哈工大电信学院天线技术实验报告

合集下载

天线理论研究报告总结范文

天线理论研究报告总结范文

天线理论研究报告总结范文天线理论研究报告总结范文一、引言天线是无线通信系统中至关重要的部件之一,其性能直接影响着通信系统的覆盖范围和传输质量。

为了提高天线的性能,许多学者对天线理论进行了深入研究。

本报告旨在对现有的天线理论研究进行总结和评述,以期为未来的天线设计和优化提供参考。

二、天线基本原理天线的基本原理是通过将电能或磁能转换为无线电波,从而实现无线通信。

根据不同的应用场景和性能要求,天线设计师需要选择不同类型的天线,如全向天线、指向性天线、扇形天线等。

天线的性能评价指标包括频率范围、增益、方向性、波束宽度等。

三、天线理论研究进展1. 天线阵列理论天线阵列是由多个天线单元组成的复合天线系统。

通过改变天线单元之间的距离和相位差,可以控制阵列的辐射方向和波束宽度。

在天线阵列理论研究中,研究者们提出了许多新的设计方法和优化算法,如遗传算法、粒子群优化算法等,以提高天线阵列的性能。

2. 天线小型化理论随着无线通信设备的迅猛发展,对天线尺寸的要求也越来越高。

天线小型化理论研究的目标是在保持天线性能的前提下,减小天线的尺寸和重量。

研究者们通过采用新型材料、优化天线结构等方法,成功地实现了天线的小型化,为无线通信设备的发展提供了技术支持。

3. 天线多频段理论天线多频段理论研究的目标是在同一个天线结构中实现多个频段的工作。

传统的天线多频段设计往往需要复杂的结构和调谐元件,不利于实际应用。

为了解决这一问题,研究者们提出了新的设计方法,如增量频率技术、双极化技术等,成功地实现了天线的多频段工作。

四、天线理论研究存在的问题尽管天线理论研究取得了一些进展,但仍存在一些问题亟待解决。

首先,目前的天线理论研究大多基于理想化的假设条件,与实际应用场景存在一定的差距。

其次,天线理论研究往往缺乏系统性和综合性,需要进一步加强与其他领域的交叉研究。

五、未来研究展望为了进一步提高天线的性能和应用范围,未来的研究可以从以下几个方面展开:一是深入研究天线与环境之间的相互作用,探索天线在复杂环境中的性能变化规律;二是加强天线与信号处理、射频电路等领域的协同设计和优化,实现系统级能力提升;三是推动天线理论研究与实际应用的紧密结合,强化实际工程应用的可行性和实用性。

射频天线技术实验一

射频天线技术实验一

实验报告实验一测量线法测量线式天线输入阻抗学号:姓名:使用仪器型号和编号:(1)同轴测量线:型号(TC8D)和编号(051);(2)信号发生器:型号(YM1130)和编号(006);(3)选频放大器:型号(YM3892)和编号(36);(4)被测天线负载组别(1);一.波导波长测量(采用交差读数法)(1)测量读数L1A =( 53.7 )mm; L2A =( 54.3 )mm; L minA =( 54 )mm;L1B =( 113.6 )mm; L2B =( 114.2 )mm; L minB =( 113.9 )mm;λg = 2| L minA - L minB |= ( 119.8) mm; 频率换算f = ( 2.504)GHz;(2) 测量读数L1A =( 113.6 )mm; L2A =( 114.2 )mm; L minA =( 113.9 )mm;L1B =( 173.5 )mm; L2B =( 173.9 )mm; L minB =( 173.7 )mm;λg = 2| L minA - L minB |= ( 119.6) mm; 频率换算f = ( 2.508)GHz;(3) 测量读数L1A =( 173.9 )mm; L2A =( 174.3 )mm; L minA =( 174.1 )mm;L1B =( 234.1 )mm; L2B =( 234.3 )mm; L minB =( 234.2 )mm;λg = 2| L minA - L minB |= ( 120.2 ) mm; 频率换算f = ( 2.496)GHz;(4)计算平均值λg = ( 119.87) mm; 换算频率f = ( 2.503)GHz;二.绘画晶体管定标曲线(不作要求)三.测量计算L min被测天线长度Lxρ=(5.7);L=( 165.82)mm; L=( 192.18) mm; Lmin =(26.33 )mm;(1)L1 =(50)mm;向负载方向,1ρ=(2.8);L=( 167.72 )mm; L=( 190.66) mm; Lmin =(22.94 )mm;(2)L2 =(38)mm;向负载方向,2ρ=(2.42);L=( 155.96 )mm; L=( 187.60 ) mm; Lmin =(31.64 )mm;(3)L3 =(32)mm;向负载方向,3ρ=(2.4);L=( 153.52)mm; L=( 187.64 ) mm; Lmin =(34.12 )mm;(4)L4 =(29)mm;向负载方向,4ρ=(1.36);L=( 157.36 )mm; L=( 188.28) mm; Lmin =(30.92)mm;(5)L5 =(25)mm;向负载方向,5ρ=(1.48);L=( 207.08 )mm; L=( 249.46 ) mm; Lmin =(47.38 )mm;(6)L6 =(20)mm;向负载方向,6四.阻抗圆图法求Z min1.阻抗圆图计算阻抗(注:实验计算结果采用归一化阻抗,且为自己手动在Smith 圆图上计算所得)计算步骤:1.根据ρ值,在Smith 阻抗圆图上画出等驻波比圆;2.由于实验中接短路器,故从短路点(实轴最左端)逆时针向负载旋转g l λ/min ,得到A 点;3.将A 点与圆图中心连线,交于等驻波比圆B 点,B 点即为归一化输入阻抗min z 。

哈工大电信学院天线技术实验报告

哈工大电信学院天线技术实验报告

实验报告课程名称:天线技术院系:电子于信息工程学院班级:姓名:学号:指导教师:授课教师:试验时间:2012年6月演示实验一超宽带天线的测试一、实验目的1、了解超宽带天线的概念及特点2、了解现代天线测试系统的组成3、了解现代天线测试仪器设备及其使用方法4、了解超宽带天线的测试方法二、实验原理超宽带天线是一种具有极宽阻抗带宽的天线,其比带宽一般可以达到2:1 以上,现代超宽带天线的阻抗带宽可以达到30:1 以上,可以覆盖多个波段,能够实现传统的多个天线的功能,所以受到了研究者的广泛关注。

超宽带天线不仅需要具有极宽的阻抗带宽,即它的阻抗要在极宽的频带内保持在一个范围内,还需要具有极宽的方向图带宽、增益带宽以及极化带宽。

现代的超宽带天线还需要具有稳定的相位中心,即可以不失真地辐射时域脉冲信号。

根据以上对超宽带天线的要求,可以结合所学习的天线原理进行如下天线测试的内容:(1)天线阻抗带宽的测试:测试天线的反射系数(S11),需要用到公式(1-1):根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z0(匹配),在天线工程上,Z0 通常被规定为75Ω 或者50Ω,本实验中取Z0=50Ω。

天线工程中通常使用电压驻波比(VSWR)ρ 以及回波损耗(Return Loss,RL)来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述:对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1 中。

(2)主极化方向图的测试方向图的测试需要测试天线在阻抗带宽内的各个频点的远场的方向图,一般最少要测试3 个频点,即下限频点f1、上限频点f2 和中心频点f0,对于更宽的频带,要根据具体情况多测试一些频点的方向图,以便全面了解天线的参数。

在工程上,一般不需要远场的三维方向图,而只需要测试两个主平面的方向图曲线,对于线极化天线来说,这两个主平面为E 面和H 面。

手机天线报告

手机天线报告

手机天线报告报告人:xxx报告时间:xxxx年xx月xx日一、背景随着科技的不断发展,手机已经成为了人们日常生活中不可或缺的一部分。

而手机天线作为手机重要的组成部分之一,其作用十分重要。

然而在使用过程中,手机天线也会出现一些问题,影响手机的信号接收情况,从而影响用户的使用体验。

因此,有必要进行对手机天线的测试。

二、测试环境本次测试在实验室内进行,测试环境包括天线测试设备,手机,信号源。

三、测试内容本次测试主要针对以下方面:1. 设备使用过程中天线信号的接收情况;2. 天线接收信号的质量,包括信号强度和信噪比;3. 不同位置信号的接收情况,比较其差异。

四、测试结果经过测试,得出以下结果:1. 手机天线信号接收质量优良,信号强度稳定,信噪比高。

2. 在信号源位置不变的情况下,手机不同位置接收信号情况基本一致,未出现明显的信号受阻情况。

3. 手机在开启网络、WIFI等大流量应用时,天线的信号接收情况稍微有所下降,但整体表现依旧良好。

五、测试结论本次测试结果表明,手机天线在正常使用过程中,信号接收质量表现优良,符合手机天线技术要求,适合日常使用。

但在高流量应用情况下,信号接收情况有所下降,用户应慎重开启相关应用,以保证良好的通信效果。

六、建议1. 用户在购买手机时应注意天线的质量,选择品牌质量保证的手机;2. 避免在高流量应用时进行通话,以尽量避免信号受阻情况;3. 在使用过程中,如发现天线信号接收情况下降较大,应及时进行保养和维修。

七、总结本次测试旨在对手机天线进行评估,通过一系列实验对手机天线的表现进行了全面分析和评估。

结果表明,手机天线在正常使用情况下表现优良,符合要求。

同时,用户应注意日常使用方式,避免影响电话质量,保证良好的通信效果。

引向天线实验报告

引向天线实验报告

引向天线实验报告篇一:天线实验报告实验一半波振子天线的制作与测试一、实验目的1、掌握50欧姆同轴电缆与SMA连接器的连接方法。

2、掌握半波振子天线的制作方法。

3、掌握使用“天馈线测试仪”测试天线VSWR和回波损耗的方法。

4、掌握采用“天馈线测试仪”测试电缆损耗的方法。

二、实验原理(1)天线阻抗带宽的测试测试天线的反射系数(S11),需要用到公式(1-1):S11?ZA?Z0?|?|exp(j?) ZA?Z0(1-1)根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗ZA接近于所要求的阻抗Z0(匹配),在天线工程上,Z0通常被规定为75Ω或者50Ω,本实验中取Z0=50Ω。

天线工程中通常使用电压驻波比(VSWR)ρ以及回波损耗(Return Loss,RL)来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述: ??1?|?| 1?|?|(1-2)RL??20lg(|?|) [dB]表1-1 工程上对天线的不同要求(供参考)(1-3)对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1中。

(2)同轴电缆的特性阻抗本实验采用50欧姆同轴电缆,其外皮和内芯为金属,中间填充聚四氟乙烯介质(相对介电常数?r?2.2)。

其特性阻抗计算公式如下:Z0??b??? ?a?(1-4)式中 a——内芯直径;b——外皮内直径。

(本文来自:小草范文网:引向天线实验报告)三、实验仪器(1)Aitsu S331D天馈线测试仪图1-1 Aitsu S331D天馈线测试仪表1-2 Aitsu S331D天馈线测试仪主要性能指标撑和固定天线)和酒精棉等。

(3)工具,主要包括:裁纸刀、尖嘴钳子、斜口钳子、砂纸、挫、尺和电烙铁等。

四、实验步骤 1、半波振子天线的制作制作天线时要主要安全,使用电烙铁和裁纸刀时应倍加注意。

(1)截取一段长度为10cm的50欧姆同轴电缆。

天线实验报告(DOC)

天线实验报告(DOC)

实验一 半波振子天线的制作与测试一、实验目的1、掌握50欧姆同轴电缆与SMA 连接器的连接方法。

2、掌握半波振子天线的制作方法。

3、掌握使用“天馈线测试仪”测试天线VSWR 和回波损耗的方法。

4、掌握采用“天馈线测试仪” 测试电缆损耗的方法。

二、实验原理(1)天线阻抗带宽的测试 测试天线的反射系数(S 11),需要用到公式(1-1):)ex p(||011θj Z Z Z Z S A A Γ=+-=(1-1)根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z 0(匹配),在天线工程上,Z 0通常被规定为75Ω或者50Ω,本实验中取Z 0=50Ω。

天线工程中通常使用电压驻波比(VSWR )ρ以及回波损耗(Return Loss ,RL )来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述:||1||1Γ-Γ+=ρ(1-2)|)lg(|20Γ-=RL [dB](1-3)对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1中。

表1-1 工程上对天线的不同要求(供参考)天线带宽驻波系数ρ的要求 反射系数|Γ|的要求 反射损耗RL 的要求 窄带(相对带宽5%以下)ρ≤1.2或1.5|Γ|≤0.09或0.2 ≥21dB 或14dB 宽带(相对带宽20%以下) ρ≤1.5或2 |Γ|≤0.2或0.33≥14dB 或10dB 超宽带ρ≤2或2.5,甚至更大 |Γ|≤0.33或0.43≥10dB(2)同轴电缆的特性阻抗本实验采用50欧姆同轴电缆,其外皮和内芯为金属,中间填充聚四氟乙烯介质(相对介电常数 2.2r ε=)。

其特性阻抗计算公式如下:060ln r b Z a ε⎛⎫=⎪⎝⎭(1-4)式中 a ——内芯直径; b ——外皮内直径。

三、实验仪器(1)Anritsu S331D天馈线测试仪图1-1 Anritsu S331D天馈线测试仪表1-2 Anritsu S331D天馈线测试仪主要性能指标参数名称参数值频率范围25MHz-4000MHz频率分辨率100kHz输出功率< 0dBm回波损耗范围0.00-54.00dB(分辨率:0.01dB)驻波比范围0.00-65.00 (分辨率:0.01)(2)50欧姆同轴电缆、SMA连接器、热塑管、直径2.5mm和0.5mm铜丝、泡沫(用于支撑和固定天线)和酒精棉等。

天线研究报告

天线研究报告

天线研究报告1. 引言天线是无线通信系统中的重要组成部分,其作用是将电磁波从传输线(如电缆)中转换为空中的电磁波,或者将空中的电磁波转换为传输线中的电磁波。

天线的设计和研究对于提高无线通信系统的性能至关重要。

本报告将对天线的研究进行概述,并介绍一些常见的天线类型和应用场景。

2. 天线的基本原理天线的基本原理是根据远场近似下的Maxwell方程组解,通过适当设计的导体结构来辐射或接收电磁波。

天线可以根据处理的波束方向和频率范围进行分类。

常见的天线类型包括: - 简单天线:如偶极子天线,非常适合工作在理想频率。

- 多频段天线:由多个简单天线组成,可以同时工作在多个频段。

- 方向性天线:通过减少辐射功率到特定方向外,降低其他方向的功率传输。

- 定向天线:通过通过形成一个窄波束,在某个方向上具有高增益。

3. 常见的天线设计3.1 偶极子天线偶极子天线是最简单的天线类型之一,由两根长度为λ/2的导线组成,其中λ是工作频率的波长。

偶极子天线的设计具有广泛的应用,包括无线通信、广播和雷达系统。

3.2 射频饰面天线射频饰面天线是一种采用导电饰面作为天线元素的创新设计。

通过设计导电饰面的形状和排列方式,可以获得更好的辐射特性。

射频饰面天线广泛应用于智能手机和无线通信设备中,提供更稳定和高效的无线通信性能。

3.3 微带贴片天线微带贴片天线是一种非常薄小的天线,可以在微型设备中方便地安装和集成。

微带贴片天线由一片金属贴片和一块底板组成,通过微带线连接到射频设备。

微带贴片天线在移动通信设备、卫星通信和雷达系统中得到广泛的应用。

4. 天线性能评估天线性能评估是天线研究中的重要一环,常见的评估指标包括辐射效率、增益、方向性和带宽。

辐射效率是指天线将输入功率转化为辐射功率的能力,通常以百分比表示。

增益是指天线辐射功率相对于参考天线(如理想偶极子天线)的增加倍数。

方向性是指天线辐射功率在不同方向上的分布,通常以来向性图表示。

测量天线实践报告

测量天线实践报告

测量天线实践报告姓名:------班级:------学号:------一、实践准备从网上查询有关天线的资料如下:1)天线简介天线(英语:antenna)是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。

在无线电设备中用来发射或接收电磁波的部件。

无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。

此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。

一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。

同一天线作为发射或接收的基本特性参数是相同的。

这就是天线的互易定理。

2)天线分类1、按工作性质可分为发射天线和接收天线。

2、按用途可分为通信天线、广播天线、电视天线、雷达天线等。

3、按方向性可分为全向天线和定向天线等。

4、按工作波长可分为超长波天线、长波天线、中波天线、短波天线、超短波天线、微波天线等。

5、按结构形式和工作原理可分为线天线和面天线等。

描述天线的特性参量有方向图、方向性系数、增益、输入阻抗、辐射效率、极化和频宽。

6、按维数来分可以分成两种类型:一维天线和二维天线一维天线:由许多电线组成,这些电线或者像手机上用到的直线,或者是一些灵巧的形状,就像出现电缆之前在电视机上使用的老兔子耳朵。

单极和双极天线是两种最基本的一维天线。

二维天线:变化多样,有片状(一块正方形金属)、阵列状(组织好的二维模式的一束片)、喇叭状、碟状。

3)天线参数1.谐振频率天线一般在某一频率调谐,并在此谐振频率为中心的一段频带上有效。

2.增益“增益”指天线最强辐射方向的天线辐射方向图强度与参考天线的强度之比取对数。

如果参考天线是全向天线,增益的单位为dBi。

3.带宽天线的带宽是指它有效工作的频率范围,通常以其谐振频率为中心。

4.阻抗“阻抗”类似于光学中的折射率。

电波穿行于天线系统不同部分(电台、馈线、天线、自由空间)是会遇到阻抗差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告课程名称:天线技术院系:电子于信息工程学院班级:姓名:学号:指导教师:授课教师:试验时间:2012年6月演示实验一超宽带天线的测试一、实验目的1、了解超宽带天线的概念及特点2、了解现代天线测试系统的组成3、了解现代天线测试仪器设备及其使用方法4、了解超宽带天线的测试方法二、实验原理超宽带天线是一种具有极宽阻抗带宽的天线,其比带宽一般可以达到2:1 以上,现代超宽带天线的阻抗带宽可以达到30:1 以上,可以覆盖多个波段,能够实现传统的多个天线的功能,所以受到了研究者的广泛关注。

超宽带天线不仅需要具有极宽的阻抗带宽,即它的阻抗要在极宽的频带内保持在一个范围内,还需要具有极宽的方向图带宽、增益带宽以及极化带宽。

现代的超宽带天线还需要具有稳定的相位中心,即可以不失真地辐射时域脉冲信号。

根据以上对超宽带天线的要求,可以结合所学习的天线原理进行如下天线测试的内容:(1)天线阻抗带宽的测试:测试天线的反射系数(S11),需要用到公式(1-1):根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z0(匹配),在天线工程上,Z0 通常被规定为75Ω 或者50Ω,本实验中取Z0=50Ω。

天线工程中通常使用电压驻波比(VSWR)ρ 以及回波损耗(Return Loss,RL)来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述:对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1 中。

(2)主极化方向图的测试方向图的测试需要测试天线在阻抗带宽内的各个频点的远场的方向图,一般最少要测试3 个频点,即下限频点f1、上限频点f2 和中心频点f0,对于更宽的频带,要根据具体情况多测试一些频点的方向图,以便全面了解天线的参数。

在工程上,一般不需要远场的三维方向图,而只需要测试两个主平面的方向图曲线,对于线极化天线来说,这两个主平面为E 面和H 面。

因此,在天线测试前,还需要判断天线的极化方式。

在满足天线测试的极化匹配和阻抗匹配的条件下,所测试的方向图为单一频点的功率方向图,所依据的原理为公式(1-4):在不同角度θ 的时候,接收天线接收的功率与自身的功率方向性函数P(θ)有关,因此将待测天线作为接收天线放置在一个可以接收到单一方向传播的均匀平面波的区域,并且绕自身轴线转动一周,这样不同角度θ 处就可以接收到不同大小的功率,据此天线的功率方向图就可以绘制出来。

以上的测试方法涉及到了以下的条件:①天线可以接收到单一方向传播的均匀平面波的区域,这需要一个无外界干扰的模拟自由空间的环境,还需要一个均匀平面波的发射源;②天线可以绕着自身轴线转动,这需要一个转台;③天线的接收功率可以测试,这需要一个功率计。

上述三条的解决方法是:①无外界干扰的模拟自由空间的环境:在微波暗室内测试,微波暗室的工作频带需要符合天线测试所需要的频率范围,微波暗室的大小需要满足天线工作的远场条件,这个远场条件需要用公式(1-5)进行判定。

式中:d min 是最小测试距离,λ 是工作波长,D t 是发射天线的口径最大尺寸,D r 是待测天线(接收天线)的口径最大尺寸。

②将天线安装在一个可以进行360°转动的转台上,转台的转动参数要满足所需要的测试精度。

③发射源和接收装置可以共用一个网络分析仪,因为发射天线(输入端可视为端口1)和接收天线(输入端可视为端口2)合起来组成了一个二端口网络,对于这个二端口网络来说,|S21|即为1 端口发射时,2 端口接收所得到传输系数,天线的不同的方向所得到的|S21|也是不同的。

因此,根据所得到的|S21|也可以得到天线的功率方向图。

所测试的方向图曲线均需要进行归一化处理。

(3)交叉极化方向图的测试在主极化的方向图测试完毕后,需要测试交叉极化的方向图,此时要将天线的极化状态与发射天线的极化状态正交,然后测试天线方向图,这样可以得到天线的交叉极化电平,交叉极化电平根据公式(1-6)进行计算。

交叉极化方向图一般与主极化方向图绘制在一个坐标系中,并且要相对于主极化方向图绘制。

(4)增益的测试本实验的增益测试使用的是比较法。

将接收天线的最大辐射方向和发射天线对准,保证极化匹配和阻抗匹配时,测试此时的|S21|,记录为|S21|X,然后用标准增益天线(通常为喇叭天线)重复上述测试,记录的值为|S21|S,然后按照公式(1-7)(或者公式1-8)进行增益计算。

三、实验步骤(1)驻波系数的测试环境:微波暗室设备:Agilent E8363B 型矢量网络分析仪、固定天线夹具操作步骤:①打开矢量网络分析仪,选择导入全波段校准数据,界面选择测试S11,显示格式为SWR,显示比例为每纵格0.5,将起始频率和终止频率设置为1GHz 和16GHz,并设置频点f1=3.1GHz、f2=10.6GHz、f0=6.85GHz,此时矢网的输出功率电平应保持默认值(-17dBm)。

②将天线装入固定夹具,然后将网络分析仪的Port A 端口与天线馈电端口相连,将天线辐射体置于远离周围障碍物的地方(超过50cm),测试此时的驻波系数,重点观察f1、f2 和f0 频点的驻波系数,并记录到表I-1 中。

③设置Mark,观察天线在3.1-10.6GHz 频带范围内驻波系数的最大值和最小值,并记录到表I-1 中。

④观察天线的驻波系数低于2.0 时的下限频率和上限频率,记录到表I-1 中。

⑤晃动天线,观察此时矢网屏幕的驻波系数曲线的变化。

(2)主极化方向图的测试环境:微波暗室设备:Agilent E8363B 型矢量网络分析仪、固定天线夹具、10 米低损耗电缆两根、1米低损耗电缆一根、工控机(含天线测试系统软件)、GPIB 线、串口线、天线测试转台、发射天线及专用支架、天线测试专用夹具、低噪声放大器(选件)。

工具:激光笔①将天线安装至固定天线夹具上,然后将天线按照垂直极化的方式安装在转台上,安装时需保证天线辐射体中心的铅垂投影线通过转台中心的偏差在3cm 以内(用激光笔测试),保证天线垂直极化;②将一根10m 低耗电缆的一端连接在天线的馈电端口上,另一端连接低噪声放大器的输入口上,然后用1m 低耗电缆将低噪声放大器的输出口与矢量网络分析仪的PORT B 端口相连接(若无低噪放则将10m 电缆的另一端通过1m 低耗电缆与矢量网络分析仪的PORT B 端口相连接);③将与发射天线相连接的另一根10m 低耗电缆的与矢量网络分析仪的PORT A 端口向连接;④调整发射天线的高度、极化,使发射天线为垂直极化,口面中心与待测天线辐射体中心同一高度,用激光笔测试偏差不超过5cm;⑤将工控机与矢量网络分析仪通过GPIB 线连接在一起,开启计算机,进入到天线测试系统软件界面,点“初始化”键,然后进行测试频点设置,分别设置频点3 个:f1=3.1GHz、f2=10.6GHz、f0=6.85GHz。

⑥进行天线方向图的自动测试,转台水平旋转一周,计算机自动根据采集的数据输出待测频点方向图,做好存档,此时测得的为天线H 面方向图;⑦更换夹具,将天线按照水平极化的方式安装在转台上,安装时需保证天线辐射体中心的铅垂投影线通过转台中心的偏差在3cm 以内(用激光笔测试),保证天线水平极化;⑧调整发射天线的高度、极化,使发射天线为水平极化,口面中心与待测天线振子中心同一高度,用激光笔测试偏差不超过5cm;⑨按照步骤⑤、⑥进行测试,做好计算机输出方向图的存档,此时测得的为天线E 面方向图;⑩继续其余频点的测试,根据存档的E 面和H 面方向图,观察记录如下内容,并记录到表I-2 中。

(a)峰值电平及角度坐标;(b)主瓣宽度;(c)方向图的起伏程度(不圆度或者零值深度)(d)第一副瓣电平(3)交叉极化方向图的测试与(2)类似,只是将(2)中安装天线时收发天线两者极化方式相同安装修改为正交安装即可,涉及的操作步骤为①、④、⑦、⑧。

记录到表I-3 的内容为:(a)峰值电平;(b)与主极化方向图相比,两者电平相差的最大值和最小值,包括最值出现的角度坐标。

(4)增益测试环境:微波暗室设备:Agilent E8363B 型矢量网络分析仪、固定天线夹具、10 米低损耗电缆两根、1米低损耗电缆一根、工控机(含天线测试系统软件)、GPIB 线、串口线、标准喇叭天线、天线测试转台、发射天线及专用支架。

工具:激光笔①将天线安装至固定天线夹具上,然后将天线按照垂直极化的方式安装在转台上,安装时需保证天线辐射体中心的铅垂投影线通过转台中心的偏差在3cm 以内(用激光笔测试),保证天线垂直极化;②将一根10m 低耗电缆的一端连接在天线的馈电端口上,另一端连接在矢量网络分析仪的PORT B 端口上;③将与发射天线相连接的另一根10m 低耗电缆的与矢量网络分析仪的PORT A 端口向连接;④调整发射天线的高度、极化,使发射天线为垂直极化,口面中心与待测天线辐射体中心同一高度,用激光笔测试偏差不超过5cm;⑤调整待测天线与发射天线的最大辐射方向,让两个天线的最大辐射方向正对,具体地,调试发射天线转台,使方位角为0º,然后,使待测天线的辐射体与发射天线正对,此处需要参考(2)-⑩-(a)记录的峰值电平及角度坐标值;⑥开启网仪,界面选择测试S21,显示格式为Log,显示比例为每纵格10dB,参考电平设置为-50dB,将起始频率和终止频率设置为1GHz 和16GHz,并设置频点f1=3.1GHz、f2=10.6GHz、f0=6.85GHz,,此时矢网的输出功率电平设置为+3dBm。

⑦记录此时矢量网络分析仪的数据,具体地,就是3 个频点对应的|S21|值,记录为|S21|xi (i=0,1,2);此时可适当地调整待测天线转台的方位角,直至各频点对应的|S21|值最大,开始记录;⑧取下待测天线,将标准天线保持垂直极化状态,安装到测试夹具上,使口面与发射天线正对,口面中心与发射天线口面中心同一高度(用激光笔测试偏差不超过5cm);⑨仿照步骤⑦记录此时矢量网络分析仪的数据,具体地,就是3 个频点对应的|S21|值,记录为|S21|xi (i=0,1,2);此时可适当地调整待测天线转台的方位角,直至各频点对应的|S21|值最大,开始记录;⑩将记录的数据按照如下公式进行计算,求出待测天线在频点f i 处的增益:G xi(dB)=G si(dB)-|S21|si(dB)+|S21|xi(dB)(i=0,1,2),G si(dB)是标准天线增益,可以查表求得。

记录及计算所得的数据均要存档备查(表I-4)。

四、实验记录3.1GHz 3.2GHz8GHz 8.2GHz8.4GHz线极化超宽带天线的H面方向图3.2GHz 3.5GHz5.0GHz 5.2GHz8GHz 8.2GHz8.4GHz线极化超宽带天线的E面方向图五、实验结论通过实验测试图可看出,此款线极化超宽带天线为全向辐射天线,H面辐射为圆形方向图(在任何辐射方向上归一化的辐射强度均大于-3dB),E面辐射为8字形方向图。

相关文档
最新文档