属关系,将因素按不同层次聚类组合, 相互关系及隶属关系,将因素按不同层次聚类组合,形成 一个多层分析结构模型 最终归结为最低层(方案、措施、 多层分析结构模型, 一个多层分析结构模型,最终归结为最低层(方案、措施、 指标等)相对于最高层(总目标) 指标等)相对于最高层(总目标)相对重要程度的权值或 相对优劣次序的问题。 相对优劣次序的问题。
3、构造判断矩阵
这一个步骤是AHP决策分析中一个关键的步骤。 决策分析中一个关键的步骤。 这一个步骤是 决策分析中一个关键的步骤 ①判断矩阵表示针对上一层次中的某元素而 判断矩阵表示针对上一层次中的某元素而 上一层次中 言,评定该层次中各有关元素相对重要性程 度的判断。假定 层中因素 层中因素A 度的判断。假定A层中因素 k与下一层次中因 素B1,B2,…,Bn有联系,则我们构造的判 , 有联系, 断矩阵如下表。 断矩阵如下表。
而言, ②其中,bij 表示对于Ak 而言,元素Bi 对Bj 的相对重要性程度的 其中, 判断值。 判断值。 一般取1, , , , 等 个等级标度 其意义为:1表示 i 个等级标度, 表示B 一般取 ,3,5,7,9等5个等级标度,其意义为:为什么采用1-9 思考: 表示 思考 :为什么采用1 级的指标比例呢? 级的指标比例呢? 同等重要; 表示 表示B 重要一点; 表示 表示B 重要得多; 与B j同等重要;3表示 i较B j重要一点;5表示 i较B j重要得多; 7表示 i较B j更重要;9表示 i较B j极端重要。 表示B 更重要; 表示 表示B 极端重要。 表示 表示相邻判断的中值, 个等级不够用时, 而2,4,6,8表示相邻判断的中值,当5个等级不够用时, , , , 表示相邻判断的中值 个等级不够用时 以上各数的倒数,表示两目标反过来比较。 可以使用这几个数。以上各数的倒数,表示两目标反过来比较。
ahp判断矩阵专家打分

ahp判断矩阵专家打分
AHP(层次分析法)是一种用于决策分析的方法,它通过对不同因素的两两比较来确定其重要性。
在AHP中,专家打分是评估不同因素之间相对重要性的关键步骤。
专家打分通常涉及以下步骤:
1. 确定判断矩阵:将待比较的因素列成一个矩阵,其中行和列分别表示不同的因素。
然后,专家需要对每对因素进行两两比较,根据其相对重要性进行打分。
一般来说,使用1到9的标度,其中1表示两个因素具有相同的重要性,9表示一个因素比另一个因素重要性高出很多,中间的值表示不同程度的重要性。
2. 一致性检验:为了确保专家的打分是一致的,需要进行一致性检验。
这可以通过计算特征向量的一致性指标(CI)和一致性比率(CR)来完成。
如果CR小于0.1,表示打分是一致的。
3. 计算权重:根据判断矩阵中的打分,可以计算每个因素的权重。
一般来说,将每列的打分进行归一化处理,然后计算每行的平均值作为对应因素的权重。
4. 敏感性分析:在得出权重后,可以进行敏感性分析,检查不同因素的权重变化对最终结果的影响。
这可以帮助确定不同因素的相对重要性。
专家打分是AHP方法中的一个重要步骤,通过比较不同因素的相对重要性来生成判断矩阵,并最终计算出每个因素的权重。
这些权重可以用于决策分析和优先级排序。
AHP层次分析法方法步骤

(3)计算各元素的总权重
准则 权重 方案 d1 d2 d3 d4 d5
C1
0.105
0.491 0.232 0.092 0.136 0.046
C2
0.637
0 0.055 0.564 0.118 0.265
C3
0.258
0.406 0.406 0.094 0.094 0
总权重
0.157 0.164 0.393 0.113 0.172
max 4.117
C.I=0.039
C1
C2
C3
C.R.=0.042<0.1
d1 d2 w21 W22
W=(0.406,0.406,0.094,0.094)
max 4
d3 W23
d4 w24
d5 w25
C.R.=0
C1
C2
C3
d1 d2 d3 d4 d5
2009.11
多目标评估方法
MS-OR
选择上场队员应该有一套科学的方法, 不然
即使再出一个郎平, 也不一定能够再登世界 之巅。
2009.11
多目标评估方法
MS-OR
一.问题提出
中国女排在2004年雅典奥运会获得金 牌后,在备战北京奥运会时仍然沿袭了 雅典奥运会的原班人马,结果由于多名 队员受伤,在占尽天时,地理人和之时 成绩却不尽人意。无论是教练还是对原 对此成绩均不满意。赛后主教练陈忠和 泪洒赛场。
设:CI为层次总排序一致性指标:
RI为层次总排序随机一致性指标。
其计算公式为:CI m aiCIi i 1
CIi为Ai相应的B层次中判断矩阵的一致性指标。 m RI ai RIi i 1
RIi为Ai相对应的B层次中判断矩阵随机一致性指标 并取 CR CI
第十四章 层次分析法(AHP法)

B1
b11 b1n
2 ——表示Bi与Bj相比Bi比Bj稍微重要
B2
b21 b2n 3 ——表示Bi与Bj相比Bi比Bj明显重要
4 ——表示Bi与Bj相比Bi比Bj特别重要
Bn
bn1 bnn
5 ——表示Bi与Bj相比Bi比Bj极端重要
2,4,6,8 ——则表示Bi与Bj相比处于上述相邻
递阶层次结构
决策目标
目标层
准则1
准则1 …… 准则K
子目标层
子准则1
子准则K
方案1
方案m
结构可分为:网状和树状
指标层 方案层
构造两两判断矩阵
设A层的元素为AK,隶属于AK的下层指标元素分别为B1B2……Bn, 对A层元素AK的判断矩阵形式为:
AK
B1 Bn
其中:bij表示对AK而言,Bi对Bj的相对重要程度 1——表示Bi与Bj相比同样重要
W1
W1 0.405480 0.104729 Wi 3.871692
W2
2.466212 3.871692
பைடு நூலகம்
0.636986
W3
1 3.871692
0.258285
则所求向量为:
W 0.104729,0.636986,0.258295T
4°计算最大特征根λmax
1 1/ 5 1/ 30.104729 AW1 0.318221
10
11
12
13
14
15
R.I. 1.46 1.40 1.52 1.54 1.56 1.58 1.59
(3)计算一致性比例 C.I.
C.R. C.I. 当C.R<0.1时,一般认为判断矩阵一致性可以接受。 R.I .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
层次分析法(AHP)特点:
✓ 分析思路清楚,可将系统分析人 员的思维过程系统化、数学化和模 型化; ✓分析时需要的定量数据不多,但 要求对问题所包含的因素及其关系 具体而明确;
层次分析法(AHP)特点:
✓ 这种方法适用于多准则、多目标 的复杂问题的决策分析,广泛用于 地区经济发展方案比较、科学技术 成果评比、资源规划和分析以及企 业人员素质测评。
在层次分析法中,为了使判
断定量化,关键在于设法使任意 两个方案对于某一准则的相对优 越程度得到定量描述。一般对单 一准则来说,两个方案进行比较 总能判断出优劣,层次分析法采 用1-9标度方法,对不同情况的 评比给出数量标度。
标度
定义与说明
1 两个元素对某个属性具有同样重要性
3 两个元素比较,一元素比另一元素稍微重要
层次分析法
➢层次分析法(AHP) 美国运筹学家A.L.Saaty于本世
纪 70 年 代 提 出 的 层 次 分 析 法 ( Analytical Hierar-chy Process,简 称AHP方法),是一种定性与定量 相结合的决策分析方法。它是一种
将决策者对复杂系统的决策思维过 程模型化、数量化的过程。
➢层次分析法(AHP) 应用这种方法,决策者通过将
复杂问题分解为若干层次和若干因 素,在各因素之间进行简单的比较 和计算,就可以得出不同方案的权 重,为最佳方案的选择提供依据。
层次分析法(AHP)基本原理: AHP法首先把问题层次化,按
问题性质和总目标将此问题分解成 不同层次,构成一个多层次的分析 结构模型,分为最低层(供决策的 方案、措施等),相对于最高层( 总目标)的相对重要性权值的确定 或相对优劣次序的排序问题。
层次分析法(AHP)具体步骤:
✓明确问题 ✓递阶层次结构的建立 ✓建立两两比较的判断矩阵 ✓层次单排序 ✓层次综合排序
层次分析法(AHP)具体步骤:
✓明确问题 在分析社会、经济的以及科学
管理等领域的问题时,首先要对问 题有明确的认识,弄清问题的范围 ,了解问题所包含的因素,确定出 因素之间的关联关系和隶属关系。
5 两个元素比较,一元素比另一元素明显重要
7 两个元素比较,一元素比另一元素重要得多
9 两个元素比较,一元素比另一元素极端重要
2,4,6,8 表示需要在上述两个标准之间拆衷时的标度
1/bij 两个元素的反比较
判断矩阵B具有如下特征:
o bii = 1 o bji = 1/ bij o bij = bik/ bjk
对于多阶判断矩阵,引入平
均随机一致性指标 R.I.(Random Index),下表给出了1-15阶正互反矩 阵计算1000次得到的平均随机一致 性指标 。
n12345 678 RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 n 9 10 11 12 13 14 15 RI 1.46 1.49 1.52 1.54 1.56 1.58 1.59
max - n C.I. =
n-1
一致性指标C.I.的值越大, 表明判断矩阵偏离完全一致性的 程度越大, C.I.的值越小,表明 判断矩阵越接近于完全一致性。 一般判断矩阵的阶数n越大,人为 造成的偏离完全一致性指标C.I. 的值便越大;n越小,人为造成的 偏离完全一致性指标C.I.的值便 越小。
层次分析法(AHP)具体步骤:
✓递阶层次结构的建立 根据对问题分析和了解,将问
题所包含的因素,按照是否共有某 些特征进行归纳成组,并把它们之 间的共同特性看成是系统中新的层 次中的一些因素,而这些因素本身 也按照另外的特性组合起来,形成
层次分析法(AHP)具体步骤:
更高层次的因素,直到最终形成单 一的最高层次因素。 o最高层是目标层 o中间层是准则层 o…….. o最低层是方案层或措施层
层次分析法(AHP)具体步骤:
✓层次单排序 层次单排序就是把本层所有各
元素对上一层来说,排出评比顺序 ,这就要计算判断矩阵的最大特征 向量,最常用的方法是和积法和方 根法。
和积法具体计算步骤:
o将判断矩阵的每一列元素作归一 化处理,其元素的一般项为:
bij=
bij 1nbij
(i,j=1,2,….n)
max = 1n
(BW)i nWi
方根法具体计算步骤(略)பைடு நூலகம்
o将判断矩阵的每一行元素相乘Mij
Mij= 1nbij
(i=1,2,….n)
o计算Mi 的n 次方根Wi
Wi = nMi
(i=1,2,….n)
当 n<3时,判断矩阵永远具有 完全一致性。判断矩阵一致性指标 C.I. 与同阶平均随机一致性指标 R.I. 之比称为随机一致性比率 C.R.(Consistency Ratio)。
C.I C.R. =
R.I.
当 C.R.< 0.10 时,便认为 判断矩阵具有可以接受的一致 性。当C.R. ≥0.10 时,就需要调 整和修正判断矩阵,使其满足 C.R.< 0.10 ,从而具有满意的 一致性。
(i,j,k=1,2,….n)
判断矩阵中的bij是根据资料 数据、专家的意见和系统分析人
员的经验经过反复研究后确定。
应用层次分析法保持判断思维的
一致性是非常重要的,只要矩阵 中的bij满足上述三条关系式时, 就说明判断矩阵具有完全的一致 性。
判断矩阵一致性指标 C.I.(Consistency Index)
o将每一列经归一化处理后的判断 矩阵按行相加为:
Wi= 1nbij
(i =1,2,….n)
o对向量W=( W1, W2…… Wn)t归 一化处理:
Wi=
Wi 1nWj
(i =1,2,….n)
W=( W1, W2…… Wn)t
即为所求的特征向量的近似解。
o计算判断矩阵最大特征根max
oB为前面的比较矩阵,W为前面已 经求出的特征根
层次分析法(AHP)具体步骤:
✓建立两两比较的判断矩阵 判断矩阵表示针对上一层次
某单元(元素),本层次与它有关 单元之间相对重要性的比较。一般 取如下形式:
Cs p1 p2 … … pn
判
p1 b11 b12 … … b1n
断 矩
p2 b21 b22 … … b2n
阵
………………
………………
pn bn1 bn2 … … bnn