二次根式的加减_完美课件1
合集下载
《二次根式的加减》PPT经典课件1

进行二次根式的混合运算时,一般先将二次根式转
15 已知
试求x2+2xy+y2的值.
C.( 75- 15)÷ 3=2 5 把
代入上式得
(x+a)(x+b)=x2+(a+b)x+ab
进行二次根式的混合运算时,一般先将二次根式转
15 已知
试求x2+2xy+y2的值.
2.在二次根式的混合运算中,乘法公式(______________、___________________)仍然适用.最后结果一定要化成______________________.
21+1 +
1 3+
+ 2
1 4+
+…+ 3
把
代入上式得
进行二次根式的混合运算时,一般先将二次根式转
1 1 在进行类似于二次根式
的运算时,通常有如下两种方法将其进一步化简:
+ )×( 进行二次根式的混合运算时,一般先将二次根式转
2 018+ 2 017 2 019+ 2 018 在进行类似于二次根式
18.观察下列运算:
①由( 2+1)( 2-1)=1,得 21+1= 2-1;
②由(
3+
2)(
3-
2)=1,得
1 3+
= 2
3-
2;
③由(
4+
3)(
4-
3)=1,得1 4+源自= 34-3;
……
(1)通过观察你得出什么规律?用含 n 的式子表示出来;
(2) 利 用 (1) 中 你 发 现 的 规 律 计 算 : (
在进行类似于二次根式
的运算时,通常有如下两种方法将其进一步化简:
样,体现在:
仍然适用.
新人教版九上课件21.3 .1二次根式的加减(1)-

21.3二次根式的加减(1) 二次根式的加减( ) 二次根式的加减
问题: 问题:
现有一块长7.5dm、宽5dm的木板,能否采用 、 的木板, 现有一块长 的木板 如图的方式, 如图的方式,在这块木板上截出两个分别是 8dm2和18dm2的正方形木板? 的正方形木板?
8 + 18 化成最简二次根式) = 2 2 + 3 2 (化成最简二次根式)
先化简, 先化简,后合并
练习1: 练习 : (1) 18 − 8
= 2
(2) 75 + 27 = 8 3 1 (3) 48 + 6 =6 3 3
(4)下列计算正确的是( ) (4)下列计算正确的是(D A. 5 − 2 = 3 B.8 + 3 2 = 11 2 C.4 5 − 5 = 4
3 1 D. a − a =− a 2 2
3
解:
3 4
x
=3 3+ 5
练习2计算: (1) 80 − 20 + 5
= 5
(2) 18 + 98 − 27) = 10 2 − 3 3 ( 1 1 (3)( 24 + 0. − ( 5) − 6) = 3 6 + 2 4 8 1 1 (4) 32 − 3 + 10 0.08 − 48 = 4 2 − 3 3 2
π
d
练习4下列计算正确的是(B) A. 2x + 3 x = 5 x B.2a x − 3b x = (2a − 3b) x C.4 5 × 5 5 = 20 5 14a − 22b D. = 7 a − 11b 2
5计算: (1) 75 + 2 8 − 200 (2)2 20 − 3 45 + 80 (3)2 48 − ( 27 + 243) (4)(5 75 − 4 12) − (5 108 − 3 27)
问题: 问题:
现有一块长7.5dm、宽5dm的木板,能否采用 、 的木板, 现有一块长 的木板 如图的方式, 如图的方式,在这块木板上截出两个分别是 8dm2和18dm2的正方形木板? 的正方形木板?
8 + 18 化成最简二次根式) = 2 2 + 3 2 (化成最简二次根式)
先化简, 先化简,后合并
练习1: 练习 : (1) 18 − 8
= 2
(2) 75 + 27 = 8 3 1 (3) 48 + 6 =6 3 3
(4)下列计算正确的是( ) (4)下列计算正确的是(D A. 5 − 2 = 3 B.8 + 3 2 = 11 2 C.4 5 − 5 = 4
3 1 D. a − a =− a 2 2
3
解:
3 4
x
=3 3+ 5
练习2计算: (1) 80 − 20 + 5
= 5
(2) 18 + 98 − 27) = 10 2 − 3 3 ( 1 1 (3)( 24 + 0. − ( 5) − 6) = 3 6 + 2 4 8 1 1 (4) 32 − 3 + 10 0.08 − 48 = 4 2 − 3 3 2
π
d
练习4下列计算正确的是(B) A. 2x + 3 x = 5 x B.2a x − 3b x = (2a − 3b) x C.4 5 × 5 5 = 20 5 14a − 22b D. = 7 a − 11b 2
5计算: (1) 75 + 2 8 − 200 (2)2 20 − 3 45 + 80 (3)2 48 − ( 27 + 243) (4)(5 75 − 4 12) − (5 108 − 3 27)
二次根式的加减-PPT-课件资料

运算原理
运算律同适用
运算顺序
与实数的运 算顺序一样
布Байду номын сангаас作业
教科书第13页练习第2,3题. 第15页习题16.3第1-3题 .
希望对您的工作和学习有所帮助!
使用说明
为了更好地方便您的理解和使用,发挥本文档的价值,请在使用本文档之前仔细阅读以下说明: 本资料突出重点,注重实效。贴近实战,注重品质。适合各个成绩层次的学生查漏补缺,学习效果翻倍。本文档为 PPT格式,您可以放心修改使用。祝孩子学有所成,金榜题名。 希望本文档能够对您有所帮助!!!感谢使用
知识讲解
典型示例
例1
归纳:确定可以合并的二次根式中字母取值的方法: 利用被开方数相同,指数都为2,列关于待定字母的 方程求解即可.
知识讲解
练一练
知识讲解
加减法的运算步骤: (1)化——将非最简二次根式的二次根式化简; (2)找——找出被开方数相同的二次根式; (3)合——把被开方数相同的二次根式合并.
第 十六章 二次根式
二次根式的加减
(第1课时)
精品模版-助您成长
学习目标
1 了解二次根式的加、减运算法则.(重点) 2 会用二次根式的加、减运算法则进行简单的运算.(难点)
新课导入
知识回顾
1.同类项的概念: 所含字母相同,并且相同字母的指数也相同的项 叫做同类项.
2.合并同类项的概念: 把多项式中的同类项合并成一项,叫做合并 同类项.
3.合并同类项法则: 合并同类项后,所得项的系数是合并前各同类项 的系数的和,且字母连同它的指数不变.
新课导入
问题引入
问题1 满足什么条件的根式是最简二次根式? (1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式.
《二次根式的加减》课件1

这几个二次根式就叫做同类二次根式。 2可、直下接面根哪据些分根配式律是进最行简加二减次运根算式。,哪些不是?不是最简二次根式的,把它化简成最简二次根式。
几观个察二 下次列根式式子化各成是什__么__运__算___?__以后,如果_______相同,这几个二次根式就叫做同类二次根式 。
(4)
()
若二式次子 根式加减和运算的步是骤同: 类二次根式,求x的值。
1、判断下列各组二次根式是否为同类二次根式?
(1) 50与 0.5 1、判断下列各组二次根式是否为同类二次根式?
(只能合并被开方数相同的二次根式)
(是 )
如果所给的二次根式不是最简二次根式,
判断:下列计算是否正确?为什么?
判断几个二次根式是
(2) 12与 18 (不是 ) 同类二次根式的方法
几个二次根式化成___________以后,如果_______相同,这几个二次根式就叫做同类二次根式 。 同类二次根式的定义:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
二同次类根 二式次加根减式运的算定的义基:本几方个法二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
同二类次二 根次式根加式减的运定算义的:基几本个方二法次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
12、判 下断面下哪列些各根组式二是次最根简式二是次否根为式同,类哪二些次不根是式?不? 是最简二次根式的,把它化简成最简二次根式。
练习
152871820 2
2 8 4 12 =1
2
3 80 20 5 3 5
练习
4 18( 98 27) 1023 3
15.3 二次根式的加减运算课件(共19张PPT)

归纳总结:
二次根式的加减法: 二次根式的加减运算,其实就是将被开方数相同的项进行合并.为此,首先应将每个二次根式化为最并.
一化简二找相同的被开方数三合并.
例2 计算下列各式:
二次根式的加减法运算的步骤:(1)将每个二次根式都化为最简二次根式,若被开方数中含有带分数,则要先化成假分数;若含有小数,则要化成分数,进而化为最简二次根式;(2)原式中若有括号,要先去括号,再应用加法交换律、结合律将被开方数相同的最简二次根式进行合并.
15.3 二次根式的加减运算
第十五章 二次根式
学习目标
1.掌握二次根式加减法法则.2.熟练进行二次根式的加减混合运算.
学习重难点
掌握二次根式加减法法则.
难点
重点
熟练进行二次根式的加减混合运算.
复习巩固
最简二次根式需要满足的条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.
归纳总结:
随堂练习
C
.
6
拓展提升
D
D
归纳小结
1.二次根式的加减运算步骤:一化简二找相同的被开方数三合并.
2.二次根式加减法 首先应将每个二次根式化为最简二次根式,然后将被开方数相同的最简二次根式的项进行合并.
同学们再见!
授课老师:
时间:2024年9月15日
新知引入
知识点 二次根式的加减运算
做一做
1.计算下列各式:2.请将你的做法和大家进行交流.
含相同二次根式
合并
就像整式合并同类项那样,被开方数相同的最简二次根式也可以合并.
归纳:
可合并的二次根式的条件:(1)最简二次根式;(2)被开方数相同.
例题解析
例1 计算下列各式:
二次根式的加减法: 二次根式的加减运算,其实就是将被开方数相同的项进行合并.为此,首先应将每个二次根式化为最并.
一化简二找相同的被开方数三合并.
例2 计算下列各式:
二次根式的加减法运算的步骤:(1)将每个二次根式都化为最简二次根式,若被开方数中含有带分数,则要先化成假分数;若含有小数,则要化成分数,进而化为最简二次根式;(2)原式中若有括号,要先去括号,再应用加法交换律、结合律将被开方数相同的最简二次根式进行合并.
15.3 二次根式的加减运算
第十五章 二次根式
学习目标
1.掌握二次根式加减法法则.2.熟练进行二次根式的加减混合运算.
学习重难点
掌握二次根式加减法法则.
难点
重点
熟练进行二次根式的加减混合运算.
复习巩固
最简二次根式需要满足的条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.
归纳总结:
随堂练习
C
.
6
拓展提升
D
D
归纳小结
1.二次根式的加减运算步骤:一化简二找相同的被开方数三合并.
2.二次根式加减法 首先应将每个二次根式化为最简二次根式,然后将被开方数相同的最简二次根式的项进行合并.
同学们再见!
授课老师:
时间:2024年9月15日
新知引入
知识点 二次根式的加减运算
做一做
1.计算下列各式:2.请将你的做法和大家进行交流.
含相同二次根式
合并
就像整式合并同类项那样,被开方数相同的最简二次根式也可以合并.
归纳:
可合并的二次根式的条件:(1)最简二次根式;(2)被开方数相同.
例题解析
例1 计算下列各式:
九年级数学上册_21.3二次根式的加减第一课时课件_人教新课标版

m 1
27
4.如果最简二次根式
5
与
mn
是同类二次根式,求m、n 的值.
二次根式的加减法
合并同类二次根式:
6 3 3 3 (6 3) 3 9 3
6 36 2
合并同类项:
6ab+3ab=(6+3)ab=9ab 2+6ab3= 6ab
2 2 2 2
6 3 6 2 5 2 3 3
d
课堂小结
1、判断同类二次根式的关键是什么? (1)化成最简二次根式, (2)被开方数相同,根指数相同(都等于2) 2、二次根式加减运算的步骤: (1)把各个二次根式化成最简二次根式 (2)把各个同类二次根式合并.
(3)不是同类二次根式的不能合并.
(2)被开方数相同,根指数相同(都等于2) 1.下列各式中,哪些是同类二次根式?
1 1 (1) 2 ; (2) 75 ; (3) ; ( 4) ; (5) 3; 50 27 2 a 3 ( 6) 8ab ; (7)6b ; (8) 12 a 12b . 3 2b
1、下面给出4组根式(其中b>0)
(6 3 3 3 ) (6 2 5 2 ) 9 3 11 2
思考:二次根式的加减的一般步骤.
(1)把各个二次根式化成最简二次根式
(2)把各个同类二次根式合并.
下列计算哪些正确,哪些不正确?
⑴
⑵ ⑶ ⑷
3 2 5
(不正确) (不正确) (不正确) (正确) (不正确) a 0
人教新版九年级上
§21.3 二次根式的加减 (1)
一、观察下列单项式有什么共同特征。
-a2b
称为同类项
5a2b
2a2b
27
4.如果最简二次根式
5
与
mn
是同类二次根式,求m、n 的值.
二次根式的加减法
合并同类二次根式:
6 3 3 3 (6 3) 3 9 3
6 36 2
合并同类项:
6ab+3ab=(6+3)ab=9ab 2+6ab3= 6ab
2 2 2 2
6 3 6 2 5 2 3 3
d
课堂小结
1、判断同类二次根式的关键是什么? (1)化成最简二次根式, (2)被开方数相同,根指数相同(都等于2) 2、二次根式加减运算的步骤: (1)把各个二次根式化成最简二次根式 (2)把各个同类二次根式合并.
(3)不是同类二次根式的不能合并.
(2)被开方数相同,根指数相同(都等于2) 1.下列各式中,哪些是同类二次根式?
1 1 (1) 2 ; (2) 75 ; (3) ; ( 4) ; (5) 3; 50 27 2 a 3 ( 6) 8ab ; (7)6b ; (8) 12 a 12b . 3 2b
1、下面给出4组根式(其中b>0)
(6 3 3 3 ) (6 2 5 2 ) 9 3 11 2
思考:二次根式的加减的一般步骤.
(1)把各个二次根式化成最简二次根式
(2)把各个同类二次根式合并.
下列计算哪些正确,哪些不正确?
⑴
⑵ ⑶ ⑷
3 2 5
(不正确) (不正确) (不正确) (正确) (不正确) a 0
人教新版九年级上
§21.3 二次根式的加减 (1)
一、观察下列单项式有什么共同特征。
-a2b
称为同类项
5a2b
2a2b
《二次根式的加减法》优质课件
通过化简根式,将复杂的二次根式加 减法转化为简单的加减运算。
练习题与答案解析
题目1
计算$\sqrt{18} + \sqrt{72}$
答案
$3\sqrt{2} + 6\sqrt{2} = 9\sqrt{2}$
解析
首先化简根式,$\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}$,$\sqrt{72} = \sqrt{36 \times 2} = 6\sqrt{2}$,然后进行加法运算,$3\sqrt{2} + 6\sqrt{2} = 9\sqrt{2}$。
二次根式具有非负性,其他根式则没有此性质。
易错点
在进行二次根式的加减运算时,容易忽略二次根式的非负性,导致结果错误。
03
典型例题解析与练习
简单例题解析
01
题目
计算$\sqrt{12} + \sqrt{27}$
02 03
解析
首先化简根式,$\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}$, $\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}$,然后进行加法运算, $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$。
拓展阅读材料推荐
《数学简史》
一本介绍数学发展史的书 籍,其中涵盖了二次根式 的重要性和应用。
《数学之美》
一本介绍数学在各个领域 中的应用的书籍,包括二 次根式在物理学和经济学 中的应用。
《数学杂志》
一本学术期刊,上面有许 多关于二次根式的论文和 研究文章,可以深入了解 该领域的最新进展。
05
总结回顾与展望未来
《二次根式的加减》课件
VS
详细描述
在进行二次根式的加减运算时,有时需要 对二次根式进行合并或简化。学生在合并 或简化过程中,容易出错,导致计算结果 错误。例如,将$sqrt{5} + sqrt{2}$错误 地合并为$sqrt{7}$,或将$sqrt{4} sqrt{9}$错误地简化为$3 - 2$。
PART 05
练习与巩固
2023 WORK SUMMARY
《二次根式的加减》 ppt课件
REPORTING
目录
• 二次根式的加减概述 • 二次根式的加减运算方法 • 二次根式的加减运算实例 • 二次根式的加减易错点解析 • 练习与巩固
PART 01
二次根式的加减概述
二次根式的加减定义
定义
二次根式的加减运算是指将具有 相同被开方数的二次根式进行合 并或分离的过程。
计算
$(sqrt{5} + 2sqrt{2})(sqrt{5} 2sqrt{2})$
计算
$(sqrt{3} + sqrt{2})^{2}$
计算
$(sqrt{5} - sqrt{3})^{2}$
综合练习题
解方程
$3sqrt{2}x = 4sqrt{3}x$
解方程
$(sqrt{3} + sqrt{2})x = 5$
THANKS
感谢观看
REPORTING
解方程
$(sqrt{5} - sqrt{3})x^{2} - (sqrt{5} + sqrt{3})x = 0$
解方程组
${begin{array}{l}sqrt{2}x - sqrt{6}y = 4 sqrt{3}x + sqrt{5}y = 7 end{array}$
《二次根式的加减法》优质课件
《二次根式的加减法》优质 课件
汇报人: 2024-01-01
目录
• 二次根式的加减法概述 • 二次根式的加减法运算技巧 • 二次根式的加减法应用实例 • 二次根式的加减法易错点解析 • 二次根式的加减法练习题与解
析
01
二次根式的加减法概述
二次根式的定义与性质
二次根式的定义
形如√a(a≥0)的代数式称为二次根式,其中√表示根号,a为被开方数。
最后进行加减运算
在完成括号内运算和同类二次根式合 并后,进行加减运算。
进行同类二次根式的合并
将同类二次根式进行合并,得到最简 二次根式。
02
二次根式的加减法运算技巧
合并同类二次根式
总结词
合并同类项是二次根式加减法的基础,有助于简化计算过程。
详细描述
在二次根式加减法中,如果两个或多个二次根式具有相同的被开方数,则它们是同类二次根式。合并同类二次根 式的方法是将它们的系数相加减,根号部分不变。例如,将$sqrt{2} + sqrt{2}$简化为$2sqrt{2}$。
简化二次根式
总结词
简化二次根式是提高计算效率和准确性的关键步骤。
详细描述
简化二次根式的方法是通过因式分解、配方法等手段将被开方数化为最简形式。 例如,将$sqrt{48}$简化为$4sqrt{3}$。此外,还需注意化简后二次根式的值是 否与原式相等。
二次根式的性质
非负性、唯一性、
02
03
同类二次根式
只有同类二次根式才能进 行加减运算。
合并同类二次根式
将同类二次根式进行合并 ,得到最简二次根式。
运算顺序
先进行括号内的运算,再 进行加减运算,最后进行 乘除运算。
二次根式的加减法运算顺序
汇报人: 2024-01-01
目录
• 二次根式的加减法概述 • 二次根式的加减法运算技巧 • 二次根式的加减法应用实例 • 二次根式的加减法易错点解析 • 二次根式的加减法练习题与解
析
01
二次根式的加减法概述
二次根式的定义与性质
二次根式的定义
形如√a(a≥0)的代数式称为二次根式,其中√表示根号,a为被开方数。
最后进行加减运算
在完成括号内运算和同类二次根式合 并后,进行加减运算。
进行同类二次根式的合并
将同类二次根式进行合并,得到最简 二次根式。
02
二次根式的加减法运算技巧
合并同类二次根式
总结词
合并同类项是二次根式加减法的基础,有助于简化计算过程。
详细描述
在二次根式加减法中,如果两个或多个二次根式具有相同的被开方数,则它们是同类二次根式。合并同类二次根 式的方法是将它们的系数相加减,根号部分不变。例如,将$sqrt{2} + sqrt{2}$简化为$2sqrt{2}$。
简化二次根式
总结词
简化二次根式是提高计算效率和准确性的关键步骤。
详细描述
简化二次根式的方法是通过因式分解、配方法等手段将被开方数化为最简形式。 例如,将$sqrt{48}$简化为$4sqrt{3}$。此外,还需注意化简后二次根式的值是 否与原式相等。
二次根式的性质
非负性、唯一性、
02
03
同类二次根式
只有同类二次根式才能进 行加减运算。
合并同类二次根式
将同类二次根式进行合并 ,得到最简二次根式。
运算顺序
先进行括号内的运算,再 进行加减运算,最后进行 乘除运算。
二次根式的加减法运算顺序
二次根式的加法和减法PPT课件11张
课前反馈
如图,学校要砌一个正方形花坛,若两 个正方形的面积分别为27cm2、12cm2, 则两正方形的周长和为多少?
两个正方形的周长和为:
4 27 4 12
以上是什么运算? 如何计算?
学习目标
• 1、知道什么是同类二次根式,会辨别两 个根式是否是同类二次根式。
• 2、学会通过合并同类二次根式,进行二 次根式的加法ห้องสมุดไป่ตู้减法运算。
4- 2 2
• C、
D、
2、如果最简二次根式
的值是 2 。
可以合并,那么
• 3、计算
(1) 90 - 2 20 5 4
解
:
90 2
20 5
4
5
5
(2() 24 1) 2 2 ( 1 6)
2
38
解:
( 24
1)2
2 (
1
6)
2 38
3 10 2 2 5 5 2 5 2 6 1 2 2 6 1 2 6
(1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (3)合并同类二次根式。
一化 二找 三合并
讨论
2 3?
仿照前一题,你能算出这个题吗? 有什么发现?
类比 迁移 感悟
交流提升
• 1、下列计算正确的是( C )
• A、 3 3 - 3 2 B、 2 3 6
2 2 23 2
5
2
34
3 10 4 5 2 5 3 10 2 5
5 63 2 34
梳理巩固
1.几个二次根式化成最简二次根式后,如果它们的被开 方式相同,那么,这几个二次根式称为同类二次根式.
2、 二次根式的加减即为对同类二次根 式的合并。
如图,学校要砌一个正方形花坛,若两 个正方形的面积分别为27cm2、12cm2, 则两正方形的周长和为多少?
两个正方形的周长和为:
4 27 4 12
以上是什么运算? 如何计算?
学习目标
• 1、知道什么是同类二次根式,会辨别两 个根式是否是同类二次根式。
• 2、学会通过合并同类二次根式,进行二 次根式的加法ห้องสมุดไป่ตู้减法运算。
4- 2 2
• C、
D、
2、如果最简二次根式
的值是 2 。
可以合并,那么
• 3、计算
(1) 90 - 2 20 5 4
解
:
90 2
20 5
4
5
5
(2() 24 1) 2 2 ( 1 6)
2
38
解:
( 24
1)2
2 (
1
6)
2 38
3 10 2 2 5 5 2 5 2 6 1 2 2 6 1 2 6
(1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (3)合并同类二次根式。
一化 二找 三合并
讨论
2 3?
仿照前一题,你能算出这个题吗? 有什么发现?
类比 迁移 感悟
交流提升
• 1、下列计算正确的是( C )
• A、 3 3 - 3 2 B、 2 3 6
2 2 23 2
5
2
34
3 10 4 5 2 5 3 10 2 5
5 63 2 34
梳理巩固
1.几个二次根式化成最简二次根式后,如果它们的被开 方式相同,那么,这几个二次根式称为同类二次根式.
2、 二次根式的加减即为对同类二次根 式的合并。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式使计算准确、简便,因此能用运算公式
的,尽可能用运算公式.因为二次根式表示数,二次
根式的运算也是实数的运算.
二次根式的加减_完美课件1
二次根式的加减_完美课件1
强化训练
练习1 计算: (1)2 7( 7 -1)= _-_1_4_+_2__7_;
(2)(2 3-3 2)(- 2 3-3 2)=____6____.
二次根式的加减_完美课件1
讲授新课
计算下列各题,并注明每个步骤的依据:
问题2: 3
48 - 9
1 +3 3
12 ;
3 48-9 1 +3 12 =12 3-3 3+6 3=15 3 3
化成最简 二次根式
合并被开方 数相同的二
次根式
二次根式的加减_完美课件1
二次根式的加减_完美课件1
思考:二次根式加减,分为几个步骤?
二次根式的加减_完美课件1
二次根式的加减_完美课件1
例2 计算:
讲授新课
(1)( 2+3)( 2-5) ;(2)( 5+ 3)( 5- 3).
解:(2)( 5+ 3)( 5- 3)=( 5)2 -( 3)2
= 5-3= 2 .
思考1:(2)中,每一步的依据是什么?
每一步的依据是:平方差公式.
思考2:为什么二次根式运算中可以用运算律?
二次根式的加减_完美课件1
讲授新课
算式 8+ 18与算式 3 2- 2 有什么相同点与不同
点? 请化简算式
8+
18 ,并说出每一步化简的理由.
8+ 18=2 2+3 2 =(2+3) 2=5 2
化为最简 二次根式
用分配 律合并
整式 加减
二次根式的加减_完美课件1
二次根式的加减_完美课件1
讲授新课
二次根式的加减主要归纳为两个步骤:
第一步,先将二次根式化成最简二次根式;
第二步,再将被开方数相同的二次根式进行合并.
与有理数、实数运算一样,在混合运算中先乘除, 后加减:
(1)可以先算乘,再化简,若有相同的二次根 式进行合并,最后的目标是二次根式是最简二次根式;
(2)先算除,再化简,若有相同的二次根 式进行合并,把所有的二次根式化成最简二次根式.
5 dm
7.5 dm
8
18
8+ 18
讲授新课
问题1 怎样计算 8+ 18 ? 如果看不出 8+ 18 能否化简,我们不妨把问题简 化,先看算式 3 2- 2 能否化简.
3 2- 2 =(3-1) 2 = 2 2
用分配 整式 律合并 加减
这里的两个二次根式有什么特征? 被开方数相同,即为同类二次根式.
y )x
y( x + x y
1) y2
二次根式的加减_完美课件1
二次根式的加减_完美课件1
课时小结
(1)二次根式的加减运算分哪几步进行?每一个步骤 的依据是什么?
(2)在二次根式的加减中,主要的想法是怎样的? (3)在二次根式加减中,有哪些地方容易出现错误? (4)本节课二次根式的加减与上节课二次根式的加
二次根 式性质
分配律
整式加 减法则
8+ 18=2 2+3 2 =(2+3) 2=5 2
化为最简 二次根式
用分配 律合并
整式 加减
二次根式的加减_完美课件1
二次根式的加减_完美课件1
讲授新课
请总结二次根式加减的步骤、依据和基本思想.
步骤: “一化简、二判断、三合并”;
依据: 二次根式的性质、分配律和整式加减法则;
减有什么不同?
二次根式的加减_完美课件1
二次根式的加减_完美课件1
布置作业 作业:教科书第13页练习2;
习题16.3第1,2,4,6,7题.
二次根式的加减_完美课件1
基本思想: 把二次根式加减问题转化为整式加减问题.
二次根式的加减_完美课件1
二次根式的加减_完美课件1
讲授新课 例1 判断下列计算是否正确?为什么? (1) 8- 3= 8-3 ; × (2) 4+ 9= 4+9 ; ×
√ (3) 9 16= 9 16 ; √ (4) 75- 3=4 3 .
二次根式的加减_完美课件1
二次根式的加减_完美课件1
二次根式ቤተ መጻሕፍቲ ባይዱ加减_完美课件1
讲授新课
例2 计算: (1)( 2+3)( 2-5) ;(2)( 5+ 3)( 5- 3).
解:(1)( 2+3)( 2-5)=( 2)2 +3 2 -5 2 -15
=2-2 2 -15 = -13-2 2 ;
思考:(1)中,每一步的依据是什么? 第一步的依据是:多项式乘多项式法则; 第二步的依据是:二次根式化简,合并被开方数 相同的二次根式(依据是:分配律); 第三步的依据是:合并同类项.
二次根式的加减_完美课件1
第十六章 二次根式
16.3 二次根式的加减
二次根式的加减_完美课件1
新课导入
整式四则运算的运算法则大家比较熟悉, 那么二次根式的四则运算又该怎样进行呢? 今天我们来学习二次根式的四则混合运算.
思考 二次根式加减,分为几个步骤?
二次根式的加减主要归纳为两个步骤: 第一步,先将二次根式化成最简二次根式; 第二步,再将被开方数相同的二次根式进行合并.
练习2
计算( 24-3
15+2
2 2 ) 3
2 的结果是
( AA.)23.0 3-3 30
B.230 3- 30
C.3
30 - 2 3
3
D.2
30- 2 3
3
二次根式的加减_完美课件1
二次根式的加减_完美课件1
练习3 的值.
强化训练 已知 4x2+y2 -4x-6 y+10=0 ,求下面式子
x( x + y
引入新课
现有一块长7.5 dm、宽5 dm的木板,能否采用如
图所示的方式,在这块木板上截出两个面积分别是8
dm2和18 dm2的正方形木板? 能截出两块正方形木
7.5 dm
5 dm
板的条件是什么?能用数
8
18
学式子表示吗?
8+ 18
讲授新课
8+ 18能否进一步计算?这是一种什么运算?
能进一步计算,这 种计算是两个二次根式 的加法运算.