第四章萃取分离法详解
合集下载
溶剂萃取(精)

1. 螯合物萃取体系
螯合物萃取是分析化学中应用最广泛的萃 取体系,所用的萃取剂为螯合剂。可用做萃取 剂的螯合剂与试样中的被萃取金属离子生成四 元、五元或六元环状螯合物很稳定,因而萃取 灵敏度很高,可用于萃取浓度很低的金属离子, 在分离同时达到富集的效果。
萃取过程
① 萃取剂在两相中分配平衡 ② 水相中萃取剂电离平衡 ③ 萃取剂与萃取离子络合平衡 ④ 内络盐在两相中分配平衡
(CH3)2N
S
N(CH3)2 +
[BF4] -
N
主要萃取条件:配位阴离子、酸性溶液和惰性溶剂
高分子量胺萃取
高分子量胺(本身是液体,有时溶在稀释剂中)
与酸反应生成的盐难溶于水,但易溶于有机溶剂
而被萃取。
质子加成反应
R3 N有机 H A R3 NH A有 机
因此,高分子胺可用于水溶液中酸的萃取。
V(有机)
)2
DV(有机) V(水)
经n次萃取后水相中剩余溶质质量:
mn
m0
(
V(有机)
)n
DV(有机) V(水)
n次萃取后的萃取效率E为:
E
1
(
V(水) DV(有机)
)n V(水)
以CCl4萃取20mL水溶液中的I2,已知 碘在水与CCl4的分配比为85,试比较用 20mL CCl4 一次萃取及每次用 10mL CCl4 分两次萃取的萃取效率。
D cA总 (有机) cA总 (水)
3.萃取百分率
萃取百分率:被萃取物在有机相中的量占 它在两相中的A在两相中的总量
100%
4.萃取效率
设:萃取体系中水相的体积为V水, 有机相的体积为V有,则萃取效率可从下 式计算:
萃取法分离

萃取法分离
嘿,你有没有想过,怎么把两种混在一起的东西分开呢?今天咱们就来聊聊一种神奇的方法——萃取法分离。
咱就拿泡茶来说吧。
你把茶叶放进热水里,过一会儿,水就变成了有颜色有味道的茶水。
这里面啊,就有萃取法分离的原理在起作用呢。
茶叶里有很多不同的成分,有些成分能溶解在水里,有些则不能。
当我们用热水泡茶的时候,那些能溶解在水里的成分就会从茶叶里跑出来,进入到水中,这就像是把一种东西从另一种东西里“提取”出来一样。
那什么是萃取法分离呢?简单来说,就是利用两种物质在不同溶剂中的溶解性不同,把它们分开的方法。
比如,有两种物质A 和B,A 能溶解在溶剂C 里,而B 不能。
我们就可以把A 和B 的混合物放到溶剂 C 中,这样 A 就会溶解在 C 里,而 B 会留在原来的地方。
然后我们再把含有A 的溶剂C 分离出来,就实现了A 和B 的分离。
萃取法分离在很多地方都有应用哦。
比如在制药厂里,科学家们会用萃取法分离出药物中的有效成分。
在化工生产中,也会用这种方法来提纯各种物质。
而且,萃取法分离还可以反复进行,就像我们泡茶可以多泡几次一样,每次都能把更多的成分提取出来。
萃取法分离是一种很有用的方法。
下次当你泡茶或者看到其他分离物质的过程时,就可以想想这里面是不是用到了萃取法分离哦。
这样,你就能更好地理解这个神奇的世界啦。
第四章 溶剂萃取法分离稀土元素01

它们是弱酸,在分子中既含有一个酸性OH基,可按 阳离子交换萃取金属,同时含有 基于金属配位 P O 。 ⅲ .胺类萃取剂: 伯、仲、叔、胺及季胺盐。分子量应在250-600之 间。(分子量太低的胺易溶于水,∴不能做萃取剂。) 由于胺上N原子有孤对电子,呈弱碱性,与强酸形 成稳定的盐,与金属络阴离子结合而萃取。 ⅳ .含硫、氧萃取剂: 亚砜类, S=O 基团,与金属离子形成中性络合物 萃取。亚砜的三种共轭形式:
特点: ⅰ 萃取剂中性有机化合物(TBP,P350,DOSO,TOPO环辛基 磷酸), 被萃物也是中性:(La(NO3 )3,Ce(CNS)3等),结 合成中性络合物,而进入有机相。 ⅱ 中性络合萃取剂,也可看成不带电荷的萃取剂和 稀土化合物络合成溶剂合物。故此类萃取剂又成 为溶剂合萃取。
3
ⅲ
D:表示在一定的条件下萃取剂萃取金属离 子的能力,分配比→大, 萃取金属离子 能力越强。 b.萃取率: 萃取率是被萃取物(溶质)进入有机相 的量占被萃取物原始总量的百分率。 以q表示。
q
被萃物在有机相的量 100% 被萃取物原始总量 C有V有 100%(上下同除C水V有) C有V有 C水V水 D D V有 (通常: 称为相比R) C水V水 V水 V水 D D C水V有 V有 D 1 D R
同时TBP也萃取HNO3
HNO 3 TBP 有 TBP HNO 3有
因此TBP萃取酸的能力将影响金属离子萃取分配 比。 金属离子的分配比与萃取平衡常数的关系:
3 D K [ NO3 ] [TBP]3 有 LgD LgK 3 Lg[ NO3 ] 3Lg[TBP]有
分配比: 萃取体系达平衡时,被萃取物在有机相中的 总浓度与它在水相中总浓度比值,以D表示:
中药化学第四章中药化学成分的分离技术

K=CU/CL CU:上层浓度,CL:下层浓度。 若有两种成份时(A,B),则A,B各有其分
配系数KA,KB,则两者差别越大,分离效果越 好。
如,KA=10说明振摇一次平衡后,A则有90 %以上溶于上层溶液中。
而KB=0.l时,振摇一次平衡后,B则有90% 以上溶于下层中,过样A和B两成份就有较大程 度分离,连续分离萃取几次,就可能达到A,B 的全部分离。
仪器装置
该装置有3个部分组成。 输液部分。包括微型泵、移动相溶剂储槽和试样
液注射器。 萃取部分。由300~500根内径约2 mm、长度为
20~40 cm的萃取管连接而成。 收集检出部分。包括检出器及分步自动收集仪。
适用范围
目前DCCC法广泛用于皂苷、生物碱、酸性成分、蛋 白质、糖类等天然产物的分离和精制,特别是用于 皂苷类的分离,并取得良好效果。
三、铅盐沉淀法
原理 此法是利用中性醋酸铅和碱式醋酸铅在水和 稀醇溶液中能与许多天然药物化学成分生成 难溶性的铅盐或铅络合物沉淀的性质,使有 效成分和杂质分离。此法既可使杂质生成铅 盐沉淀除去,又可以使有效成分生成铅盐沉 淀。
铅盐沉淀法适用范围
中性醋酸盐(Pb(Ac)2)可用于沉淀天然药物成 分中的有机酸、蛋白质、氨基酸、黏液质、 鞣质、树脂、酸性皂苷、部分黄酮苷、蒽醌 苷、香豆素苷和某些色素等具有羧基、邻二 酚羟基的酸性或酚性物质。
氯仿:乙醚 由 某些苷类,如强心苷
乙酸乙酯
小 某些苷类,如黄酮苷
正丁醇
到 某些苷类,如皂苷,黄酮苷
丙酮、乙醇 大 极性很大的苷、糖类、氨基酸、某些生物
碱盐
水
蛋白质、黏液质、果胶、糖类、无机盐
(强亲水性)
二、适用范围
此法是早年研究天然药物有效成分的一种最重要的 方法,主要用于分离提纯含有极性不同的各种化 学成分的中药提取液。目前仍是最常用的方法,
萃取分离法

注意:某些情况下,掩蔽剂还会影响D值,甚至改变定 量萃取的pH范围。
缔合物萃取条件选择 p59
四. 萃取分离技术 (一)萃取方式 (二)分层 (三)洗涤 (四)反萃取
4.4 萃取分离技术
在实验室中进行萃取分离主要有以下三种方式。
a.单级萃取 又称间歇萃取法。
通常用60一125mL的梨形分液漏斗进行萃取,萃取 一般在几分种内可达到平衡,分析多采用这种方式。
● Pb2+(痕量)在pH为9时与双硫腙生 成稳定的螯合物(红色),在氯仿—水 体系中分配比很大,故可用氯仿萃取富 集,然后以萃取分光光度法来测定铅的 含量。 ● 其它的二价金属离子也可与双硫腙反 应生成螯合物干扰测定,可通过加入氰 化物和亚硫酸作掩蔽剂减少干扰。
萃取应用
例:用双硫腙-CCl4法测定铅合金中的银。将试样 分解后,在适宜的酸度下加入双硫腙和EDTA。由于 Ag+不与EDTA形成稳定的络合物,它与双硫腙络合 后被CCl4萃取,同时Pb2+及其他金属离子因与EDTA 生成稳定而带电荷的络合物而留在水中。
(3)常用的螯合物萃取体系
8-羟基喹啉:萃取Pd2+、Fe3+、Al3+、Co2+、 Zn2+、Tl3+、Ga3+、In3+等金属离子 双硫腙:萃取Hg2+、Pb2+、Cd2+、Co2+、Cu2+ 、 Zn2+、Sn2+、等重金属离子 铜试剂:萃取Cu2+ 乙酰基丙酮: Al3+、 Cr3+、 Co2+、 Th4+、 Be2+、Sc3+等金属离子 丁二酮肟:萃取Ni2+
萃取剂: 萃取溶剂: 萃合物:
缔合物萃取条件选择 p59
四. 萃取分离技术 (一)萃取方式 (二)分层 (三)洗涤 (四)反萃取
4.4 萃取分离技术
在实验室中进行萃取分离主要有以下三种方式。
a.单级萃取 又称间歇萃取法。
通常用60一125mL的梨形分液漏斗进行萃取,萃取 一般在几分种内可达到平衡,分析多采用这种方式。
● Pb2+(痕量)在pH为9时与双硫腙生 成稳定的螯合物(红色),在氯仿—水 体系中分配比很大,故可用氯仿萃取富 集,然后以萃取分光光度法来测定铅的 含量。 ● 其它的二价金属离子也可与双硫腙反 应生成螯合物干扰测定,可通过加入氰 化物和亚硫酸作掩蔽剂减少干扰。
萃取应用
例:用双硫腙-CCl4法测定铅合金中的银。将试样 分解后,在适宜的酸度下加入双硫腙和EDTA。由于 Ag+不与EDTA形成稳定的络合物,它与双硫腙络合 后被CCl4萃取,同时Pb2+及其他金属离子因与EDTA 生成稳定而带电荷的络合物而留在水中。
(3)常用的螯合物萃取体系
8-羟基喹啉:萃取Pd2+、Fe3+、Al3+、Co2+、 Zn2+、Tl3+、Ga3+、In3+等金属离子 双硫腙:萃取Hg2+、Pb2+、Cd2+、Co2+、Cu2+ 、 Zn2+、Sn2+、等重金属离子 铜试剂:萃取Cu2+ 乙酰基丙酮: Al3+、 Cr3+、 Co2+、 Th4+、 Be2+、Sc3+等金属离子 丁二酮肟:萃取Ni2+
萃取剂: 萃取溶剂: 萃合物:
化工原理(天大版)---(下册)第四章 萃取

选择性系数与kA、kB有关。 kA越大, kB越小,就越大, 说明:
A、B的分离也就越容易 凡是影响kA、kB的因素都影响(温度、组成) 若 =1,则萃取相和萃余相在脱除溶剂S后将具有相同的 组成,并且等于原料液的组成,故没有分离能力 萃取剂的选择性越高,对A的溶解能力就大,则一定的分离 任务,可越少萃取剂用量,降低回收溶剂操作的能耗,并且 可获得高纯度的产品A 当组分B、S完全不互溶时,则选择性系数趋于无穷大,这 是最理想的情况。
MF FN F ( xF xM ) (4 7) SF F xM y S MS NB
R'
B
(b)
S
EM
M ( xM x R ) 其中yE、xM、xR 由相图读出 y E xR R) 把4-6、4-7代入4-9得: E F ( xF x 其中xF、x' 'R、y''E由相图读出 y E x R R F E
表达了溶质在两个平衡液相中的分配关系。 A值愈大,萃取分离的效果 愈好 A值与联结线的斜率有关 不同的物系具有不同的分配系数 A值 同一物系, A值随温度和组成而变。 一定温度下,仅当溶质组成范围变化不大时, A值才可视为常数 Y KX 式中:Y——萃取相E中溶质A的质量比组成;
X ——萃余相R中溶质A的质量比组成; K——以质量比表示相组成时的分配系数
4.2.2 液-液相平衡关系
3、分配系数和分配曲线
分配曲线:若以xA为横坐标,以yA为纵坐标,则可在x-y直角坐标图上得到
表示互成平衡的一对共轭相组成的点N。将这些点联结起来即可得到曲线 ONP,称为分配曲线
曲线上的P点即为临界混溶点。 分配曲线表达了溶质A在互成平衡的E相与R相中的分配关系。若已知某液相组成, 则可由分配曲线求出其共轭相的组成。 若在分层区内y均大于x,即分配系数 A >1,则分配曲线位于y=x直线的上方,反 之则位于y=x直线的下方。 若随着溶质A组成的变化,联结线倾斜的方向发生改变,则分配曲线将与对角线出 现交点,这种物系称为等溶度体系
第四章反相微胶团萃取技术

第四章反相微胶团萃取技术
临界胶束浓度(Critical Micelle Concentration CMC)
临界胶束浓度,是胶束形成时所需表面活性剂的最 低浓度,用CMC来表示,这是体系特性,与表面活 性剂的化学结构、溶剂、温度和压力等因素有关。 CMC的数值可通过测定各种物理性质的突变(如表 面张力、渗透压等)来确定。
表面活性剂是由亲水憎油的极性基团和亲油憎水的非极性基团 两部分组成的两性分子,可分为阴离子表面活性剂、阳离子表 面活性剂和非离子型表面活性剂,它们都可用于形成反胶束。 常用的表面活性剂及相应的有机溶剂见下表
第四章反相微胶团萃取技术
在反胶束萃取蛋白质的研究中,用得最多的是阴离子表面活性 剂AOT(AerosolOT,丁二酸-2-乙基己基磺酸钠)。
第四章反相微胶团萃取技术
一、反胶束萃取原理和制备
• 1 基本原理 • 表面活性剂溶于水中,当其浓度超过临界胶束浓
度(CMC) 时,便形成聚集体,称为正常胶束;表面 活性剂溶于有机溶剂,当浓度大于临界胶团浓度 时,会在有机相中形成聚集体,称为反胶束。反胶 束中极性头朝内,非极性尾朝外排列形成亲水内 核,称为“水池”。 • 萃取时,待萃取的原料液以水相形式与反胶束体 系接触,调节各种参数,使其中要提取的物质以 最大限度转入反胶束体系(前萃取) ,后将含该物 质的前萃液与另外一个水相接触。 再次调节pH、 离子强度等参数分出要提取物质。
• 反胶束中,酶的动力学与水中相似,只是由于酶与 表面活性剂作用,底物分配和交换,因而Km(米氏 常数) Kcat (转换数) 是复杂的多变量函数。
第四章反相微胶团萃取技术
• 4 制备方法 • 目前常用转移法、注入法、溶解法制备反
胶束体系。 • 相转移法:将含有生物大分子的水相与溶
临界胶束浓度(Critical Micelle Concentration CMC)
临界胶束浓度,是胶束形成时所需表面活性剂的最 低浓度,用CMC来表示,这是体系特性,与表面活 性剂的化学结构、溶剂、温度和压力等因素有关。 CMC的数值可通过测定各种物理性质的突变(如表 面张力、渗透压等)来确定。
表面活性剂是由亲水憎油的极性基团和亲油憎水的非极性基团 两部分组成的两性分子,可分为阴离子表面活性剂、阳离子表 面活性剂和非离子型表面活性剂,它们都可用于形成反胶束。 常用的表面活性剂及相应的有机溶剂见下表
第四章反相微胶团萃取技术
在反胶束萃取蛋白质的研究中,用得最多的是阴离子表面活性 剂AOT(AerosolOT,丁二酸-2-乙基己基磺酸钠)。
第四章反相微胶团萃取技术
一、反胶束萃取原理和制备
• 1 基本原理 • 表面活性剂溶于水中,当其浓度超过临界胶束浓
度(CMC) 时,便形成聚集体,称为正常胶束;表面 活性剂溶于有机溶剂,当浓度大于临界胶团浓度 时,会在有机相中形成聚集体,称为反胶束。反胶 束中极性头朝内,非极性尾朝外排列形成亲水内 核,称为“水池”。 • 萃取时,待萃取的原料液以水相形式与反胶束体 系接触,调节各种参数,使其中要提取的物质以 最大限度转入反胶束体系(前萃取) ,后将含该物 质的前萃液与另外一个水相接触。 再次调节pH、 离子强度等参数分出要提取物质。
• 反胶束中,酶的动力学与水中相似,只是由于酶与 表面活性剂作用,底物分配和交换,因而Km(米氏 常数) Kcat (转换数) 是复杂的多变量函数。
第四章反相微胶团萃取技术
• 4 制备方法 • 目前常用转移法、注入法、溶解法制备反
胶束体系。 • 相转移法:将含有生物大分子的水相与溶
第四章 萃取1

双水相萃取是近年来发展起来的一种 新萃取方法,主要用于酶和蛋白质的萃 取。其特点是用两种不互相溶的聚合物, 如聚乙二醇(PEG)和葡聚糖(DX)进 行萃取,而不用常规的有机溶剂为萃取 剂。因为所获得的两相,均含有很高的 水含量,一般达70-90%,故称双水相 系统。
定义:双水相萃取法是指利用物质在不相容 的两水相间分配系数的差异进行萃取 的方法。 优点: (1):平衡时间短,含水量高,界面张力小, 特别适合于生物活性物质的分离纯化 (2):操作简单,容易实现连续操作 (3):易于放大
1、双水相系统
1.1 双水相系统的形成图
1.2 双水相系统的类型 双水相系统分为两大类: 1)高聚物/高聚物 如:PEG/DX,聚丙二醇/PEG,甲基纤维素/DX 2)高聚物/低分子 如:PEG/磷酸钾, PEG /磷酸铵, PEG/硫酸钠
2、双水相中的分配平衡和相平衡 溶质在双水相中的分配系数:
3、影响分配系数因素(操作条件)
的综合考察
影响双水相萃取的因素: 聚合物种类;聚合物的浓度;聚合 物的分子量;离子种类;离子强度; pH值和温度。
3.1 成相聚合物 1)分子量M: 若降低聚合物的M,则pro分配于富 含该聚合物的相中。如PEG/DX系统, 若降低DX的M,则m减小。这一规律 具有普遍意义
如果原料中有两种溶质,A(产品)与B (杂质),由于溶质A、B的分配系数不同, 这样经萃取后A和B得到了一定程度的分离, 产品的纯度提高。溶剂对溶质A、B分离能 力的大小用分离因数来表示。
mA y A / x A mB y B / x B
β为分离因数,或称选择性,β值的大小 反映了萃取分离的效果。
萃取过程
萃取剂S 原料液 A+B 1 图 11- 1 萃 取 过 程 示 意 图 1- 混 合 器 ; 2- 分 层 器 2 萃余相R