选修不等式选讲知识点归纳
不等式选讲资料

选修4-5 不等式选讲资料不等式选讲知识点1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。
(对称性) ②、如果a>b ,且b>c ,那么a>c ,即a>b ,b>c ⇒a>c 。
③、如果a>b ,那么a+c>b+c ,即a>b ⇒a+c>b+c 。
推论:如果a>b ,且c>d ,那么a+c>b+d .即a>b , c>d ⇒a+c>b+d . ④、如果a>b ,且c>0,那么ac>bc ;如果a>b ,且c<0,那么ac<bc .⑤、如果a>b >0,那么nn b a >(n ∈N ,且n>1) ⑥、如果a>b >0,那么n n b a >(n ∈N ,且n>1)。
3,平均值不等式定理1:如果a 、b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”号) 定理2(基本不等式):如果a ,b 是正数,那么 a +b2≥ab (当且仅当a =b 时取“=”号)说明:(1)我们称a +b2为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,因而,此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.(2)a 2+b 2≥2ab 和a +b2≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数.(3)“当且仅当”的含义是充要条件.定理3:如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时取“=”)定理4:如果+∈R c b a ,,,那么33abc c b a ≥++。
高中数学 : 选修4-5 不等式选讲

解析 原不等式等价于
x 1,
1
(x 1) (2x 2) 17
或
1 x 1, (x 1) (2x 2) 1
或
x 1, (x 1) (x 2) 1,
解得x≥2或x≤-1.
5
故原不等式的解集为{x|x≤-1或x≥2}.
考法2 与绝对值有关的恒成立、存在性等求参数范 围的问题
4.设不等式|x+1|-|x-2|>k 的解集为 R,则实数 k 的取值范围 为____________.
4-5 不等式选讲
1
聚焦核心素养
理科数学选修4-5:不 等式选讲
1.命题分析预测 从近五年的考查情况来看,选修4-5是
高考题中的选做部分,主要考查绝对值不等式的求解、
恒成立问题、存在性问题以及不等式的证明,多以解答
题的形式呈现,难度中等,分值10分.
2.学科核心素养 本章通过绝对值不等式的解法和不等 式的证明考查考生的数学运算素养,以及对分类讨论思 想和数形结合思想的应用.
上述定理还可以推广到以下两个不等式:
(1)|a1+a2+…+an|≤|a1|+|a2|+…+|an|;
(2)||a|-|b||≤|a±b|≤|a|+|b|.
2.绝对值不等式的解法
(1)含绝对值的不等式|x|<a 与|x|>a 的解法:
不等式
a>0
a=0
a<0
|x|<a
__{x_|_-__a_<__x_<_a__} _
解析
原不等式等价于
x 1, (x 1)
(x
2)
5
x 1, (x 1) (2x 2) 7
高中数学选修4-5不等式选讲导学案及课后作业加答案

第一节 不等式和绝对值不等式第一课时 不等式基本性质一、知识要点1.实数大小的比较(1)数轴上的点与实数一一对应,可以利用数轴上点的左右位置关系来规定实数的 .在数轴上,右边的数总比左边的数 .(2)如果a -b >0,则 ;如果a -b =0,则 ;如果a -b <0,则 . (3)比较两个实数a 与b 的大小,归结为判断它们的 ;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的 2.不等式的基本性质由两数大小关系的基本事实,可以得到不等式的一些基本性质: (1)如果a >b ,那么b <a ;如果b <a ,那么a >b .即 . (2)如果a >b ,b >c ,那么 .即a >b ,b >c ⇒ . (3)如果a >b ,那么a +c > .(4)如果a >b ,c >0,那么ac bc ;如果a >b ,c <0,那么ac bc . (5)如果a >b ,d c >,那么d b c a +>+ (6)如果0,0>>>>d c b a ,那么bd ac > (7)如果a >b >0,那么a n b n (n ∈N ,n ≥2). (8)如果a >b >0n ∈N ,n ≥2).3.对上述不等式的理解使用不等式的性质时,一定要清楚它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用,例如:(1)等式两边同乘以一个数仍为等式,但不等式两边同乘以同一个数c (或代数式)结果有三种:①c >0时得 不等式;②c =0时得 ;③c <0时得 不等式.(2)a >b ,c >d ⇒a +c >b +d ,即两个同向不等式可以相加,但不可以 ;而a >b >0,c >d >0⇒ac >bd ,即已知的两个不等式同向且两边为 时,可以相乘,但不可以 .(3)性质(5)、(6)成立的条件是已知不等式两边均为 ,并且n ∈N ,n ≥2,否则结论不成立.而当n 取正奇数时可放宽条件,a >b ⇒a n >b n (n =2k +1,k ∈N),a >b ⇒n a >nb (n =2k +1,k ∈N +).二、考点例题考点一 实数大小的比较[例1] 已知x ,y 均为正数,设m =1x +1y ,n =4x +y,试比较m 和n 的大小.方法规律小结 比较两个数(式子)的大不,一般用作差法,其步骤是:作差—变形—判断差的符号—结论,其中“变形”是关键,常用的方法是分解因式、配方等跟踪训练 1.已知a ,b ∈R ,比较44b a +与33ab b a +的大小.2.在数轴的正半轴上,A 点对应的实数为6a 29+a 4,B 点对应的实数为1,试判别A 点在B 点的左边,还是在B 点的右边?考点二 不等式的证明[例2] 已知a >b >0,c <d <0,e <0. 求证:e a -c >eb -d.方法规律小结 进行简单的不等式的证明,一定要建立在记准、记熟不等式性质的基础之上,如果不能直接由不等式的性质得到,可以先分析需要证明的不等式的结构,利用不等式的性质进行逆推,寻找使其成立的充分条件.跟踪训练 1.判断下列命题的真假,并简述理由. (1)若a >b ,c >d ,则ac >bd ; (2)若a >b >0,c >d >0,则a c >bd ;(3)若a >b ,c <d ,则a -c >b -d ;(4)若a >b ,则a n >b n ,n a >nb (n ∈N 且n ≥2).2.已知a ,b ,x ,y 都是正数,且1a >1b ,x >y ,求证:x x +a >yy +b.考点三 利用不等式的性质求范围[例3] (1)已知:-π2≤α<β≤π2,求α-β的范围.(2)已知:-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的范围.方法规律小结 求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础,在使用不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作差,而要转化为同向不等式后作和.跟踪训练 1.“已知-π2≤α≤π2,-π2≤β≤π2”,求α+β2,α-β2的取值范围.2.已知1≤α+β≤4,-2≤α-β≤-1,求2α-β的取值范围.三、课后作业1.设R d c b a ∈,,,,且d c b a >>,,则下列结论正确的是 ( ) A .d b c a +>+ B .d b c a ->- C .bd ac > D .cb d a > 2.下列不等式成立的是 ( )A .log 32<log 25<log 23B .log 32<log 23<log 25C .log 23<log 32<log 25D .log 23<log 25<log 32 3.设R b a ∈,,若0>-b a ,则下列不等式正确的是( )A .0>-a bB .033<+b a C .022<-b a D .0>+b a 4.若11<<<-βα,则下列各式中恒成立的是 ( )A .02<-<-βαB .12-<-<-βαC .01<-<-βαD .11<-<-βα 5.设11.->>>b a ,则下列不等式中恒成立的是 ( ) A .ba 11< B .b a 11> C .2b a > D .b a 22>6.若0,0<<<<c d a b ,则下列不等式中必成立的是( ) A .bd ac > B .dbc a > C .d b c a +>+ D .a-c>b-d 7.已知3328,8460<<<<y x ,则y x -的取值范围是 . 8.已知c b a ,,为三角形的三边长,则2a 与ac ab +的大小关系是 . 9.若b a Rc b a >∈,,,,则下列不等式成立的是 (填上正确的序号). ①b a 11< ②22b a > ③1122+>+c b c a ④c b c a > 10.已知{}正实数∈b a ,且b a ≠,比较ba ab 22+与b a +的大小. 11.已知31<+<-b a 且42<-<b a ,求b a 32+的取值范围.12.实数z y x ,,满足122-=+-z y x x 且012=++y x ,试比较z y x ,,的大小.第二课时 基本不等式一、知识要点1.基本不等式的理解重要不等式a 2+b 2≥2ab 和基本不等式a +b2≥ab ,成立的条件是不同的.前者成立的条件是 a 与b 都为实数,并且a 与b 都为实数是不等式成立的 ;而后者成立的条件是a 与b 都为正实数,并且a 与b 都为正实数是不等式成立的 ,如a =0,b ≥0仍然能使a +b2≥ab 成立.两个不等式中等号成立的充要条件都是2.由基本不等式可推出以下几种常见的变形形式(1)a 2+b 2≥2)(2b a +;(2)ab ≤a 2+b 22;(3)ab ≤(a +b 2)2;(4)(a +b 2)2≤a 2+b 22;(5)(a +b )2≥4ab .二、考点例题[例1] 已知a 、b 、c ∈R +,且a +b +c =1.求证:1a +1b +1c≥9.方法规律小结 用基本不等式证明不等式时,应首先依据不等式两边式子的结构特点进行恒等变形,使之具备基本不等式的结构和条件,然后合理地选择基本不等式进行证明.跟踪训练 1.已知a 、b 、c 是不全相等的正数,求证:abc b a c a c b c b a 6)()()(222222>+++++2.已知a ,b ,c >0,求证:a 2b +b 2c +c 2a≥a +b +c .考点二 利用基本不等式求最值 [例2] (1)求当x >0时,f (x )=2xx 2+1的值域. (2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >0,y >0,且1x +9y=1,求x +y 的最小值方法规律小结 在应用基本不等式求最值时, 分以下三步进行:(1)首先看式子能否出现和(或积)的定值,若不具备,需对式子变形,凑出需要的定值;(2)其次,看所用的两项是否同正,若不满足,通过分类解决,同负时,可提取(-1)变为同正; (3)利用已知条件对取等号的情况进行验证.若满足,则可取最值,若不满足,则可通过函数单调性或导数解决.跟踪训练 1.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是 ( )A .245B .285C .5D .62.已知x >0,y >0且5x +7y =20,求xy 的最大值. 3.若正数a 、b 满足ab =a +b +3,(1)求ab 的取值范围;(2)求a +b 的取值范围.考点三 利用基本不等式解决实际问题[例3] 某国际化妆品生产企业为了占有更多的市场份额,拟在2012年英国伦敦奥运会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x 万件与年促销费t 万元之间满足3-x 与t +1成反比例的关系,如果不搞促销活动,化妆品的年销量只能是1万件,已知2012年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需要投入32万元的生产费用,若将每件化妆品的售价定为其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完 (1)将2012年的利润y (万元)表示为促销费t (万元)的函数.(2)该企业2012年的促销费投入多少万元时,企业的年利润最大?方法规律小结 利用不等式解决实际应用问题时,首先要仔细阅读题目,弄清要解决的实际问题,确定是求什么量的最值;其次,分析题目中给出的条件,建立y 的函数表达式y =f (x )(x 一般为题目中最后所要求的量);最后,利用不等式的有关知识解题.求解过程中要注意实际问题对变量x 的范围制约.跟踪训练 1.一商店经销某种货物,根据销售情况,年进货量为5万件,分若干次等量进货(设每次进货x 件),每进一次货运费50元,且在销售完该货物时,立即进货,现以年平均x2件货储存在仓库里,库存费以每件20元计算,要使一年的运费和库存费最省,每次进货量x 应是多少? 2.围建一个面积为3602m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其他三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元). (1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.三、课后作业1.设+∈R y x ,,且满足404=+y x ,则y x lg lg +的最大值为 ( ) A .40 B .10 C .4 D .22.设+∈R y x ,且5=+y x ,则yx33+的最小值为 ( ) A .10 B .6C .4D .183.等比数列{}n a 的各项均为正数,公比1≠q ,设7593,2a a Q a a P =+=,则P 与Q 的大小关系是 ( ) A .Q P > B .Q P < C .Q P = D .无法确定 4.已知0,0≥≥b a ,且2=+b a 则 ( ) A .21≤ab B .21≥ab C .222≥+b a D .322≤+b a 5.已知在ABC ∆中,2,1==BC B ,则C 的最大值是 ( )A .6π B .2π C .4π D .3π 6.“1=a ”是“对任意正数12,≥+xax x ”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 7.若正数b a ,满足3++=b a ab ,则ab 的取值范围是 .8.已知0,0>>b a ,且12=+b a ,则2242b a ab S --=的最大值为 . 9.已知0,0>>y x 且满足6=+y x ,则使不等式m yx ≥+91恒成立的实数m 的取值范围为 . 10.已知y x b a ,,,都是正数,且1=+b a ,求证:xy ay bx by ax ≥++))((11.已知y x R y x b a ,,,,,+∈为变量,b a ,为常数,且y x ybx a b a +=+=+,1,10的最小值为18,求b a , 12.(能力挑战题)某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形休闲区1111D C B A 和环公园人行道(阴影部分)组成.已知休闲区1111D C B A 的面积为4000平方米,人行道的宽分别为4米和10米(如图所示). (1)若设休闲区的长和宽的比x C B B A =1111,求公园ABCD 所占面积S 关于x 的函数解析式.(2)要使公园所占面积最小,休闲区1111D C B A 的长和宽应如何设计?第三课时 三个数的算术几何不等式一、知识要点1.定理3如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当时,等号成立,用文字语言可叙述为:三个正数的 不小于它们的 .(1)不等式a +b +c 3≥3abc 成立的条件是: ,而等号成立的条件是:当且仅当 .(2)定理3可变形为:①abc ≤(a +b +c 3)3;②a 3+b 3+c 3≥3abc .(3)三个及三个以上正数的算术-几何平均值不等式的应用条件与前面基本不等式的应用条件是一样的,即“一正,二定,三相等”. 2.定理3的推广对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即 ,当且仅当 时,等号成立.二、考点例题考点一 用平均不等式证明不等式[例1] 已知a ,b ,c ∈R +,求证:b +c -a a +c +a -b b +a +b -cc≥3.方法规律小结 (1)不等式的证明方法较多,关键是从式子的结构入手进行分析.(2)运用三个正数的平均值不等式证明不等式时,仍要注意“一正、二定、三相等”,在解题中,若两次用平均值不等式,则只有在“相等”条件相同时,才能取到等号.跟踪训练 1. 设a 、b 、c ∈R +,求证:(a +b +c )⎝⎛⎭⎫1a +1b +1c ≥9.2.已知n a a a ,,,21⋅⋅⋅都是正数,且121=⋅⋅⋅n a a a ,求证:n a a a n 3)2()2)(2(21≥+⋅⋅⋅++考点二 用平均不等式求最值[例2] (1)求函数y =(x -1)2(3-2x )(1<x <32)的最大值.(2)求函数)1()1(42>-+=x x x y 的最小值.方法规律小结 (1)利用三个正数的算术-几何平均不等式定理求最值,可简记为“积定和最小,和定积最大”.(2)应用平均不等式定理,要注意三个条件“即一正二定三相等”同时具备时,方可取得最值,其中定值条件决定着平均不等式应用的可行性,获得定值需要一定的技巧,如:配系数、拆项、分离常数、平方变形等.跟踪训练 1.设x >0,则f (x )=4-x -12x 2的最大值为 ( )A .4-22 B .4- 2 C .不存在 D .522.已知x ,y +∈R 且42=y x ,试求x +y 的最小值及达到最小值时x 、y 的值.考点三 用平均不等式解应用题 [例3] 如图所示,在一张半径是2米的圆桌的正中央上空挂一盏电灯.大家知道,灯挂得太高了,桌子边缘处的亮度就小;挂得太低,桌子的边缘处仍然是不亮的.由物理学知道,桌子边缘一点处的照亮度E 和电灯射到桌子边缘的光线与桌子的夹角θ的正弦成正比,而和这一点到光源的距离r 的平方成反比,即E =k sin θr2.这里k 是一个和灯光强度有关的常数,那么究竟应该怎样选择灯的高度h ,才能使桌子边缘处最亮?方法规律小结 本题获解的关键是在获得了k E =·sin θcos2θ4后,对E 的表达式进行变形求得E 的最大值.解应用题时必须先读懂题意,建立适当的函数关系式,若把问题转化为求函数的最值问题,常配凑成可以用平均不等式的形式,若符合条件“一正、二定、三相等”即可求解.跟踪训练 1.已知长方体的表面积为定值S ,试问这个长方体的长、宽、高各是多少时,它的体积最大,求出这个最大值.三、课后作业1.设+∈R z y x ,,且6=++z y x ,则lgx+lgy+lgz 的取值范围是 ( ) A .(∞-,lg6] B .(∞-,3lg2] C .[lg6,+∞) D .[3lg2,+∞)2.若实数y x ,满足0>xy ,且22=y x ,则2x xy +的最小值是 ( )A .1B .2C .3D .43.若c b a ,,为正数,且1=++c b a ,则cb a 111++的最小值为 ( ) A .9 B .8 C .3 D .314.已知632=++z y x ,则zyx842++的最小值为 ( ) A .3B .2C .12D .125.当510≤≤x 时,函数)51(2x x y -=的最大值为 ( ) A .251 B .31 C .6754 D .无最大值6.设+∈R c b a ,,,且1=++c b a ,若)11)(11)(11(---=cb a M ,则必有 ( )A .810<≤MB .181<≤M C .81<≤M D .8≥M7.若0,0>>y x 且42=xy ,则y x 2+的最小值为 . 8.若记号“*”表示求两个实数a 与b 的算术平均的运算,即2ba b a +=*,则两边均含有运算“*”和“+”,且对任意3个实数c b a ,,都能成立的一个等式可以是 .9.设正数c b a ,,满足1=++c b a ,则231,231,231+++c b a 的最小值为 . 10.求函数)250()25()(2<<-=x x x x f 的最大值.11.已知y x ,均为正数,且y x >求证:3221222+≥+-+y y xy x x12.如图(1)所示,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,如图(2)所示,求这个正六棱柱容器容积的最大值.第四课时 绝对值三角不等式一、知识要点绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当 时,等号成立. 几何解释:用向量a ,b 分别替换a ,b .①当a 与b 不共线时,有|a +b|<|a |+|b |,其几何意义为: .②若a ,b 共线,当a 与b 时,|a +b |=|a |+|b |,当a 与b 时,|a +b |<|a |+|b |. 由于定理1与三角形之间的这种联系,故称此不等式为绝对值三角不等式. ③定理1的推广:如果a ,b 是实数,则||a |-|b ||≤|a ±b |≤|a |+|b |.(2)定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |.当且仅当 时,等号成立. 几何解释:在数轴上,a ,b ,c 所对应的点分别为A ,B ,C , 当点B 在点A ,C 之间时,|a -c | |a -b |+|b -c |. 当点B 不在点A ,C 之间时:①点B 在A 或C 上时,|a -c | |a -b |+|b -c |; ②点B 不在A ,C 上时,|a -c | |a -b |+|b -c |. 应用:利用该定理可以确定绝对值函数的值域和最值.二、考点例题考点一 含绝对值不等式的判断与证明[例1] 已知|A -a |<s 3,|B -b |<s 3,|C -c |<s3.求证:|(A +B +C )-(a +b +c )|<s .方法规律小结 含绝对值不等式的证明题主要分两类:一类是比较简单的不等式,往往可通过平方法、换元法去掉绝对值转化为常见的不等式证明,或利用绝对值三角不等式||a |-|b |≤|a ±b |≤|a |+|b |,通过适当的添、拆项证明;另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立,则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明跟踪训练 1.设a 、b 是满足ab <0的实数,则下列不等式中正确的是 ( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<||a |-|b || D .|a -b |<|a |+|b |2.设ε>0,|x -a |<ε4,|y -a |<ε6.求证:|2x +3y -2a -3b |<ε.考点二 绝对值不等式三角形的应用[例2] (1)求函数y =|x -3|-|x +1|的最大值和最小值.(2)设a ∈R ,函数)11()(2≤≤--+=x a x ax x f .若|a |≤1,求|f (x )|的最大值.方法规律小结 (1)利用绝对值不等式求函数最值,要注意利用绝对值的性质进行转化,构造绝对值不等式的形式.(2)求最值时要注意等号成立的条件,它也是解题的关键.跟踪训练 1.若a ,b ∈R ,且|a |≤3,|b |≤2则|a +b |的最大值是________,最小值是________2.求函数f (x )=|x -1|+|x +1|的最小值.3.若对任意实数,不等式|x +1|-|x -2|>a 恒成立,求a 的取值范围.三、课后作业1.已知实数b a ,满足0<ab ,下列不等式成立的是 ( )A .b a b a ->+B .b a b a -<+C .b a b a -<-D .b a b a +<- 2.设1,1<<b a ,则b a b a -++与2的大小关系是 ( )A .2>-++b a b aB .2<-++b a b aC .2=-++b a b aD .不能比较大小 3.若关于x 的不等式a x x <++-32的解集为∅,则实数a 的取值范围为( ) A .(∞-,1] B .(∞-,1) C .(∞-,5] D .(∞-,5)4.不等式a a x x 3132-≥-++对任意实数x 恒成立,则实数a 的取值范围为 ( ) A .[1-,4] B .(∞-,1-]∪[4,+∞) C .(∞-,2-]∪[5,+∞) D .[2-,5] 5.若不等式a x x ≥-+622对于一切实数x 均成立,则实数a 的最大值是 ( ) A .7 B .9 C .5 D .116.对于实数y x ,,若12,11≤-≤-y x ,则12+-y x 的最大值为 ( ) A .5 B .4 C .8 D .77.已知13)(+=x x f ,若当b x <-1时,有),0(,,4)(+∞∈<-b a a x f ,则b a ,满足的关系为 . 8.若N n x ∈<,5,则下列不等式:①1lg 51lg+<+n n n n x ②1lg 51lg +<+n nn n x ③1lg 51lg+<+n n n n x ④1lg 51lg +<+n nn n x 其中能够成立的有 .(填序号) 9.若关于x 的不等式21-++≥x x a 存在实数解,则实数a 的取值范围是 .10.已知函数41)(,23)(++-=--=x x g x x f ,若函数1)()(+≥-m x g x f 的解集为R ,求m 的取值范围.11.已知函数1,13)(2<-+-=a x x x x f .求证:)1)((2)()(+<-a f a f x f .12.两个加油站B A ,位于某城市东akm 和bkm 处(b a <),一卡车从该城市出发,由于某种原因,它需要往返B A ,两加油站,问它行驶在什么情况下到两加油站的路程之和是一样的?第五课时 绝对值不等式的解法一、知识要点1.|ax +b |≤c ,|ax +b |≥c (c >0)型不等式的解法只需将ax +b 看成一个整体,即化成|x |≤a ,|x |≥a (a >0)型不等式求解.|ax +b |≤c (c >0)型不等式的解法:先化为 ,再由不等式的性质求出原不等式的解集. 不等式|ax +b |≥c (c >0)的解法:先化为 或 ,再进一步利用不等式性质求出原不等式的解集 2.|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 型不等式的解法①利用绝对值不等式的 求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键.②以绝对值的 为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负性,进而去掉绝对值符号是解题关键.③通过构造函数,利用函数的图像求解,体现函数与方程的思想,正确求出函数的零点并画出函数图像(有时需要考查函数的增减性)是解题关键.二、考点例题考点一 c b ax ≤+和)0(>≥+c c b ax 型不等式的解法[例1] 解下列不等式: (1)|5x -2|≥8;(2)2≤|x -2|≤4.方法规律小结 |ax +b |≥c 和|ax +b |≤c 型不等式的解法:①当c >0时,|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c ,|ax +b |≤c ⇔-c ≤ax +b ≤c . ②当c =0时,|ax +b |≥c 的解集为R ,|ax +b |<c 的解集为∅. ③当c <0时,|ax +b |≥c 的解集为R ,|ax +b |≤c 的解集为∅. 跟踪训练 1.解下列不等式:(1)|3-2x |<9;(2)|x -2x -2|>2x -3x -4;(3)|2x -3x -4|>x +1(4)213+<-x x (5)x x ->-213 (6) |2||1|x x -<+ (7)4|23|7x <-≤ (8)01222<---x x x2.已知{23}A x x a =-<,{B x x =≤10},且A B ⊂≠,求实数a 的范围.考点二 c b x a x ≤-+-和c b x a x ≥-+-型不等式的解法[例2] 解不等式|x -3|-|x +1|<1.方法规律小结 |x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的三种解法:分区间(分类)讨论法、图像法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图像法直观,但只适用于数据较简单的情况 跟踪训练1.解不等式|x -2|-|x +7|≤3 2.解不等式|2x -1|+|3x +2|≥8. 3.解不等式512≥-+-x x 考点三 含绝对值不等式恒成立的问题 [例3] 已知不等式|x +2|-|x +3|>m .(1)若不等式有解; (2)若不等式解集为R ;(3)若不等式解集为∅,分别求出m 的范围.方法规律小结 问题(1)是存在性问题,只要求存在满足条件的x 即可;不等式解集为R 或为空集时,不等式为绝对不等式或矛盾不等式,属于恒成立问题,恒成立问题f (x )<a 恒成立⇔a x f <max )(,f (x )>a 恒成立⇔a x f >min )(跟踪训练 1.把本例中的“>”改成“<”,即|x +2|-|x +3|<m 时,分别求出m 的范围.2.把本例中的“-”改成“+”,即|x +2|+|x +3|>m 时,分别求出m 的范围.3.不等式 31++-x x >a ,对一切实数x 都成立,则实数a 的取值范围是 4.已知关于x 的不等式|x +2|+|x -3|<a 的解集是非空集合,则实数a 的取值范围是_________.课堂练习1..1122>-x 2.01314<--x 3.423+≤-x x . 4.x x -≥+21. 5.1422<--x x 6.212+>-x x . 7.42≥-+x x8..631≥++-x x 9.21<++x x 10..24>--x x 11.已知不等式a x ≤-2)0(>a 的解集为{}c x R x <<-∈1|,求c a 2+的值12.解关于x 的不等式2||x a a -<(a R ∈)13.解关于x 的不等式:① 解关于x 的不等式31<-mx ;② a x <-+132)(R a ∈三、课后作业1.若11+>+x xx x ,则实数x 的取值范围是 ( ) A .(1-,0) B .[1-,0] C .(∞-, 1-)∪(0,∞+) D .(,∞-1-]∪[0,∞+ 2.若1>a ,则不等式1>+a x 的解集是 ( )A .{}a x a x -<<-11B .{}a x a x x ->-<11或 C .∅ D .R 3.已知集合{}{}312,0652>-=≤+-=x x B x x x A ,则B A 等于 ( ) A .[]3,2 B .[)3,2 C .(]3,2 D .)3,1(- 4.若规定bc ad dc b a -=,则不等式0111log2<x的解集为 ( )A .(0,1)B .(1,2)C .(0, 2)D .(0,1)∪(1,2)5.不等式a xax >-1的解集为M ,且M ∉2,则a 的取值范围为 ( ) A .⎪⎭⎫⎝⎛+∞,41 B .⎪⎭⎫⎢⎣⎡+∞,41 C .⎪⎭⎫ ⎝⎛21,0 D .⎥⎦⎤ ⎝⎛21,0 6.已知)2(log ax y a -=在(0,1)上是增函数,则不等式3log 1log ->+x x a a 的解集为 ( ) A .{}1-<x x B .{}1<x x C .{}11-≠<x x x 且 D .{}1>x x7.设2,,>-∈b a R b a ,则关于实数x 的不等式2>-+-b x a x 的解集是 . 8.在实数范围内,不等式112≤--x |的解集为 .9.若关于x 的不等式0212<++-a x ax 的解集为空集,则实数a 的取值范围是 . 10.已知R a ∈,设关于x 的不等式4232+≥++-x x a x 的解集为A (1)若1=a ,求A(2)若R A =,求a 的取值范围.11.已知实数b a ,满足:关于x 的不等式164222--≤++x x b ax x 对一切R x ∈均成立. (1)请验证8,2-=-=b a 满足题意.(2)求出所有满足题意的实数b a ,,并说明理由.(3)若对一切2>x ,均有不等式15)2(2--+≥++m x m b ax x 成立,求实数m 的取值范围. 12.已知关于x 的不等式1+>ax a 的解集为{}0≤x x 的子集,求a 的取值范围.第二节 证明不等式的基本方法第一课时 比较法一、知识要点1.作差比较法(1)作差比较法的理论依据a -b >0⇔ ,a -b <0⇔ ,a -b =0⇔ . (2)作差比较法解题的一般步骤:①作差;②变形整理,③判定符号,④得出结论. 其中变形整理是解题的关键,变形整理的目的是为了能够直接判定 ,常用的手段有:因式分解,配方,通分,分子或分母有理化等. 2.作商比较法(1)作商比较法的理论依据是不等式的基本性质:①b >0,若 ,则a >b ;若 则a <b ; ②b <0,若 则a <b ;若 则a >b .(2)作商比较法解题的一般步骤:①判定a ,b 符号;②作商;③变形整理;④判定 ;⑤得出结论.二、考点例题考点一 作差比较法证明不等式[例1] 设△ABC 的三边长分别是a 、b 、c ,求证:2)()(4c b a ac bc ab ++>++方法规律小结 (1)作差比较法中,变形具有承上启下的作用,变形的目的在于判断差的符号,而不用考虑差能否化简或值是多少.(2)变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.(3)因式分解是常用的变形手段,为了便于判断“差式”的符号,常将“差式”变形为一个常数,或几个因式积的形式,当所得的“差式”是某字母的二次三项式时,常用配方法判断符号.有时会遇到结果符号不能确定,这时候要对差式进行分类讨论. 跟踪训练 1.求证:)1(222--≥+b a b a2.已知a ,b ∈R +,n ∈N +,求证:)(2))((11+++≤++n n nnb ab a b a考点二 作商比较法证明不等式 [例2] 设a >0,b >0,求证:2)(b a baab b a +≥方法规律小结 当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法,用作商比较法时,如果需要在不等式两边同乘某个数,要注意该数的正负,且最后结果与1比较.跟踪训练 1.设0>>b a ,求证:b a ba ba b a +->+-2222.2.如果a ,b 都是正数,且a ≠b ,求证422466b a b a b a +>+考点三 比较法的实际应用[例3] 甲、乙二人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半以速度n 行走;乙有一半路程以速度m 行走,另一半路程以速度n 行走.如果m ≠n ,问甲、乙二人谁先到达指定地点? 方法规律小结 应用不等式解决实际问题时, 关键是如何把等量关系、不等量关系转化为不等式的问题来解决.也即建立数学模型是解应用题的关键,最后利用不等式的知识来解.在实际应用不等关系问题时,常用比较法来判断数的大小关系,若是选择题或填空题则可用特殊值加以判断.跟踪训练5.某人乘出租车从A 地到B 地,有两种方案;第一种方案:乘起步价为10元.每千米1.2元的出租车,第二种方案:乘起步价为8元,每千米1.4元的出租车.按出租车管理条例,在起步价内.不同型号的出租车行驶的路程是相等的,则此人从A 地到B 地选择哪一种方案比较合适?三、课后作业1.设m b a ,,都是正数,且b a <,则下列不等式中恒成立的是 ( )A .1<++<m b m a b a B .m b m a b a ++≥ C .1≤++≤m b m a b a D .bam b m a <++<12.“1>a ”是“11<a”的 ( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 3.设b a B b a A R b a +=+=∈+,,,,则B A ,的大小关系是 ( )A .B A ≥ B .B A ≤C .B A >D .B A <4.已知下列不等式:①x x 232>+;②322355b a b a b a +>+;③)1(222--≥+b a b a .其中正确的个数为 ( )A .0B .1C .2D .3 5.设0,0>>b a ,下列不等式中不正确的是 ( )A .ab b a 222≥+ B .2≥+b a a b C .b a b a a b +≥+22D .ba b a +≤+111 6.在等比数列{}n a 和等差数列{}n b 中,313311,0,0a a b a b a ≠>=>=则5a 与5b 的大小关系为 ( ) A .55b a > B .55b a < C .55b a = D .不确定 7.已知xc x b x a x -=+==<<11,1,2,10,则其中最大的是 . 8.若x 是正数,且23=-x x ,则x 与45的大小关系为 .9.设)0,0(2,2121>>+=+=b a ba Bb a A 则B A ,的大小关系为 .10.已知0,0>>b a ,求证:b a ab ba +≥+11.若n m b a ,,,都为正实数,且1=+n m 求证:b n a m nb ma +≥+12.已知函数b ax x x f ++=2)(,当q p ,满足1=+q p 时,证明:)()()(qy px f y qf x pf +≥+对于任意实数y x ,都成立的充要条件是10≤≤p .第二课时 综合法与分析法一、知识要点1.综合法(1)证明的特点:综合法又叫顺推证法或 法,是由 和某些数学定义、公理、定理等,经过一系列的 ,最后推出所要证明的结论成立. (2)证明的框图表示:用P 表示已知条件或已有的不等式,用Q 表示所要证明的结论,则综合法可用框图表示为 P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→……→Q n ⇒Q2.分析法(1)证明的特点:分析法又叫逆推证法或 法,是从要证明的不等式出发,逐步寻找使它成立的 条件.直到最后把要证明的不等式转化为判定一个已知或明显成立的不等式为止. (2)证明过程的框图表示:用Q 表示要证明的不等式,则分析法可用框图表示为Q ⇐P 1→P 1⇐P 2→P 1⇐P 3→……→得到一个明显成立的条件二、考点例题[例1] 已知x >0,y >0,且x +y =1,求证:(1+1x )·(1+1y)≥9.方法规律小结 综合法证明不等式,揭示出条件和结论之间的因果联系,为此要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键跟踪训练 1.已知a ,b ,c ∈R +,证明不明式:a +b +c ≥ab +bc +ca ,当且仅当a =b =c 时取等号.2.已知a ,b ,c 都是实数,求证:a 2+b 2+c 2≥13(a +b +c )2≥ab +bc +ca .考点二 用分析法证明不等式[例2] 已知x >0,y >0,求证31332122)()(y x y x +>+方法规律小结(1)当所证不等式与重要不等式、基本不等式没有什么直接联系,或条件与结论之间的关系不明显时,可用分析法来寻找证明途径.(2)分析法证明的关键是推理的每一步都必须可逆. 跟踪训练 1.求证:3+7<2 52.a ,b ∈R +,且2c >a +b .求证:c -c 2-ab <a <c +c 2-ab .考点三 综合法和分析法的综合应用[例3] 设a >0,b >0,且a +b =1,求证:a +1+b +1≤ 6.方法规律小结(1)通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式易于证明. (2)有些不等式的证明,需要一边分析一边综合,称之为分析综合法,或称“两头挤”法,如本例,这种方法充分表明了分析法与综合法之间互为前提,互相渗透,相互转化的辩证统一关系.跟踪训练1.已知a ,b ,c 都是正数,求证:2⎝⎛⎭⎫a +b 2-ab ≤3⎝ ⎛⎭⎪⎫a +b +c 3-3abc . 三、课后作业。
选修4-5 不等式选讲

选修4-5不等式选讲第一节绝对值不等式一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点一 绝对值不等式的解法[典例] (2016·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|.(1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.[解] (1)由题意得f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或1<x <3或x >5.[题组训练]1.解不等式|x +1|+|x -1|≤2. 解:当x <-1时,原不等式可化为-x -1+1-x ≤2, 解得x ≥-1,又因为x <-1,故无解; 当-1≤x ≤1时,原不等式可化为x +1+1-x =2≤2,恒成立; 当x >1时,原不等式可化为x +1+x -1≤2, 解得x ≤1,又因为x >1,故无解;综上,不等式|x +1|+|x -1|≤2的解集为[-1,1]. 2.(2019·沈阳质检)已知函数f (x )=|x -a |+3x ,其中a ∈R . (1)当a =1时,求不等式f (x )≥3x +|2x +1|的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =1时,f (x )=|x -1|+3x .法一:由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0, 当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解; 当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.∴不等式的解集为{x |-2≤x ≤0}.法二:由f (x )≥3x +|2x +1|,得|x -1|≥|2x +1|, 两边平方,化简整理得x 2+2x ≤0, 解得-2≤x ≤0,∴不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0,可得⎩⎪⎨⎪⎧ x ≥a ,4x -a ≤0或⎩⎪⎨⎪⎧x <a ,2x +a ≤0,即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2.当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-a 2. 由-a2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不合题意.当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤a 4.由a4=-1,得a =-4. 综上,a =2或a =-4.考点二 绝对值不等式性质的应用[典例] (2019·湖北五校联考)已知函数f (x )=|2x -1|,x ∈R . (1)解不等式f (x )<|x |+1;(2)若对x ,y ∈R ,有|x -y -1|≤13,|2y +1|≤16,求证:f (x )<1.[解] (1)∵f (x )<|x |+1,∴|2x -1|<|x |+1,即⎩⎪⎨⎪⎧ x ≥12,2x -1<x +1或⎩⎪⎨⎪⎧0<x <12,1-2x <x +1或⎩⎪⎨⎪⎧x ≤0,1-2x <-x +1,得12≤x <2或0<x <12或无解. 故不等式f (x )<|x |+1的解集为{x |0<x <2}.(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=56<1.故不等式f (x )<1得证.[解题技法] 绝对值不等式性质的应用利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.[题组训练]1.求函数f (x )=|x +2 019|-|x -2 018|的最大值.解:因为f (x )=|x +2 019|-|x -2 018|≤|x +2 019-x +2 018|=4 037, 所以函数f (x )=|x +2 019|-|x -2 018|的最大值为4 037. 2.若x ∈[-1,1],|y |≤16,|z |≤19,求证:|x +2y -3z |≤53.证明:因为x ∈[-1,1],|y |≤16,|z |≤19,所以|x +2y -3z |≤|x |+2|y |+3|z |≤1+2×16+3×19=53,所以|x +2y -3z |≤53成立.考点三 绝对值不等式的综合应用[典例] (2018·合肥质检)已知函数f (x )=|2x -1|. (1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围. [解] (1)f (x )-f (x +1)≤1⇔|2x -1|-|2x +1|≤1,则⎩⎪⎨⎪⎧ x ≥12,2x -1-2x -1≤1或⎩⎪⎨⎪⎧ -12<x <12,1-2x -2x -1≤1或⎩⎪⎨⎪⎧x ≤-12,1-2x +2x +1≤1, 解得x ≥12或-14≤x <12,即x ≥-14,所以原不等式的解集为⎣⎡⎭⎫-14,+∞. (2)由条件知,不等式|2x -1|+|2x +1|<m 有解, 则m >(|2x -1|+|2x +1|)min 即可.由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2,当且仅当(1-2x )(2x +1)≥0,即x ∈⎣⎡⎦⎤-12,12时等号成立,故m >2.所以m 的取值范围是(2,+∞). [解题技法] 两招解不等式问题中的含参问题 (1)转化①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)求最值求含绝对值的函数最值时,常用的方法有三种: ①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||; ③利用零点分区间法. [题组训练]1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x <-1,2,-1≤x ≤2,-2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1,当-1≤x ≤2时,显然满足题意, 当x >2时,由-2x +6≥0,解得2<x ≤3, 故f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2.(2018·广东珠海二中期中)已知函数f (x )=|x +m |+|2x -1|(m ∈R ),若关于x 的不等式f (x )≤|2x +1|的解集为A ,且⎣⎡⎦⎤34,2⊆A ,求实数m 的取值范围.解:∵⎣⎡⎦⎤34,2⊆A ,∴当x ∈⎣⎡⎦⎤34,2时,不等式f (x )≤|2x +1|恒成立, 即|x +m |+|2x -1|≤|2x +1|在x ∈⎣⎡⎦⎤34,2上恒成立, ∴|x +m |+2x -1≤2x +1,即|x +m |≤2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴-2≤x +m ≤2,∴-x -2≤m ≤-x +2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴(-x -2)max ≤m ≤(-x +2)min ,∴-114≤m ≤0,故实数m 的取值范围是⎣⎡⎦⎤-114,0. [课时跟踪检测]1.求不等式|2x -1|+|2x +1|≤6的解集.解:原不等式可化为⎩⎪⎨⎪⎧ x <-12,1-2x -2x -1≤6或⎩⎪⎨⎪⎧-12≤x ≤12,1-2x +2x +1≤6或⎩⎪⎨⎪⎧x >12,2x -1+2x +1≤6.解得-32≤x ≤32,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-32≤x ≤32. 2.已知函数f (x )=|x -4|+|x -a |(a ∈R )的最小值为a . (1)求实数a 的值; (2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a , 从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2;当2<x ≤4时,显然不等式成立; 当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤112. 3.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解:(1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >12. (2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <2a , 所以2a ≥1,故0<a ≤2.综上,a 的取值范围为(0,2]. 4.设函数f (x )=|3x -1|+ax +3. (1)若a =1,解不等式f (x )≤4;(2)若f (x )有最小值,求实数a 的取值范围. 解:(1)当a =1时,f (x )=|3x -1|+x +3≤4, 即|3x -1|≤1-x ,x -1≤3x -1≤1-x ,解得0≤x ≤12,所以f (x )≤4的解集为⎣⎡⎦⎤0,12. (2)因为f (x )=⎩⎨⎧(3+a )x +2,x ≥13,(a -3)x +4,x <13,所以f (x )有最小值的充要条件为⎩⎪⎨⎪⎧a +3≥0,a -3≤0,解得-3≤a ≤3,即实数a 的取值范围是[-3,3].5.(2019·贵阳适应性考试)已知函数f (x )=|x -2|-|x +1|. (1)解不等式f (x )>-x ;(2)若关于x 的不等式f (x )≤a 2-2a 的解集为R ,求实数a 的取值范围. 解:(1)原不等式等价于f (x )+x >0,不等式f (x )+x >0可化为|x -2|+x >|x +1|, 当x <-1时,-(x -2)+x >-(x +1),解得x >-3,即-3<x <-1; 当-1≤x ≤2时,-(x -2)+x >x +1,解得x <1,即-1≤x <1; 当x >2时,x -2+x >x +1,解得x >3,即x >3,综上所述,不等式f (x )+x >0的解集为{x |-3<x <1或x >3}. (2)由不等式f (x )≤a 2-2a 可得|x -2|-|x +1|≤a 2-2a ,∵|x -2|-|x +1|≤|x -2-x -1|=3,当且仅当x ∈(-∞,-1]时等号成立, ∴a 2-2a ≥3,即a 2-2a -3≥0,解得a ≤-1或a ≥3. ∴实数a 的取值范围为(-∞,-1]∪[3,+∞). 6.已知函数f (x )=|x -a |+|x +1|.(1)若a =2,求不等式f (x )>x +2的解集;(2)如果关于x 的不等式f (x )<2的解集不是空集,求实数a 的取值范围. 解:(1)当a =2时,f (x )=⎩⎪⎨⎪⎧-2x +1,x <-1,3,-1≤x <2,2x -1,x ≥2,不等式f (x )>x +2等价于⎩⎪⎨⎪⎧ x <-1,-2x +1>x +2或⎩⎪⎨⎪⎧ -1≤x <2,3>x +2或⎩⎪⎨⎪⎧x ≥2,2x -1>x +2,解得x <1或x >3,故原不等式的解集为{x |x <1或x >3}.(2)∵f (x )=|x -a |+|x +1|≥|(x -a )-(x +1)|=|a +1|,当(x -a )(x +1)≤0时取等号. ∴若关于x 的不等式f (x )<2的解集不是空集,只需|a +1|<2, 解得-3<a <1,即实数a 的取值范围是(-3,1). 7.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3, 即⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x ≥3-a 2. 又⎝⎛⎭⎫⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x min =⎪⎪⎪⎪12-a 2, 所以⎪⎪⎪⎪12-a 2≥3-a 2,解得a ≥2. 所以a 的取值范围是[2,+∞).8.(2018·福州质检)设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围.解:(1)因为f (x )≤3-f (x -1),所以|x -1|≤3-|x -2|⇔|x -1|+|x -2|≤3⇔⎩⎪⎨⎪⎧ x <1,3-2x ≤3或⎩⎪⎨⎪⎧1≤x ≤2,1≤3或 ⎩⎪⎨⎪⎧x >2,2x -3≤3, 解得0≤x <1或1≤x ≤2或2<x ≤3, 所以0≤x ≤3,故不等式f (x )≤3-f (x -1)的解集为[0,3]. (2)因为⎝⎛⎭⎫1,32⊆M , 所以当x ∈⎝⎛⎭⎫1,32时,f (x )≤f (x +1)-|x -a |恒成立,而f (x )≤f (x +1)-|x -a |⇔|x -1|-|x |+|x -a |≤0⇔|x -a |≤|x |-|x -1|, 因为x ∈⎝⎛⎭⎫1,32,所以|x -a |≤1,即x -1≤a ≤x +1, 由题意,知x -1≤a ≤x +1对于任意的x ∈⎝⎛⎭⎫1,32恒成立, 所以12≤a ≤2,故实数a 的取值范围为⎣⎡⎦⎤12,2.第二节 不等式的证明一、基础知识1.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.(3)定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b .(2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点一 比较法证明不等式[典例] 已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2 =a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |. [题组训练]1.当p ,q 都是正数且p +q =1时,求证:(px +qy )2≤px 2+qy 2. 解:(px +qy )2-(px 2+qy 2) =p 2x 2+q 2y 2+2pqxy -(px 2+qy 2) =p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0,所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立. 2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b(ab )+2a b =⎝⎛⎭⎫a b -2a b ,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b.考点二 综合法证明不等式[典例] (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,∴(a +b )3≤8,因此a +b ≤2.[解题技法] 综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.[题组训练]1.设a ,b ,c ,d 均为正数,若a +b =c +d ,且ab >cd ,求证:a +b >c +d . 证明:因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd . 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此 a +b >c +d .2.(2018·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧ x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧ 0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6, 解得-1<x <9,∴m =-1,n =9.(2)证明:由(1)知9x +y =1,又x >0,y >0, ∴⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,∴1x +1y ≥16,即x +y ≥16xy . 考点三 分析法证明不等式[典例] (2019·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解] (1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2,得-1<x <1,即A ={x |-1<x <1}. (2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立. 综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解题技法] 分析法证明不等式应注意的问题(1)注意依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论. (2)注意从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)注意恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语. [题组训练]1.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a . 证明:由a >b >c 且a +b +c =0, 知a >0,c <0. 要证b 2-ac <3a , 只需证b 2-ac <3a 2.∵a +b +c =0,∴只需证b 2+a (a +b )<3a 2, 即证2a 2-ab -b 2>0, 即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0, ∴(a -b )(a -c )>0显然成立, 故原不等式成立. 2.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ;(2)设a ,b ∈M ,求证:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[课时跟踪检测]1.已知△ABC 的三边a ,b ,c 的倒数成等差数列,试用分析法证明:∠B 为锐角. 证明:要证∠B 为锐角,只需证cos B >0, 所以只需证a 2+c 2-b 2>0, 即a 2+c 2>b 2,因为a 2+c 2≥2ac , 所以只需证2ac >b 2, 由已知得2ac =b (a +c ).所以只需证b (a +c )>b 2,即a +c >b ,显然成立. 所以∠B 为锐角.2.若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.(2019·南宁模拟)(1)解不等式|x +1|+|x +3|<4; (2)若a ,b 满足(1)中不等式,求证:2|a -b |<|ab +2a +2b |.解:(1)当x <-3时,|x +1|+|x +3|=-x -1-x -3=-2x -4<4,解得x >-4,所以 -4<x <-3;当-3≤x <-1时,|x +1|+|x +3|=-x -1+x +3=2<4恒成立, 所以-3≤x <-1;当x ≥-1时,|x +1|+|x +3|=x +1+x +3=2x +4<4,解得x <0,所以-1≤x <0. 综上,不等式|x +1|+|x +3|<4的解集为{x |-4<x <0}. (2)证明:因为4(a -b )2-(ab +2a +2b )2 =-(a 2b 2+4a 2b +4ab 2+16ab ) =-ab (b +4)(a +4)<0, 所以4(a -b )2<(ab +2a +2b )2, 所以2|a -b |<|ab +2a +2b |.4.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,求证:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1, 解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1, 解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}. (2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数, ∴g (x )≤g (0)=0. 故x [f (x )]2-x 2f (x )≤0.5.(2019·西安质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎩⎪⎨⎪⎧-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1,即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3, 当且仅当(2x -1)(2x +2)≤0,即-1≤x ≤12时取等号,∴M =[3,+∞).t 2+1-3t -3t =t 3-3t 2+t -3t =(t -3)(t 2+1)t ,∵t ∈M ,∴t -3≥0,t 2+1>0, ∴(t -3)(t 2+1)t ≥0,∴t 2+1≥3t+3t .6.(2019·长春质检)已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎪⎨⎪⎧-5x +9,x <32,-x +3,32≤x ≤2,5x -9,x >2.作出函数f (x )的图象如图所示.由图象可知,f (x )<2的解集为⎝⎛⎭⎫75,115. (2)证明:由图象可知f (x )的最小值为1, 由基本不等式可知a +b2≤ a +b2= 14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 7.已知函数f (x )=|2x -1|-⎪⎪⎪⎪x +32. (1)求不等式f (x )<0的解集M ;(2)当a ,b ∈M 时,求证:3|a +b |<|ab +9|.解:(1)f (x )=⎩⎪⎨⎪⎧52-x ,x <-32,-3x -12,-32≤x ≤12,x -52,x >12.当x <-32时,f (x )<0,即52-x <0,无解;当-32≤x ≤12时,f (x )<0,即-3x -12<0,得-16<x ≤12;当x >12时,f (x )<0,即x -52<0,得12<x <52.综上,M =⎩⎨⎧⎭⎬⎫x ⎪⎪-16<x <52. (2)证明:要证3|a +b |<|ab +9|,只需证9(a 2+b 2+2ab )<a 2b 2+18ab +81, 即证a 2b 2-9a 2-9b 2+81>0, 即证(a 2-9)(b 2-9)>0.因为a ,b ∈M ,所以-16<a <52,-16<b <52,所以a 2-9<0,b 2-9<0, 所以(a 2-9)(b 2-9)>0, 所以3|a +b |<|ab +9|.8.已知函数f (x )=m -|x +4|(m >0),且f (x -2)≥0的解集为[-3,-1]. (1)求m 的值;(2)若a ,b ,c 都是正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)法一:依题意知f (x -2)=m -|x +2|≥0, 即|x +2|≤m ⇔-m -2≤x ≤-2+m .由题意知不等式的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,-2+m =-1,解得m =1.法二:因为不等式f (x -2)≥0的解集为[-3,-1],所以-3,-1为方程f (x -2)=0的两根,即-3,-1为方程m -|x +2|=0的两根,所以⎩⎪⎨⎪⎧m -|-3+2|=0,m -|-1+2|=0,解得m =1.(2)证明:由(1)可知1a +12b +13c=1(a ,b ,c >0),所以a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫a 2b +2b a +⎝⎛⎭⎫a 3c +3c a +⎝⎛⎭⎫2b 3c +3c2b ≥9,当且仅当a =2b =3c ,即a =3,b =32,c =1时取等号。
不等式知识点总结

不等式知识点总结一、不等式的基本概念。
1. 不等式的定义。
- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。
例如:3x + 2>5,x - 1≤slant2x等。
2. 不等式的解与解集。
- 不等式的解:使不等式成立的未知数的值叫做不等式的解。
例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。
- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。
3. 解不等式。
- 求不等式解集的过程叫做解不等式。
例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。
二、不等式的基本性质。
1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。
例如5>3,那么3 < 5。
2. 性质2(传递性)- 如果a>b,b>c,那么a>c。
例如7>5,5>3,那么7>3。
3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。
例如3>1,那么3+2>1 + 2,即5>3。
- 推论:如果a>b,c>d,那么a + c>b + d。
例如4>2,3>1,那么4 + 3>2+1,即7>3。
4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。
例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。
高中数学知识点总结(不等式选讲 第二节 不等式的证明)

第二节 不等式的证明一、基础知识1.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.(3)定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b . (2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点一 比较法证明不等式[典例] 已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2 =a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |. [题组训练]1.当p ,q 都是正数且p +q =1时,求证:(px +qy )2≤px 2+qy 2. 解:(px +qy )2-(px 2+qy 2) =p 2x 2+q 2y 2+2pqxy -(px 2+qy 2) =p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0,所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立. 2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b ab+2a b =⎝⎛⎭⎫a b -2a b ,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b.考点二 综合法证明不等式[典例] (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3a +b 24(a +b )=2+3a +b 34,∴(a +b )3≤8,因此a +b ≤2.[解题技法] 综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.[题组训练]1.设a ,b ,c ,d 均为正数,若a +b =c +d ,且ab >cd ,求证:a +b >c +d . 证明:因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd . 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此 a +b >c +d .2.(2018·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧ x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧ 0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6, 解得-1<x <9,∴m =-1,n =9.(2)证明:由(1)知9x +y =1,又x >0,y >0, ∴⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,∴1x +1y ≥16,即x +y ≥16xy .考点三 分析法证明不等式[典例] (2019·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解] (1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2,得-1<x <1,即A ={x |-1<x <1}. (2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立. 综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解题技法] 分析法证明不等式应注意的问题(1)注意依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论. (2)注意从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)注意恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语. [题组训练]1.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a . 证明:由a >b >c 且a +b +c =0, 知a >0,c <0. 要证b 2-ac <3a , 只需证b 2-ac <3a 2.∵a +b +c =0,∴只需证b 2+a (a +b )<3a 2, 即证2a 2-ab -b 2>0, 即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0, ∴(a -b )(a -c )>0显然成立, 故原不等式成立.2.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,求证:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[课时跟踪检测]1.已知△ABC 的三边a ,b ,c 的倒数成等差数列,试用分析法证明:∠B 为锐角. 证明:要证∠B 为锐角,只需证cos B >0, 所以只需证a 2+c 2-b 2>0, 即a 2+c 2>b 2,因为a 2+c 2≥2ac , 所以只需证2ac >b 2, 由已知得2ac =b (a +c ).所以只需证b (a +c )>b 2,即a +c >b ,显然成立. 所以∠B 为锐角.2.若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.(2019·南宁模拟)(1)解不等式|x +1|+|x +3|<4; (2)若a ,b 满足(1)中不等式,求证:2|a -b |<|ab +2a +2b |.解:(1)当x <-3时,|x +1|+|x +3|=-x -1-x -3=-2x -4<4,解得x >-4,所以 -4<x <-3;当-3≤x <-1时,|x +1|+|x +3|=-x -1+x +3=2<4恒成立, 所以-3≤x <-1;当x ≥-1时,|x +1|+|x +3|=x +1+x +3=2x +4<4,解得x <0,所以-1≤x <0. 综上,不等式|x +1|+|x +3|<4的解集为{x |-4<x <0}. (2)证明:因为4(a -b )2-(ab +2a +2b )2 =-(a 2b 2+4a 2b +4ab 2+16ab ) =-ab (b +4)(a +4)<0, 所以4(a -b )2<(ab +2a +2b )2, 所以2|a -b |<|ab +2a +2b |.4.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,求证:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1, 解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1, 解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数, ∴g (x )≤g (0)=0. 故x [f (x )]2-x 2f (x )≤0.5.(2019·西安质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎩⎪⎨⎪⎧-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1,即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3, 当且仅当(2x -1)(2x +2)≤0,即-1≤x ≤12时取等号,∴M =[3,+∞). t 2+1-3t -3t =t 3-3t 2+t -3t=t -3t 2+1t,∵t ∈M ,∴t -3≥0,t 2+1>0, ∴t -3t 2+1t ≥0,∴t 2+1≥3t+3t .6.(2019·长春质检)已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎪⎨⎪⎧-5x +9,x <32,-x +3,32≤x ≤2,5x -9,x >2.作出函数f (x )的图象如图所示.由图象可知,f (x )<2的解集为⎝⎛⎭⎫75,115. (2)证明:由图象可知f (x )的最小值为1, 由基本不等式可知a +b2≤ a +b2= 14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 7.已知函数f (x )=|2x -1|-⎪⎪⎪⎪x +32. (1)求不等式f (x )<0的解集M ;(2)当a ,b ∈M 时,求证:3|a +b |<|ab +9|.解:(1)f (x )=⎩⎪⎨⎪⎧52-x ,x <-32,-3x -12,-32≤x ≤12,x -52,x >12.当x <-32时,f (x )<0,即52-x <0,无解;当-32≤x ≤12时,f (x )<0,即-3x -12<0,得-16<x ≤12;当x >12时,f (x )<0,即x -52<0,得12<x <52.综上,M =⎩⎨⎧⎭⎬⎫x ⎪⎪-16<x <52. (2)证明:要证3|a +b |<|ab +9|,只需证9(a 2+b 2+2ab )<a 2b 2+18ab +81, 即证a 2b 2-9a 2-9b 2+81>0, 即证(a 2-9)(b 2-9)>0.因为a ,b ∈M ,所以-16<a <52,-16<b <52,所以a 2-9<0,b 2-9<0, 所以(a 2-9)(b 2-9)>0, 所以3|a +b |<|ab +9|.8.已知函数f (x )=m -|x +4|(m >0),且f (x -2)≥0的解集为[-3,-1]. (1)求m 的值;(2)若a ,b ,c 都是正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)法一:依题意知f (x -2)=m -|x +2|≥0, 即|x +2|≤m ⇔-m -2≤x ≤-2+m .由题意知不等式的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,-2+m =-1,解得m =1.法二:因为不等式f (x -2)≥0的解集为[-3,-1],所以-3,-1为方程f (x -2)=0的两根,即-3,-1为方程m -|x +2|=0的两根,所以⎩⎪⎨⎪⎧m -|-3+2|=0,m -|-1+2|=0,解得m =1.(2)证明:由(1)可知1a +12b +13c=1(a ,b ,c >0),所以a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫a 2b +2b a +⎝⎛⎭⎫a 3c +3c a +⎝⎛⎭⎫2b 3c +3c2b ≥9,当且仅当a =2b =3c ,即a =3,b =32,c =1时取等号.。
选修4-5 不等式选讲(绝对值不等式)

【规律方法】 含有多个绝对值的不等式,可以分别令各绝对值里的式子 为零,并求出相应的根.把这些根从小到大排序,以这些根 为分界点,将实数分成若干小区间.按每个小区间来去掉绝
对值符号,解不等式,最后取每个小区间上相应解的并集.
【练习】 1、资料选修4系列P18:[针对训练];
2、 (2012· 新课标全国卷)已知函数 f(x)=|x+a|+|x-2|. (1)当 a=-3 时,求不等式 f(x)≥3 的解集; (2)若 f(x)≤|x-4|的解集包含[1,2],求 a 的取值范围.
|a|-|b| a±b|≤________ |a|+|b|; (3)性质:________≤|
2.绝对值不等式的解法 (1)含绝对值的不等式|x|<a与|x|>a的解法:
不等式 |x|<a |x|>a a>0 {x|-a<x<a} {x|x>a,或 x<-a} a=0 ∅ {x|x∈R,且 x≠0} a<0 ∅ R
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:
①|ax+b|≤c⇔_______________ -c≤ax+b≤c ;
②|ax+b|≥c⇔______________________. ax+b≥c或ax+b≤-c
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:
动一个单位到点B1,此时B1A+B1B=5,
故原不等式的解集为(-∞,-3]∪[2,+∞).
法二: (零点分段法) 原不等式|x-1|+|x+2|≥5⇔
x≤-2, -2<x<1, 或 -x-1-x+2≥5 -x-1+x+2≥5 x≥1, 或 解得 x≥2 或 x≤-3, x - 1 + x + 2 ≥ 5 ,
高考数学一轮复习选修4_5不等式选讲课件文新人教版

不等式选讲
-2知识梳理
双基自测
1
2
3
4
1.绝对值三角不等式
(1)定理1:若a,b是实数,则|a+b|≤
时,等号成立;
(2)性质:|a|-|b|≤|a±b|≤|a|+|b|;
(3)定理2:若a,b,c是实数,则|a-c|≤
(a-b)(b-c)≥0
时,等号成立.
5
|a|+|b|
,当且仅当_______
-22考点1
考点2
考点3
考点4
考点5
对点训练2设函数f(x)=|x+1|-m|x-2|.
(1)若m=1,求函数f(x)的值域;
(2)若m=-1,求不等式f(x)>3x的解集.
解:(1)当m=1时,f(x)=|x+1|-|x-2|.
∵||x+1|-|x-2||≤|(x+1)-(x-2)|=3,
∴-3≤|x+1|-|x-2|≤3,即函数f(x)的值域为[-3,3].
(3)柯西不等式的向量情势:设α,β是两个向量,则|α||β|≥|α·β|,当且
仅当β是零向量或存在实数k,使α=kβ时,等号成立.
-6知识梳理
双基自测
1
2
3
4
5
5.不等式证明的方法
证明不等式常用的方法有比较法、综合法、分析法等.
-7知识梳理
双基自测
1
2
3
4
5
1.下列结论正确的打“ ”,错误的打“×”.
所以|x|+|y|+|x-1|+|y-1|=2,即
|| + |-1| = 1,
|| + |-1| = 1.