高中数学专题训练(七)轨迹问题

合集下载

高中数学求轨迹方法及例题

高中数学求轨迹方法及例题

高中数学求轨迹方法及例题1高中数学求轨迹方法及例题轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合。

求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

2常用方法在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。

3解题步骤建立适当的坐标系,设出动点M的坐标;写出点M的集合;列出方程=0;化简方程为最简形式;检验。

①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。

要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的"完备性"和"纯粹性",即轨迹若是曲线的一部分,应对方程注明的取值范围,或同时注明的取值范围。

高考数学轨迹问题专题练习题讲解

高考数学轨迹问题专题练习题讲解

高考数学轨迹问题专题练习题讲解第1讲 轨迹问题一.选择题(共12小题)1.方程|1|x −=所表示的曲线是( ) A .一个圆B .两个圆C .半个圆D .两个半圆【解答】解:将方程|1|x − 得22(1)(1)1x y −+−=,其中02x 剟,02y 剟.因此方程|1|x −表示以(1,1)C 为圆心,半径1r =的圆. 故选:A .2.方程||1x −=( ) A .两个半圆B .一个圆C .半个圆D .两个圆【解答】解:两边平方整理得:22(||1)2x y y −=−, 化简得22(||1)(1)1x y −+−=,由||10x −…得||1x …,即1x …或1x −…, 当1x …时,方程为22(1)(1)1x y −+−=, 表示圆心为(1,1)且半径为1的圆的右半圆; 当1x −…时,方程为22(1)(1)1x y ++−=, 表示圆心为(1,1)−且半径为1的圆的左半圆综上所述,得方程||1x −= 故选:A .3.在数学中有这样形状的曲线:22||||x y x y +=+.关于这种曲线,有以下结论: ①曲线C 恰好经过9个整点(即横、纵坐标均为整数的点); ②曲线C 上任意两点之间的距离都不超过2; ③曲线C 所围成的“花瓣”形状区域的面积大于5. 其中正确的结论有( ) A .①③B .②③C .①②D .①②③【解答】解:①曲线C 经过的整点有(0,0),(1,0),(1,0)−,(0,1),(0,1)−,(1,1),(1,1)−,(1,1)−,(1,1)−−,恰有9个点,即①正确;②点(1,1)和(1,1)−−均在曲线C 上,而这两点间的距离为2,即②错误; ③由于图形是对称的,所以只需考虑第一象限内的部分即可.此时有,22x y x y +=+,整理得,22111()()222x y −+−=,是以11(,)22为半径的圆,作出曲线在第一象限的图形如图所示,面积211111122224AOB C S S S ππ∆=+=⨯⨯+⋅⋅=+圆,故曲线C 的面积为14()2524ππ⨯+=+>,即③正确.故选:A .4.双纽线最早于1694年被瑞士数学家雅各布伯努利用来描述他所发现的曲线.在平面直角坐标系xOy 中,把到定点1(,0)F a −,2(,0)F a 距离之积等于2(0)a a >的点的轨迹称为双纽线C 、已知点0(P x ,0)y 是双纽线C 上一点,下列说法中正确的有( )①双纽线经过原点O ; ②双纽线C 关于原点O 中心对称;③022a ay −剟;④双纽线C 上满足12||||PF PF =的点P 有两个. A .①②B .①②③C .②③D .②③④【解答】解;根据双纽线C 2a =, 将0x =,0y =代入,符合方程,所以①正确;用(,)x y −−替换方程中的(,)x y ,原方程不变,所以双纽线C 关于原点O 中心对称,②正确; 根据三角形的等面积法可知,1212011||||sin 2||22PF PF F PF a y ∠=⨯⨯,即012||sin 22a ay F PF =∠…,亦即022a ay −剟,③正确; 若双纽线C 上点P 满足12||||PF PF =,则点P 在y 轴上,即0x =,代入方程, 解得0y =,所以这样的点P 只有一个,④错误. 故选:B .5.双纽线最早于1694年被瑞士数学家雅各布伯努利用来描述他所发现的曲线.在平面直角坐标系xOy 中,把到定点1(,0)F a −,2(,0)F a 距离之积等于2(0)a a >的点的轨迹称为双纽线C .已知点0(P x ,0)y 是双纽线C 上一点,下列说法中正确的有( )①双纽线C 关于原点O 中心对称;②022a a y −剟;③双纽线C 上满足12||||PF PF =的点P 有两个;④||PO . A .①②B .①②④C .②③④D .①③【解答】解:根据双纽线C 2a =,用(,)x y −−替换方程中的(,)x y ,原方程不变,所以双纽线C 关于原点O 中心对称,①正确; 根据三角形的等面积法可知,1212011||||sin 2||22PF PF F PF a y ∠=⨯⨯,即012||sin 22a ay F PF =∠…,亦即022a ay −剟,②正确; 若双纽线C 上点P 满足12||||PF PF =,则点P 在y 轴上,即0x =,代入方程, 解得0y =,所以这样的点P 只有一个,③错误;因为121()2PO PF PF =+,所以2221121221||[||2||||cos ||]4PO PF PF PF F PF PF =+∠+由余弦定理可得,2221121224||2||||cos ||a PF PF PF F PF PF =−∠+22222121212||||||cos cos 2PO a PF PF F PF a a F PF a =+∠=+∠…,所以|PO ,④正确.故选:B .6.如图,设点A 和B 为抛物线22(0)y px p =>上除原点以外的两个动点,已知OA OB ⊥,OM AB ⊥,则点M 的轨迹方程为( )A .2220x y px +−=(原点除外)B .2220x y py +−=(原点除外)C .2220x y px ++=(原点除外)D .2220x y py ++=(原点除外)【解答】解:设(,)M x y ,直线AB 的方程为y kx b =+, 由OM AB ⊥得x k y=−, 联立22y px =和y kx b =+消去y 得222(22)0k x x kb p b +−+=,所以2122b x x k=,所以22121212122()()()pby y kx b kx b k x x kb x x b k=++=+++=,由OA OB ⊥得12120x x y y +=,所以2220b pbk k +=,所以2b kp =−, 所以(2)y kx b k x p =+=−,把xk y =−代入得2220(0)x y px y +−=≠,故选:A .7.如果把一个平面区域内两点间的距离的最大值称为此区域的直径,那么曲线422x y +=围成的平面区域的直径为( )A B .3 C .D .4【解答】解:曲线422x y +=围成的平面区域,关于x ,y 轴对称,设曲线上的点(,)P x y ,可得3||2OP . 所以曲线422x y +=围成的平面区域的直径为:3. 故选:B .8.由曲线222||2||x y x y +=+围成的图形面积为( ) A .24π+B .28π+C .44π+D .48π+【解答】解:根据对称性,曲线222||2||x y x y +=+围成的图形面积等于在第一象限围成面积的4倍, 当0x …且0y …时222||2||x y x y +=+等价为2222x y x y +=+, 即22220x y x y +−−=, 即22(1)(1)2x y −+−=,圆心(1,1)C ,半径R , 则ACO ∆的面积12112S =⨯⨯=,BCO ∆的面积1S =,在第一象限部分的面积211122S ππ=++⨯=+,则四个象限的面积为44(2)84S ππ=+=+, 故选:D .9.如图,平面直角坐标系中,曲线(实线部分)的方程可以是( )A .22(||1)(1)0x y x y −−−+=B .( 22)(1)0x y −+=C .2(||1)(10x y x −−−+=D .(2)(10x −+=【解答】解:如图曲线表示折线段的一部分和双曲线,选项A 等价于||10x y −−=或2210x y −+=,表示折线||1y x =−的全部和双曲线,故错误; 选项B 等价于22||1010x y x y −−⎧⎨−+=⎩…,或||10x y −−=,||10x y −−=表示折线||1y x =−的全部,故错误; 选项C 等价于22||1010x y x y −−=⎧⎨−+⎩…或2210x y −+=,22||1010x y x y −−=⎧⎨−+⎩…表示折线||1y x =−在双曲线的外部 (包括有原点)的一部分,2210x y −+=表示双曲线,符合题中图象,故正确; 选项D 等价于22||1010x y x y −−=⎧⎨−+⎩…或22||1010x y x y −−⎧⎨−+=⎩…, 22||1010x y x y −−=⎧⎨−+⎩…表示表示折线||1y x =−在双曲线的外部(包括有原点)的一部分,22||1010x y x y −−⎧⎨−+=⎩…表示双曲线在x 轴下方的一部分,故错误. 故选:C .10.已知点集22{(,)|1}M x y y xy =−…,则平面直角坐标系中区域M 的面积是( ) A .1B .34π+C .πD .22π+【解答】解:当0xy …时,只需要满足21x …,21y …即可;当0xy >时,对不等式两边平方整理得到221x y +…,所以区域M 如下图.易知其面积为22π+.故选:D .11.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为22322()x y x y +=.给出下列四个结论: ①曲线C 有四条对称轴;②曲线C 上的点到原点的最大距离为14; ③曲线C 第一象限上任意一点作两坐标轴的垂线与两坐标轴 围成的矩形面积最大值为18;④四叶草面积小于4π. 其中,所有正确结论的序号是( )A .①②B .①③C .①③④D .①②④【解答】解:四叶草曲线方程为22322()x y x y +=,将x 换为x −,y 不变,可得方程不变,则曲线关于y 轴对称;将y 换为y −,x 不变,可得方程不变,则曲线关于x 轴对称;将x 换为y ,y 换为x ,可得方程不变,则曲线关于直线y x =对称;将x 换为y −,y 换为x −,可得方程不变,则曲线关于直线y x =−对称; 曲线C 有四条对称轴,故①正确;由y x =与22322()x y x y +=联立,可得y x ==或y x ==C 上的点到原点的最大距离为12=,故②错误; 设曲线C 第一象限上任意一点为(,)x y ,(0,0)x y >>,可得围成的矩形面积为xy ,由222x y xy +…, 则223223()8()x y x y xy +=…,即18xy …,当且仅当x y =取得最大值,故③正确; 易得四叶草曲线在以原点为圆心,12为半径的圆内,故四叶草面积小于4π,则④正确. 故选:C .12.曲线C 为:到两定点(2,0)M −、(2,0)N 距离乘积为常数16的动点P 的轨迹.以下结论正确的个数为( )(1)曲线C 一定经过原点; (2)曲线C 关于x 轴、y 轴对称; (3)MPN ∆的面积不大于8;(4)曲线C 在一个面积为64的矩形范围内. A .1B .2C .3D .4【解答】解:设(,)P x y 22(2)16x −+,对于(1),原点(0,0)代入方程,得2216⨯≠,即方程不成立, 则曲线C 一定经过原点,命题错误;对于(2),以x −代替x ,y −代替y 22(2)16x −−成立,16也成立,即曲线C 关于x 、y 轴对称,命题正确;对于(3),0x =,y =±MPN ∆的最大面积为1482⨯⨯=,命题正确;对于(4),令0y =,可得x =±,根据距离乘积为16可以得出x 的取值只可能在−到同理y 的取值只可能在−所以曲线C 在一个面积为= 综上,正确的命题有(2)(3),共2个. 故选:B .二.多选题(共2小题)13.数学中的很多符号具有简洁、对称的美感,是形成一些常见的漂亮图案的基石,也是许多艺术家设计作品的主要几何元素.如我们熟悉的∞符号,我们把形状类似∞的曲线称为“∞曲线”.经研究发现,在平面直角坐标系xOy 中,到定点(,0)A a −,(,0)B a 距离之积等于2(0)a a >的点的轨迹C 是“∞曲线”.若点0(P x ,0)y 是轨迹C 上一点,则下列说法中正确的有( ) A .曲线C 关于原点O 中心对称 B .0x 的取值范围是[a −,]aC .曲线C 上有且仅有一个点P 满足||||PA PB =D .22PO a −的最大值为22a【解答】解:在平面直角坐标系xOy 中,到定点(,0)A a −,(,0)B a 距离之积等于2(0)a a >的点的轨迹C 是“∞曲线”. 故点(P x ,0)y 满足2a ,点(M x −,0)y −代入2a ,得2a ,故A 正确;对于B :设x 轴上0x 范围的最大值为m x ,所以2()()m m x a x a a −+=,解得m x =,故0x 的范围为[].故B 错误; 对于C :若PA PB =,则点P 在AB 的垂直平分线上,即0P x =,设点(0,)P P y ,所以22a =,所以0P y =,即仅原点满足,故C 正确;对于2D a =, 化简得2222222()220x y a x a y +−+=,根据cos x ρθ=,sin y ρθ=,得到222cos 2a ρθ=, 所以2PO 的最大值为22a ,22PO a −的最大值为2a ,故D 错误.故选:AC .14.在平面直角坐标系xOy 中,(,)P x y 为曲线22:422||4||C x y x y +=++上一点,则( ) A .曲线C 关于原点对称B .[1x ∈−C .曲线C 围成的区域面积小于18D .P 到点1(0,)2【解答】解:当0x >,0y >时,曲线C 的方程为22422||4||x y x y +=++, 去掉绝对值化简可得22(1)1()142x y −+−=,将2214x y +=的中心平移到1(1,)2位于第一象限的部分, 因为点(,)x y −,(,)x y −,(,)x y −−都在曲线C 上, 所以曲线C 的图象关于x 轴、y 轴和坐标原点对称, 作出图象如图所示,由图可知曲线C关于原点对称,故选项A正确;令2214xy+=中的0y=,解得2x=,向右平移一个单位可得到横坐标为3,根据对称性可知33x−剟,故选项B错误;令2214xy+=中的0x=,解得1y=,向上平移12个单位可得纵坐标的最大值为32,曲线C第一象限的部分被包围在矩形内,矩形面积为39322⨯=,所以曲线C围成的区域面积小于94182⨯=,故选项C正确;令22(1)1()142xy−+−=中的0x=,可得12 y=所以到点1(0,)2,故选项D正确.故选:ACD.三.填空题(共6小题)15.数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y xy+=+就是其中之一(如图),给出下列三个结论:①曲线C恰好经过4个整点(即横、纵坐标均为整数的点);②曲线C③曲线C所围成的“花形”区域的面积小于4.其中,所有正确结论的序号是②.【解答】解:①令0x =,方程化为:21y =,解得1y =±,可得点(0,1)±;令0y =,方程化为:21x =,解得1x =±,可得点(1,0)±;令x y =±,方程化为:21x =,解得1x =±,可得点(1,1)±±.由此可得:曲线C 恰好经过8个整点,因此不正确. ②221||2||xy x y xy +=+…,方程化为:||1xy …,∴曲线C 上任意一点到原点的距离d ==,即曲线C③由四个点(1,1)±±作为正方形的顶点,可得正方形的面积为4,曲线C 所围成的“花形”区域的面积大于4.其中,所有正确结论的序号是②. 故答案为:②.16.数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如图),给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 ①② .【解答】解:根据题意,曲线22:1||C x y x y +=+,用(,)x y −替换曲线方程中的(,)x y ,方程不变,所以曲线C 关于y 轴对称,对于①,当0x …时,221||x y x y +=+,即为,2222112x y x y xy ++=++…,可得222x y +…, 所以曲线经过点(0,1),(0,1)−,(1,0),(1,1),再根据对称性可知,曲线还经过点(1,0)−,(1,1)−,故曲线恰好经过6个整点,①正确;对于②,由上可知,当0x …时,222x y +…,即曲线C再根据对称性可知,曲线C ②正确;对于③,因为在x 轴上方,图形面积大于四点(1,0)−,(1,0),(1,1),(1,1)−围成的矩形面积122⨯=, 在x 轴下方,图形面积大于三点(1,0)−,(1,0),(0,1)−围成的等腰直角三角形的面积12112⨯⨯=,所以曲线C 所围成的“心形”区域的面积大于3,③错误. 故答案为:①②.17.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322:()16C x y x y +=恰好是四叶玫瑰线.给出下列结论: ①曲线C 经过5个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到坐标原点O 的距离都不超过2; ③曲线C 围成区域的面积大于4π;④方程22322()16(0)x y x y xy +=<表示的曲线C 在第二象限和第四象限. 其中正确结论的序号是 ②④ .【解答】解:22223222()16()2x y x y x y ++=…,224x y ∴+…(当且仅当222x y ==时取等号), 则②正确;将224x y +=和22322()16x y x y +=联立, 解得222x y ==,即圆224x y +=与曲线C相切于点,(,(,, 则①和③都错误;由0xy <,得方程22322()16x y x y +=表示的曲线C 在第二象限和第四象限,故④正确. 故答案为:②④.18.曲线C 是平面内到定点(1,0)A 的距离与到定直线1x =−的距离之和为3的动点P 的轨迹.则曲线C 与y 轴交点的坐标是(0, ;又已知点(B a ,1)(a 为常数),那么||||PB PA +的最小值d (a )= . 【解答】解:(1)设动点(,)P x y|1|3x +=, ①当4x <−时,|1|3x +>,无轨迹;②当41x −−剟4x +,化为231015(1)2y x x =+−−厖,与y 轴无交点;③当1x >−2x −,化为223y x =−+,3(1)2x −<…. 令0x =,解得y =综上①②③可知:曲线C 与y轴的交点为(0,; (2)由(1)可知:231015,(1)2323,(1)2x x y x x ⎧+−−⎪⎪=⎨⎪−+−<⎪⎩剟….如图所示,令1y =,则10151x +=,或231x −+=, 解得 1.4x =−或1.①当 1.4a −…或1a …时,||||||PA PB AB +…,d ∴(a)||AB ==; ②当11a −<<时,当直线1y =与2323(1)2y x x =−+−<…相交时的交点P 满足||||PA PB +取得最小值, 此抛物线的准线为2x =,∴直线1y =与准线的交点(2,1)Q ,此时d (a )||2QB a ==−;③当 1.41a −<−…时,当直线1y =与231015(1)2y x x =+−−剟相交时的交点P 满足|||PA PB +取得最小值,此抛物线的准线为4x =−,∴直线1y =与准线的交点(4,1)Q −,此时d (a )||4QB a ==+.综上可知:d (a) 1.414, 1.412,1 1.a a a a a a −=+−<−⎨⎪−−<<⎪⎩或剠…19.已知点(A B ,动点P 满足APB θ∠=且2||||cos 12PA PB θ=,则点P 的轨迹方程为2213x y += . 【解答】解:由2||||cos 12PA PB θ=,(0,)θπ∈,则1cos ||||12PA PB θ+=,||AB = 所以|||||||||cos 2PA PB PA PB θ+=,而在三角形ABP 中22222||||||||||8cos 2||||2||||PA PB AB PA PB PA PB PA PB θ+−+−==,所以可得22||||||||62PA PB PA PB ++=,而222||||(||||)2||||PA PB PA PB PA PB +=+−,所以可得2(||||)12PA PB +=,所以||||PA PB +=||AB ,所以可得P的轨迹为椭圆,且长轴长2a =2c =x 轴上,中心在原点的椭圆,即a =c =2221b a c =−=,所以P 的轨迹方程为:2213x y +=,故答案为:2213x y +=.20.在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同动点A 、B 满足AO BO ⊥(如图所示).则AOB ∆得重心G (即三角形三条中线的交点)的轨迹方程为2233y x =+;【解答】解:显然直线AB 的斜率存在,记为k ,AB 的方程记为:y kx b =+,(0)b ≠,1(A x ,1)y ,2(B x ,2)y ,将直线方程代入2y x =得:20x kx b −−=,则有:△240k b =+>①,12x x k +=②,12x x b =−③,又211y x =,222y x =212y y b ∴=;AO BO ⊥,12120x x y y ∴+=,得:20b b −+=且0b ≠,1b ∴=,代入①验证,满足;故21212()22y y k x x k +=++=+; 设AOB ∆的重心为(,)G x y ,则1233x x k x +==④,212233y y k y ++==⑤, 由④⑤两式消去参数k 得:G 的轨迹方程为2233y x =+. 故答案为:2233y x =+. 四.解答题(共5小题)21.如图,直线1l 和2l 相交于点M ,12l l ⊥,点1N l ∈.以A ,B 为端点的曲线段C 上的任一点到2l 的距离与到点N 的距离相等.若AMN ∆为锐角三角形,||AM =||3AN =,且||6BN =.建立适当的坐标系,求曲线段C 的方程.【解答】解:法一:如图建立坐标系,以1l 为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.依题意知:曲线段C 是以点N 为焦点,以2l 为准线的抛物线的一段,其中A ,B 分别为C 的端点. 设曲线段C 的方程为22(0)y px p =>,(A B x x x 剟,0)y >, 其中A x ,B x 分别为A ,B 的横坐标,||p MN =. 所以(2p M −,0),(2pN ,0).由||AM =||3AN =得 2()2172A A p x px ++=,① 2()292A A p x px −+=.② 由①,②两式联立解得4A x p =.再将其代入①式并由0p >解得421 2.A Ap p x x ==⎧⎧⎨⎨==⎩⎩或 因为AMN ∆是锐角三角形,所以2A px >,故舍去22Ap x =⎧⎨=⎩ 所以4p =,1A x =.由点B 在曲线段C 上,得||42B px BN =−=. 综上得曲线段C 的方程为 28(14,0)y x x y =>剟.解法二:如图建立坐标系,分别以1l 、2l 为x 、y 轴,M 为坐标原点.作1AE l ⊥,2AD l ⊥,2BF l ⊥,垂足分别为E 、D 、F . 设(A A x ,)A y 、(B B x ,)B y 、(N N x ,0). 依题意有||||||3A x ME DA AN ====,||A y DM =,由于AMN ∆为锐角三角形,故有 ||||N x ME EN =+||4ME = ||||6B x BF BN ===.设点(,)P x y 是曲线段C 上任一点,则由题意知P 属于集合 {(x ,222)|()N y x x y x −+=,A B x x x 剟,0}y >.故曲线段C 的方程为28(2)(36y x x =−剟,0)y >.22.已知双曲线2212x y −=的左、右顶点分别为1A 、2A ,点1(P x ,1)y ,1(Q x ,1)y −是双曲线上不同的两个动点.求直线1A P 与2A Q 交点的轨迹E 的方程.【解答】解:由题设知1||x 1(A 0),2A 0), 直线1A P 的斜率为1k =,∴直线1A P 的方程为y x =,⋯①同理可得直线2A Q 的方程为y x .⋯②将①②两式相乘,得222121(2)2y y x x =−−.⋯③点1(P x ,1)y 在双曲线2212x y −=上,∴221112x y −=,可得22211111(2)22x y x =−=−,⋯④ 将④代入③,得21222211(2)12(2)122x y x x x −=−=−−,整理得2212x y +=,即为轨迹E 的方程. 点P 、Q 不重合,且它们不与1A 、2A 重合,x ∴≠,轨迹E的方程为221(2x y x +=≠23.设圆C与两圆22(4x y ++=,22(4x y +=中的一个内切,另一个外切,求圆心C 的轨迹L 的方程.【解答】解:(1)两圆的半径都为2,两圆心为1(F 0)、2F 0), 由题意得:12||2||2CF CF +=−或21||2||2CF CF +=−,2112||||||42||2CF CF a F F c ∴−==<=,可知圆心C 的轨迹是以原点为中心,焦点在x 轴上,且实轴为4,焦距为 因此2a =,c =2221b c a =−=, 所以轨迹L 的方程为2214x y −=.24.已知椭圆221(0)259x y a b +=>>的左、右焦点分别是1F ,2F ,Q 是椭圆外的动点,满足1||10FQ =.点P 是线段1F Q 与该椭圆的交点,点T 在线段2F Q 上,并且满足20PT TF =,2||0TF =. (Ⅰ)设x 为点P 的横坐标,证明14||55F P x =+; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△12F MF 的面积9S =,求12F MF ∠的正切值;若不存在,请说明理由.【解答】(Ⅰ)证明:设点P 的坐标为(,)x y . 记1122||,||F P r F P r ==,则12r r = 由22121211410,16,55r r r r x F P r x +=−===+得;(Ⅱ)解:设点T 的坐标为(,)x y .当||0PT =时,点(5,0)和点(5,0)−在轨迹上. 当200PT TF ≠≠且时,由20PT TF =,得2PT TF ⊥. 又2||||PQ PF =,所以T 为线段2F Q 的中点. 在△12QF F 中,11||||52OT FQ ==,所以有2225x y +=. 综上所述,点T 的轨迹C 的方程是2225x y +=;(Ⅲ)结论:在点T 的轨迹C 上,存在点M 使△12F MF 的面积9S =,此时12F MF ∠的正切值为2. 理由如下:C 上存在点0(M x ,0)y 使9S =的充要条件是22000254||9x y y ⎧+=⎪⎨=⎪⎩,显然09||54y =<,∴存在点M ,使9S =; 不妨取094y =,则10(4MF x =−−,9)4−,20(4MF x=−,9)4−, 121212||||cos MF MF MF MF F MF =∠0(4x =−−,09)(44x −−,9)4−220916()4x =−+21 / 21 2209()164x =+− 25169=−=, 又12121||||sin 92S MF MF F MF =∠=, 121212121||||cos ||||sin 2MF MF F MF MF MF F MF ∴∠=∠, 12tan 2F MF ∴∠=.。

立体几何中的轨迹问题(总结+讲义+练习)

立体几何中的轨迹问题(总结+讲义+练习)

立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、 几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、 代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】 如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是 ( )解析:如图,分别取CD 、SC 的中点F 、G ,连结EF 、EG 、FG 、BD .设AC 与BD 的交点为O ,连结SO ,则动点P 的轨迹是△SCD 的中位线FG .由正四棱锥可得SB ⊥AC ,EF ⊥AC .又∵EG ∥SB∴EG ⊥AC∴AC ⊥平面EFG ,∵P ∈FG ,E ∈平面EFG , ∴AC ⊥PE .另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC ;C 中P 点所在的轨迹与CD 平行,它与CF 成π4角,显然不满足PE ⊥AC ;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角为锐角,显然也不满足PE ⊥AC .评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】 (1)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(2) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 线段B 1C .(3) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).(4) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为233的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .若将“在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合”改为“在正方体表面上与点A 距离为233的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .1AC C 1AEC C 1A AB1A 1(1)(2)(3)(4)DDA .B .C .D . A【例3】 (1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A . A 直线B .圆C .双曲线D .抛物线 变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线). (2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A . (3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =13,点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6. 【例4】 (04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )【例5】 四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )BABCDA3P A BC D立体几何中的轨迹问题(教师版)1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为(D ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分 简析 本题主要考查点到直线距离的概念,线面垂直及抛物线的定义.因为B 1C 1⊥面AB 1,所以PB 1就是P 到直线B 1C 1的距离,故由抛物线的定义知:动点的轨迹为抛物线的一段,从而选D .2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为(B ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为(C ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是(A ).A .圆或圆的一部分B .抛物线或其一部分C .双曲线或其一部分D .椭圆或其一部分 简析 由条件易知:AC 是平面BB 1D 1D 的法向量,所以EP 与直线AC 成等角,得到EP 与平面BB 1D 1D 所成的角都相等,故点P 的轨迹有可能是圆或圆的一部分.5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为(A ). A .抛物线B .双曲线C .直线D .圆简析在正方体ABCD A B C D -1111中,过P 作PF ⊥AD ,过F 作FE ⊥A 1D 1,垂足分别为F 、E ,连结PE .则PE 2=a 2+PF 2,又PE 2-PM 2=a 2,所以PM 2=PF 2,从而PM =PF ,故点P 到直线AD 与到点M 的距离相等,故点P 的轨迹是以M 为焦点,AD 为准线的抛物线.6.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为__________. 简析 在解题中,我们要找到运动变化中的不变因素,通常将动点聚焦到某一个平面.易证BD 1⊥面ACB 1,所以满足BD 1⊥AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1交线上,故所求的轨迹为线段B 1C .本题的解题基本思路是:利用升维,化“动”为“静”,即先找出所有点的轨迹,然后缩小到符合条件的点的轨迹.7.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.答案 线段MN (M 、N 分别为SC 、CD 的中点)8.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.(除去两点的圆) 9.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是:(D )A A AP PP PB C B C B C B C A B C D简析 动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在∠ABC 的内角平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在∠ABC 的内角平分线与AB 之间的区域内.只能选D . 10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆 B .椭圆 C .双曲线 D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利 用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________. 简析以B 为圆心,半径为33且圆心角为π2的圆弧,长度为36π. 12.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 . 提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.简析 由于M 、N 都是运动的,所以求的轨迹必须化“动”为“静”,结合动点P 的几何性质,连结DP ,因为MN=2,所以PD=1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P 的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即1843163⨯⨯=ππ. 14.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .16.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP . 又8BC ,4AD ,CPB APD ==∠=∠,可得CPB tan PB CB PA AD APD tan ∠===∠,即得2ADCBPA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B(3,0).设点P (x ,y ),则有2y )3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB .所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线简析:因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .19.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=.依题意|PN ||PF |=, 即|1y |1x 2-=+,化简得0y 2y x 22=+- 故动点P 的轨迹为双曲线,选B .20.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线分析:由于线段AB是定长线段,而△ABP的面积为定值,所以动点P到线段AB 的距离也是定值.由此可知空间点P在以AB为轴的圆柱侧面上.又P在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB是平面的斜线段),得到的切痕是椭圆.P的轨迹就是圆柱侧面与平面a的交线.21.如图,动点P在正方体1111ABCD A B C D-的对角线1BD上.过点P作垂直于平面11BB D D的直线,与正方体表面相交于M N,.设BP x=,MN y=,则函数()y f x=的图象大致是()分析:将线段MN投影到平面ABCD内,易得y为x一次函数.22.已知异面直线a,b成︒60角,公垂线段MN的长等于2,线段AB两个端点A、B分别在a,b上移动,且线段AB长等于4,求线段AB中点的轨迹方程.图5简析:如图5,易知线段AB的中点P在公垂线段MN的中垂面α上,直线'a、'b为平面α内过MN的中点O分别平行于a、b的直线,'a'AA⊥于'A,'b'BB⊥于'B,则P'B'AAB=⋂,且P也为'B'A的中点.由已知MN=2,AB=4,易知,2AP,1'AA==得32'B'A=.则问题转化为求长等于32的线段'B'A的两个端点'A、'B分别在'a、'b上移动时其中点P的轨迹.现以'OB'A∠的角平分线为x轴,O为原点建立如图6所示的平面直角坐标系.A BCDMNPA1 B1C1D1yxOyxOyxOyxO图6设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A - )n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+.点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是 ( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分 5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( ) A .抛物线B .双曲线C .直线D .圆6.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是 ( ) A A AP PP PB C B C B C B CA B C DA B C D 7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线8.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A .圆 B .不完整的圆 C .抛物线 D .抛物线的一部分 10.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线 13.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )14.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.16.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.17.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 .19.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是 .20.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程.ABC D MNP A 1B 1C 1D 1 yxOyxOyxOyx O。

(完整版)高中数学动点轨迹问题专题讲解

(完整版)高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(3y x =±) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:()221212||10()10AB x x y y =⇒-+-=,又1133y x =-,2233y x =, 则12213()3y y x x +=-,21123()3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在) 14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b -=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有:lxyCGFOPM2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k 的取值范围是113(,)(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。

高考数学轨迹问题的题型与方法试题

高考数学轨迹问题的题型与方法试题

智才艺州攀枝花市创界学校高考数学轨迹问题的题型与方法主要内容:轨迹与轨迹方程−−坐标化坐标化〔探求轨迹:利用特殊化〔特殊点、位置〕,画草图分析,寻找轨迹〕2.求轨迹方程的一般步骤:①建系②设点③列式④化简⑤检验﹙较易忽略﹚3.轨迹方程的求法〔1〕曲线类型————待定系数法〔2〕未知曲线类型————①定义法②直接法③代点法④交轨法⑤参数法如直接法:〔解题思路〕4.注意轨迹的纯粹性与完备性--------在求出曲线的方程之后要仔细地检查有无“不法分子〞掺杂其中,将其剔除;另一方面又要注意有无“漏网之鱼〞“逍遥法外〞将其找回。

范例及其解法:圆C :(x ﹣1)2+y2=1,过原点O 作圆的任一弦,求弦的中点的轨迹方程。

解题点拨:考虑问题的角度不同,可有多种解法。

解法1:〔直译法〕设OQ 为过O 的任一弦,点P 〔x,y 〕为弦OQ 中点y,那么由平几知识得CP ⊥OQ ,设OC 中点为M )0,21(OCx 那么|MP|=21|QC|=21〔直译法〕 于是有〔x -)212+y2=41(o <x ≤1)解法2:〔定义法〕∵∠OPC=90°,动点P 在以M 〔0,21〕为圆心,OC 为直径的圆上, 那么|OC|=1,由圆方程可得:〔x –)212+y2=41〔o <x ≤1〕解法3:〔参数法〕设动弦OQ 所在直线方程为y=kx ,将它代入圆C 方程得:(x-1)2+k2x2=1,即(1+k2)x2–2x=0〔*〕 设P(x1,y1)、Q(x2,y2),弦OQ 的中点为P(x,y) 那么x1,x2是方程〔*〕的两根,221k 12x x +=+,221k 112x x x +=+=∴……①而y=kx=2k1k+……②由①、②消去k ,整理得)1x 0(41y )21x (22≤<=+-解法4:〔代入法〕〔即相关点法〕设圆C 的任一点Q(x0,y0),弦OQ 的中点P 的坐标为(x,y)那么⎪⎪⎩⎪⎪⎨⎧==2y y 2x x 00⇒⎪⎩⎪⎨⎧==y2y x 2x 00又因为(x0-1)2+y02=1,所以有(2x-1)2+4y2=1即所求的轨迹方程是)1x 0(41y )21x (22≤<=+-例2.如下列图,直线l1和l2相交于点M ,l1⊥l2,点N ∈l1,以A 、B 为端点的曲线段C 上任一点到l2的间隔与到点N 的间隔相等,假设△AMN 是锐角三角形,|AM|=17,|AN|=3且|BN|=6,建立适当的坐标系,求曲线C 的方程。

2023年高考数学----轨迹问题规律方法与典型例题讲解

2023年高考数学----轨迹问题规律方法与典型例题讲解

2023年高考数学----轨迹问题规律方法与典型例题讲解【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例1.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D −的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为2④点M . 其中正确的命题个数为( ) A .1 B .2 C .3 D .4【答案】B【解析】连接,AC BD ,交于O ,则O 为,AC BD 中点,因为F 为1BD 的中点,所以1//FO DD , 由正方体的性质可知1DD ⊥平面ABCD , 所以FO ⊥平面ABCD , 因为DE ⊂平面ABCD , 所以FO DE ⊥,过点O 作PQ DE ⊥,分别交,BC AD 于,P Q ,过点,P Q 分别作11//,//PH BB QG AA ,分别交1111,B C A D 于点,H G ,连接GH , 所以,PQGH 四点共面,且//,GQ PH GQ PH =, 所以,四边形PQGH 为平行四边形, 因为1AA ⊥平面ABCD ,所以PH ⊥平面ABCD ,PQ ⊂平面ABCD , 所以PH PQ ⊥所以,四边形PQGH 为矩形,因为PQ FO O =,,PQ FO ⊂平面PQGH , 所以DE ⊥平面PQGH ,因为点M 在正方体的表面上运动,且满足FM DE ⊥ 所以,当FM ⊂面PQGH 时,始终有FM DE ⊥, 所以,点M 的轨迹是矩形PQGH ,如下图,因为2DQO QDE QDE AED π∠+∠=∠+∠=,所以,DQO AED ∠=∠, 所以,AQO BED ∠=∠, 因为4OAQ EBD π∠=∠=,所以AOQ △∽BDE △,所以AQ AO BE BD =,即12AQ=,即14AQ = 所以14CP AQ ==,PQ =, 所以,点M 不可能是棱AD 的中点,点M 的轨迹是矩形PQGH ,轨迹长度为矩形PQGH的周长212⎫⎪⎪⎝⎭,1 故正确的命题为③④.个数为2个. 故选:B例2.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D −的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( )A B .2CD .1【答案】A【解析】画出示意图如下:取1CC 中点N ,取11D C 中点M ,连接11,,,B M B N MN ME ,则11,ME B B ME B B =∥,则四边形1MEBB 为平行四边形,所以1B M ∥BE , 连接1D C ,则11,MN D C EF D C ∥∥,故MN ∥EF ,又1B M MN M BE EF E ⋂=⋂=, ,1,B M MN ⊂平面1B MN ,BE EF ⊂平面BEF, 所以平面BEF ∥平面B 1MN ,平面1B MN ∩平面11CDD C =MN ,所以P 点轨迹即为MN ,长度为11||||2MN D C == 证明:因为平面BEF ∥平面1B MN ,P 点是MN 上的动点,故1B P ⊂平面1B MN ,所以1B P ∥平面BEF ,满足题意. 故选:A .例3.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD −中,底面ABCD 是边长为2的正方形,PA ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD −所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆 【答案】D【解析】可将四棱锥P ABCD −补形成正方体ABCD PB CD ''−,如图①,直线AG 即体对角线AC ',易证AC '⊥平面PDB ,A 选项正确; 如图②,取CD 的中点H ,连接FH ,可知FH AC //,所以GFH ∠ (或其补角)与直线FG 和直线AC 所成的角相同,在FGH 中,FG GH FG ==,所以π3GFH ∠=,B 选项正确;如图③,延长EF 交直线CD 于点H ,交直线BC 于点I ,连接GI 交PB 于点M ,连接GH 交PD 于点N ,则五边形EFNGM 即为平面EFG 截 四棱锥P ABCD −所得的截面,C 选项正确;当12AGT S =△时,因为AG 所以点T 到AG 点T 在以AC 为轴,底面半径r =T 在平面ABCD 上,所以点T 的轨迹是椭圆.D 选项错误. 故选:D例4.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P −−的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线【答案】D【解析】连接AC 交BD 于O ,取11B D 中点1O ,连接1OO以O 为原点,分别以OA 、OB 、1OO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图:令正方体边长为2,则11(,)A C A B ,(0,,)P y z =面11BD A 的一个法向量为1(2,AB =−,面11BB D 的一个法向量为(AC =− 则1(co 1s 2,AC AB −==,故二面角111A BD B −−的大小为π3又二面角11A BD P −−的大小(]0,παÎ,则π3α=或2π3α=由cos sin βα=,,可得π6β=又1(,)y z A P =−1111(1sin 2A P AB A P AB β⋅−===⋅整理得240z z +++= 即3)1y z z =−+,是双曲线. 故选:D例5.(2022·全国·高三专题练习)如图,正方体ABCD A B C D −''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧【答案】C【解析】由P 点的轨迹实际是一个正圆锥面和两个平面的交线,其中这个正圆锥面的中心轴即为AC ',顶点为A ,顶角的一半即为MAC '∠, 以A 点为坐标原点建立空间直角坐标系,则1(0,0,1),(1,1,0),(,1,1)2AC M ,可得1(1,1,1),(,1,0)2ACAM '=−=,1111cos MAC ⨯+⨯'∠===,设AC '与底面A BC D ''''所成的角为θ,则A C cos AC θ''===>',所以MAC θ'<∠,''''的交线是双曲线弧,所以该正圆锥面和底面A B C D同理可知,P点在平面CDD C''的交线是双曲线弧,故选:C.。

高中数学 轨迹问题专题

轨迹问题专题一.综述(一)求动点的轨迹方程的基本步骤:⒈依据题目建立适当的坐标系,设出动点M(x,y)的坐标.⒉写出点M的集合(几何关系).⒊将几何关系转化为代数关系,列出方程f(x,y)=0,化简方程为最简形式.4.检验特殊点,进行必要的文字说明.(二)高考中常见的求轨迹方程的方法有:1.直译法与定义法,2.相关点法;3.参数法;4.交轨法(三)求轨迹方程一般以解答题第一问的形式出现,偶尔也会在小题中考查.二.例题精讲破解规律例1.设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.证明EA+EB 为定值,并写出点E的轨迹方程.分析:题目中要求证明EA+EB为定值,容易知道,E的轨迹是椭圆,根据条件求出相关的参数即可.AM = λ AD , DN = λ DC , λ ∈[0,1], AN 交 BM 于点 Q .若点 Q 的轨迹是曲线 P 的现学现用 2: 设 O 为坐标原点,动点 M 在椭圆 C : x + y 2 = 1 上,过 M 做 x 轴点评:平面几何相关知识是解决本题的关键,平时学习中要加以重视.规律总结: (1)直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐 标的关系式,化简即可.(2)定义法求轨迹方程 :轨迹方程问题中 ,若能得到与我们所学过的圆锥曲线定义 相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程. (3)定义法求轨迹方程本质上还是直译法,只是我们利用了直译法得到的结论.现 学 现 用 1: 如 图 , 矩 形 ABCD 中 ,A (-2,0 ),B (2,0 ),C (2,2 ),D (-2,2 ) 且uuuuv uuuv uuuv uuuv一部分,曲线 P 关于 x 轴、 y 轴、原点都对称,求曲线 P 的轨迹方程.例 2. 已知线段 AB 的端点 B 的坐标是 (6,5 ),端点 A 在圆 C : (x - 4)2 + ( y - 3)2 = 4 1上运动.求线段 AB 的中点 P 的轨迹 C 的方程;2规律总结:相关点法求轨迹方程: 题中涉及了两个动点 N 、M ,且点 N 的运动是有规律的(轨迹方程已知),而 M 的运动是由 N 的运动而引发的,这样的题目可采 用相关点法求动点 M 的轨迹方程.基本方法是设 M 的坐标,再反解出 N 的坐标, 然后带入 N 所在曲线的轨迹方程,整理即可.22现学现用 3: 已知 F , F 为椭圆 C : x + y = 1 的左、右焦点,点 P 在椭圆 C 上移动4 3uuur uuuur的垂线,垂足为 N ,点 P 满足 NP = 2 NM .求点 P 的轨迹方程;例 3: 已知抛物线 C : y 2 = 2 x 的焦点为 F ,平行于 x 轴的两条直线 l , l 分别交 C 1 2于 A ,B 两点,交 C 的准线于 P ,Q 两点.(Ⅰ)若 F 在线段 AB 上, R 是 PQ 的中点,证明 AR ∥FQ ;(Ⅱ)若 △PQF 的面积是 △ABF 的面积的两倍,求 AB 中点的轨迹方程.点评:本题考查抛物线定义与几何性质、直线与抛物线位置关系、轨迹求法规律总结: 当动点坐标 x 、y 之间的直接关系难以找到时,往往先寻找 x 、y 与某 一变量(或多个)的关系,再消去参变量 ,得到方程,即为动点的轨迹方程 ,这种求轨 迹方程的方法叫做参数法2 21 2时, ∆PF F 的内心 I 的轨迹方程为__________.1 2三.课堂练习 强化技巧A B O1.已知|AB|=3,,分别在x轴和y轴上运动,为原点,OP=1OA+2OB,33则点P的轨迹方程为().A.x2+y2=1B.x2+y2=1C.x2+y2=1D.x2+y2=144992.若动圆P与圆M:x2+(y+2)2=1和圆N:x2+(y+3)2=λ(1≤λ≤4)都外切,则动圆P的圆心的轨迹()A.是椭圆B.是一条直线C.是双曲线的一支D.与λ的值有关3.已知直线l过抛物线C:y2=4x的焦点,l与C交于A,B两点,过点A,B分别作C的切线,且交于点P,则点P的轨迹方程为________.四.课后作业巩固内化1.设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A、B两点,uuuv uuuv点Q与点P关于y轴对称,O为原点,若P为AB的中点,且OQ⋅AB=1,则点P的轨迹方程为__________.2.已知A(1,1),B(−1,1),直线AM,BM相交于点M,且直线AM的斜率与直44线BM的斜率的差是1,则点M的轨迹C的方程是___________.23..点P是圆C:(x+2)2+y2=4上的动点,定点F(2,0),线段PF的垂直平分线与直线CP的交点为Q,则点Q的轨迹方程是___.4.如下图,在平面直角坐标系xOy中,直线l:y=x与直线l:y=-x之间的阴影12部分即为W,区域W中动点P(x,y)到l,l的距离之积为1.求点P的轨迹C的方12程;5.已知动圆G过定点F(4,0),且在y轴上截得的弦长为8.求动圆G的圆心点G 的轨迹方程;6.在平面直角坐标系xOy中,设动点P到两定点M(-2,0),N(1,0)的距离的比值为2的轨迹为曲线C.求曲线C的方程;7.已知动点E到点A(2,0)与点B(-2,0)的直线斜率之积为-1,点E的轨迹为4曲线C.求C的方程;8.平面直角坐标系xOy中,圆x2+y2+2x-15=0的圆心为M.已知点N(1,0),且T为圆M上的动点,线段T N的中垂线交T M于点P.求点P的轨迹方程;9.设M,N,T是椭圆x2+y2=1上三个点,M,N在直线x=8上的射影分别为1612(1)若直线MN 过原点O ,直线MT, NT 斜率分别为k , k ,求证:k k 为定值; (2)若M, N 不是椭圆长轴的端点,点L 坐标为(3, 0),ΔM N L 与ΔMNL 面积之比M 1, N 1.1 2 1 211为 5,求MN 中点K 的轨迹方程.10. 已知椭圆 Γ: x 2 + y 2 = 1(a > b > 0)的右焦点与短轴两端点构成一个面积为a 2b 22 的等腰直角三角形,O 为坐标原点.(1)求椭圆Γ的方程;(2)设点A 在椭圆Γ上,点B 在直线y = 2上,且OA ⊥ OB ,求证: 1 +OA 21 OB 2为定值;(3)设点C 在椭圆Γ上运动,OC ⊥ OD ,且点O 到直线CD 的距离为常数√3,求动点的轨迹方程.轨迹问题专题答案一.综述(一)求动点的轨迹方程的基本步骤:⒈依据题目建立适当的坐标系,设出动点M(x,y)的坐标.⒉写出点M的集合(几何关系).⒊将几何关系转化为代数关系,列出方程f(x,y)=0,化简方程为最简形式.4.检验特殊点,进行必要的文字说明.(二)高考中常见的求轨迹方程的方法有:1.直译法与定义法,2.相关点法;3.参数法;4.交轨法(三)求轨迹方程一般以解答题第一问的形式出现,偶尔也会在小题中考查.二.例题精讲破解规律例1.设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.证明EA+EB 为定值,并写出点E的轨迹方程.分析:题目中要求证明EA+EB为定值,容易知道,E的轨迹是椭圆,根据条件求出相关的参数即可.答案: x + y = 1( y ≠ 0 ) + = 1 ( y ≠ 0 ). AM = λ AD , DN = λ DC , λ ∈[0,1], AN 交 BM 于点 Q .若点 Q 的轨迹是曲线 P 的22 4 3解析:因为 | AD |=| AC | , EB // AC ,故 ∠EBD = ∠ACD = ∠ADC ,所以 | EB |=| ED | ,故 | EA | + | EB |=| EA | + | ED |=| AD | .又圆 A 的标准方程为 ( x + 1)2 + y 2 = 16 ,从而 | AD |= 4 ,所以 | EA | + | EB |= 4 . 由题设得 A(-1,0) , B(1,0) , | AB |= 2 ,由椭圆定义可得点 E 的轨迹方程为:x 2 y 24 3点评:平面几何相关知识是解决本题的关键,平时学习中要加以重视.规律总结: (1)直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐 标的关系式,化简即可.(2)定义法求轨迹方程 :轨迹方程问题中 ,若能得到与我们所学过的圆锥曲线定义 相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程. (3)定义法求轨迹方程本质上还是直译法,只是我们利用了直译法得到的结论. 现 学 现 用 1: 如 图 , 矩 形 ABCD 中 ,A (-2,0 ),B (2,0 ),C (2,2 ),D (-2,2 ) 且uuuuv uuuv uuuv uuuv一部分,曲线 P 关于 x 轴、 y 轴、原点都对称,求曲线 P 的轨迹方程.解析:设 Q (x, y ),由 AM = λ AD , DN = λ DC ,求得 M (-2,2 λ ), N (4λ - 2,2 ), 1λ ,∴ k1 ⎛ λ ⎫ 1 ,⋅ - ⎪ =-=-∴ y ⋅ y = - ,整理得 + y 2 = 1(-2 ≤ x ≤ 0,0 ≤ y ≤ 1) .uuuuv uuuv uuuv uuuv∵ kQA = k AN = 2λ 2Q A ⋅ k QB = 2λ ⎝ 2 ⎭ 41 x2 x + 2 x - 2 44可知点 Q 的轨迹为第二象限的 1 椭圆,由对称性可知曲线 P 的轨迹方程为4x 24+ y 2 = 1 .例 2. 已知线段 AB 的端点 B 的坐标是 (6,5 ),端点 A 在圆 C : (x - 4)2 + ( y - 3)2 = 4 1上运动.求线段 AB 的中点 P 的轨迹 C 的方程;2分析:设点 P 的坐标为 (x, y ),点 A 的坐标为 (x , y ),根据 B 点坐标,和点 P 是 0 0线段 AB 的中点,得 x = 2 x - 6 , y = 2 y - 5 ,再由点 A 在圆 C 上运动,求得点 0 01A 的轨迹方程,进而可求得点 P 的轨迹 C 的方程; 2答案: (x - 5)2 + ( y - 4)2 = 1解析:设点 P 的坐标为 (x, y ),点 A 的坐标为 (x , y ),由于点 B 的坐标为 (6,5 ), 0 0且点 P 是线段 AB 的中点,所以 x = x 0 + 6 , y = y 0 + 52 2于是有 x = 2 x - 6 , y = 2 y - 5 ①因为点 A 在圆 C 上运动,所以点 A 的坐标满足 C 的方程 (x - 4)2 + ( y - 3)2 = 41 1即:(x- 4)2 + ( y - 3)2 = 4 ②把①代入②,得 (2 x - 6 - 4)2 + (2 y - 5 - 3)2 = 4整理,得 (x - 5)2 + ( y - 4)2 = 1所以点 P 的轨迹 C 的方程为 (x - 5)2 + ( y - 4)2 = 1 .2现学现用 2: 设 O 为坐标原点,动点 M 在椭圆 C : x + y 2 = 1上,过 M 做 x 轴⎧⎪ x - x ' = 0 ( x - x ', y) = 2(0, y ') 即 ⎨ ⇒⎨y ⎪⎩ y = 2 y ' ⎪ 代入椭圆方程 x+ y '2 = 1 ,得到 x 2 + y 2 = 2( 2规律总结:相关点法求轨迹方程: 题中涉及了两个动点 N 、M ,且点 N 的运动是有规律的(轨迹方程已知),而 M 的运动是由 N 的运动而引发的,这样的题目可采 用相关点法求动点 M 的轨迹方程.基本方法是设 M 的坐标,再反解出 N 的坐标, 然后带入 N 所在曲线的轨迹方程,整理即可.22uuur uuuur的垂线,垂足为 N ,点 P 满足 NP = 2 NM .求点 P 的轨迹方程;uuur uuuur解析:设 P( x , y) , M ( x ', y ') , N ( x ',0) NP = 2 NM⎧ x ' = x ⎪ y ' =⎩2'2 2∴点 P 的轨迹方程 x 2 + y 2 = 2 。

专题-高中数学数学《轨迹问题》课件(共23张PPT)

45 9 20 16
练习二: 1、(P160变式训练2)若动圆M恒过定点 B(-2,0),且和定圆C:(x-2)2+y2=4外 切,求动圆圆心M的轨迹方程。
x2 y2 2、双曲线 C: 2 2 1( a 0, b 0)的离心率为 2, a b 4 2 2 且 | OA | | OB | | OA |2 | OB |2 , 其中A( 0, b ) 3 2 y B( 0, a ), 求双曲线 C的方程。 答案:x 2 1 3
练习三:
( 2 )求动点 M的轨迹方程。
C
答案:(1)[-1,1]
E
பைடு நூலகம்
M
B
A D
(2)x2=4y,x∈[-2
,2]
2、在平面直角坐标系xoy中,抛物线y=x2上 异于坐标原点O的两个不同动点A,B,满足 AO⊥BO,求△AOB的重心G的轨迹方程。 提示:法1:点参数,设A(x1,x12),B(x2,x22) 有x1x2=-1 法2:k参数,设直线AB的方程为y=kx+b, 有b=1
学。科。网
2、已知点 F( 1,0 ),直线 l : x 1, P为平面上 的动点,过 P作直线l的垂线,垂足为点 Q,且 QP QF =FP FQ ,求动点 P的轨迹方程。
y2=4x
3、设M是圆A:x2+y2-6x-8y=0上的动点 ,O是原点,N是射线OM上的点,若 OM· ON=150,求点N的轨迹方程。 N 提示:如图 M
知识要点 求轨迹方程的基本方法:
(1)直接法 (2)定义法
(3)相关点法(代入法) (4)参数法
学科网
双基固化 题型一:用直接法求轨迹方程
例1:平面内有两个定点B(-1,1)、 C(1,-1),动点A满足条件 tan∠ACB=2tan∠ABC,求动点A的轨迹方 程。 答案:3x-3y-2=0或x+y=0(除去B、C )

高中数学 轨迹问题专题

轨迹问题专题一.综述(一)求动点的轨迹方程的基本步骤:⒈依据题目建立适当的坐标系,设出动点M (x ,y )的坐标.⒉写出点M 的集合(几何关系).⒊将几何关系转化为代数关系,列出方程f (x ,y )=0,化简方程为最简形式.4.检验特殊点,进行必要的文字说明.(二)高考中常见的求轨迹方程的方法有:1.直译法与定义法,2.相关点法;3.参数法;4.交轨法(三)求轨迹方程一般以解答题第一问的形式出现,偶尔也会在小题中考查.二.例题精讲 破解规律例1. 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .证明为定值,并写出点E 的轨迹方程.分析: 题目中要求证明为定值,容易知道, E 的轨迹是椭圆,根据条件求出相关的参数即可.222150x y x ++-=EA EB +EA EB+点评:平面几何相关知识是解决本题的关键,平时学习中要加以重视.规律总结: (1)直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简即可.(2)定义法求轨迹方程:轨迹方程问题中,若能得到与我们所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.(3)定义法求轨迹方程本质上还是直译法,只是我们利用了直译法得到的结论. 现学现用1:如图,矩形中, 且, 交于点.若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程.例2. 已知线段的端点的坐标是,端点在圆上运动.求线段的中点的轨迹的方程;规律总结:相关点法求轨迹方程: 题中涉及了两个动点N 、M ,且点N 的运动是有规律的(轨迹方程已知),而M 的运动是由N 的运动而引发的,这样的题目可采用相关点法求动点M 的轨迹方程.基本方法是设M 的坐标,再反解出N 的坐标,然后带入N 所在曲线的轨迹方程,整理即可.现学现用2: 设O 为坐标原点,动点M 在椭圆C :上,过M 做x 轴ABCD ()()()()2,0,2,0,2,2,2,2A B C D --,AM AD DN DC λλ==[]0,1,AN λ∈BM Q Q P P x y P AB B ()6,5A ()()221:434C x y -+-=AB P 2C 2212x y +=的垂线,垂足为N ,点P 满足.求点P 的轨迹方程;例3: 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.点评:本题考查抛物线定义与几何性质、直线与抛物线位置关系、轨迹求法规律总结: 当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一变量(或多个)的关系,再消去参变量,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法现学现用3: 已知为椭圆的左、右焦点,点在椭圆上移动时, 的内心的轨迹方程为__________.三.课堂练习 强化技巧 2NP NM =C 22y x =F x 12,l l C A B ,C P Q ,F AB R PQ AR FQ ∥PQF △ABF △AB 12,F F 22:143x y C +=P C 12PF F ∆I1. 已知|| =3,A ,B 分别在x 轴和y 轴上运动,O 为原点, ,则点P 的轨迹方程为( ).A .B .C .D .2. 若动圆与圆和圆都外切,则动圆的圆心的轨迹( ) A . 是椭圆 B . 是一条直线 C . 是双曲线的一支 D . 与的值有关3. 已知直线过抛物线: 的焦点, 与交于, 两点,过点, 分别作的切线,且交于点,则点的轨迹方程为________.四.课后作业 巩固内化1. 设过点的直线分别与轴的正半轴和轴的正半轴交于、两点,点与点关于轴对称, 为原点,若为的中点,且,则点的轨迹方程为__________.2. 已知A(1,14),B(−1,14),直线AM ,BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的差是12,则点M 的轨迹C 的方程是___________.3. .点P 是圆C:(x +2)2+y 2=4上的动点,定点F (2,0),线段PF 的垂直平分线与直线CP 的交点为Q ,则点Q 的轨迹方程是___. AB 12OP OA OB 33=+22y x 14+=22x y 14+=22x y 19+=22y x 19+=P ()22:21M x y ++=()()22:314N x y λλ++=≤≤P λl C 24y x =l C A B A B C P P (),P x y x y A B Q P y O P AB 1OQ AB ⋅=P4. 如下图,在平面直角坐标系中,直线与直线之间的阴影部分即为,区域中动点到的距离之积为1.求点的轨迹的方程;5. 已知动圆过定点,且在轴上截得的弦长为.求动圆的圆心点的轨迹方程;6. 在平面直角坐标系中,设动点到两定点, 的距离的比值为的轨迹为曲线.求曲线的方程;7. 已知动点E 到点A 与点B 的直线斜率之积为,点E 的轨迹为曲线C .求C 的方程;8. 平面直角坐标系中,圆的圆心为.已知点,且为圆上的动点,线段的中垂线交于点.求点的轨迹方程;9. 设M,N,T 是椭圆x 216+y 212=1上三个点,M,N 在直线x =8上的射影分别为xOy 1:l y x =2:l y x =-W W (),P x y 12,l l PC G ()4,0F y 8G G xOy P ()2,0M -()1,0N 2C C ()2,0()2,0-14-xOy 222150x y x ++-=M ()1,0N T M TN TM P PM1,N1.(1)若直线MN过原点O,直线MT,NT斜率分别为k1,k2,求证:k1k2为定值;(2)若M,N不是椭圆长轴的端点,点L坐标为(3,0),ΔM1N1L与ΔMNL面积之比为5,求MN中点K的轨迹方程.10. 已知椭圆Γ:x2a2+y2b2=1(a>b>0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O为坐标原点.(1)求椭圆Γ的方程;(2)设点A在椭圆Γ上,点B在直线y=2上,且OA⊥OB,求证:1OA2+1OB2为定值;(3)设点C在椭圆Γ上运动,OC⊥OD,且点O到直线CD的距离为常数√3,求动点D 的轨迹方程.轨迹问题专题答案一.综述(一)求动点的轨迹方程的基本步骤:⒈依据题目建立适当的坐标系,设出动点M (x ,y )的坐标.⒉写出点M 的集合(几何关系).⒊将几何关系转化为代数关系,列出方程f (x ,y )=0,化简方程为最简形式.4.检验特殊点,进行必要的文字说明.(二)高考中常见的求轨迹方程的方法有:1.直译法与定义法,2.相关点法;3.参数法;4.交轨法(三)求轨迹方程一般以解答题第一问的形式出现,偶尔也会在小题中考查.二.例题精讲 破解规律例1. 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .证明为定值,并写出点E 的轨迹方程.分析: 题目中要求证明为定值,容易知道, E 的轨迹是椭圆,根据条件求出相关的参数即可.222150x y x ++-=EA EB +EA EB +答案:() 解析:因为,,故,所以,故.又圆的标准方程为,从而,所以. 由题设得,,,由椭圆定义可得点的轨迹方程为: (). 点评:平面几何相关知识是解决本题的关键,平时学习中要加以重视.规律总结: (1)直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简即可.(2)定义法求轨迹方程:轨迹方程问题中,若能得到与我们所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.(3)定义法求轨迹方程本质上还是直译法,只是我们利用了直译法得到的结论. 现学现用1:如图,矩形中, 且, 交于点.若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程.13422=+y x 0≠y ||||AC AD =AC EB //ADC ACD EBD ∠=∠=∠||||ED EB =||||||||||AD ED EA EB EA =+=+A 16)1(22=++y x 4||=AD 4||||=+EB EA )0,1(-A )0,1(B 2||=AB E 13422=+y x 0≠y ABCD ()()()()2,0,2,0,2,2,2,2A B C D --,AM AD DN DC λλ==[]0,1,AN λ∈BM Q Q P P x y P解析:设,由,求得, ∵,∴, ∴,整理得. 可知点的轨迹为第二象限的椭圆,由对称性可知曲线的轨迹方程为. 例2. 已知线段的端点的坐标是,端点在圆上运动.求线段的中点的轨迹的方程;分析:设点的坐标为,点的坐标为,根据点坐标,和点是线段的中点,得, ,再由点在圆上运动,求得点的轨迹方程,进而可求得点的轨迹的方程;答案:解析:设点的坐标为,点的坐标为,由于点的坐标为, 且点是线段的中点,所以, 于是有, ①因为点在圆上运动,所以点的坐标满足的方程 即: ②把①代入②,得整理,得所以点的轨迹的方程为.(),Q x y ,AM AD DN DC λλ==()()2,2,42,2M N λλ--1,22QA AN QB BM k k k k λλ====-11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭1224y y x x ⋅=-+-()22120,014x y x y +=-≤≤≤≤Q 14P 2214x y +=AB B ()6,5A ()()221:434C x y -+-=AB P 2C P (),x y A ()00,x y B P AB 026x x =-025y y =-A 1C A P 2C ()()22541x y -+-=P (),x y A ()00,x y B ()6,5P AB 062x x +=052y y +=026x x =-025y y =-A 1C A 1C ()()22434x y -+-=()()2200434x y -+-=()()222642534x y --+--=()()22541x y -+-=P 2C ()()22541x y -+-=规律总结:相关点法求轨迹方程: 题中涉及了两个动点N 、M ,且点N 的运动是有规律的(轨迹方程已知),而M 的运动是由N 的运动而引发的,这样的题目可采用相关点法求动点M 的轨迹方程.基本方法是设M 的坐标,再反解出N 的坐标,然后带入N 所在曲线的轨迹方程,整理即可.现学现用2: 设O 为坐标原点,动点M 在椭圆C :上,过M 做x 轴的垂线,垂足为N ,点P 满足.求点P 的轨迹方程;解析:设,,即 代入椭圆方程,得到 ∴点的轨迹方程。

高三数学轨迹方程50题及答案

求轨迹程求曲线的轨迹程常采用的法有直接法、定义法、代入法、参数法、交轨法,待定系数法。

(1)直接法 直接法是将动点满足的几条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹程.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的程,通过转换而求动点的轨迹程.(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数程. (5)交轨法 若动点是受某一参量影响的两动曲线的交点,我们可以以消去这个参量得到动点轨迹程.(6)待定系数法 求轨迹程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹程”是两个不同的概念.一、选择题:1、程y=122+--x x 表示的曲线是: ( ) A 、双曲线 B 、半圆 C 、两条射线 D 、抛物线2、程[(x -1)2+(y+2)2](x 2-y 2)=0表示的图形是: ( ) A 、两条相交直线 B 、两条直线与点(1,-2) C 、两条平行线 D 、四条直线3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹程是: ( ) A 、x 2+y 2=1 B 、x 2+y 2=1(x ≠±1) C 、x 2+y 2=1(x ≠1) D 、y=21x -4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平,则动点的轨迹程是: ( ) A 、x 2+y 2=2(x+y) B 、x 2+y 2=2|x+y| C 、x 2+y 2=2(|x|+|y|) D 、x 2+y 2=2(x -y) 5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆 B 、中心在(5,0)的椭圆 C 、中点在原点的双曲线 D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹程是 ( )A 、(x -2)2+y 2=4B 、(x -2)2+y 2=4(0≤x <1)C 、(x -1)2+y 2=4D 、(x -1)2+y 2=4(0≤x <1) 7、已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是: ( ) A 、双曲线 B 、双曲线左支 C 、一条射线 D 、双曲线右支8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹程是:( )A 、y 2=12xB 、y 2=12x(x>0)C 、y 2=6xD 、y 2=6x(x>0)10、已知圆x 2+y 2=1,点A (1,0),△ABC 接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹程是 ( )A 、x 2+y 2=21 B 、x 2+y 2=41 C 、x 2+y 2=21(x<21) D 、x 2+y 2=41(x<41) 11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹程是 ( ) A 、(x -2)2+(y+4)2=16 (0)y ¹ B 、(x -2)2+4(y+2)2=16 (0)y ¹ C 、(x -2)2-(y+4)2=16 D 、(x -2)2+4(y+4)2=1612、椭圆C 与椭圆14)2(9)3(22=-+-y x 关于直线x+y=0对称,椭圆C 的程是( ) A 、22(2)(3)149x y +++= B 、22(2)(3)194x y --+= C 、22(2)(3)194x y +++= D 、22(2)(3)149x y --+= 13、设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹程为 ( )A.14922=+y xB.14922=+x y C.14922=-y xD.14922=-x y 14、中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆程为 ( ) 12575 D. 17525C.1252752 B. 1752252A.22222222=+=+=+=+y x y x y x y x 15、已知⊙O :x 2+y 2=a 2, A(-a, 0), B(a, 0), P 1, P 2为⊙O 上关于x 轴对称的两点,则直线AP 1与直线BP 2的交点P 的轨迹程为 ( ) A 、x 2+y 2=2a 2 B 、x 2+y 2=4a 2 C 、x 2-y 2=4a 2 D 、x 2-y 2=a2二、填空题:16、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹程为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专题训练——轨迹问题1. 已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A. 一个圆 B. 两条平行直线 C. 四个点D. 两个点2 在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A. 圆B. 不完整的圆C. 抛物线D. 抛物线的一部分3. 如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点。

且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A. 一条线段,但要去掉两个点B. 一个圆,但要去掉两个点C. 一个椭圆,但要去掉两个点D. 半圆,但要去掉两个点4. 如图3,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( ) A. 直线B. 圆C. 双曲线D. 抛物线图35. 已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( ) A. 抛物线B. 双曲线C. 椭圆D. 直线6. 已知异面直线a,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程。

7. 已知圆E 的方程为 (x -1)2 + y 2 = 1, 四边形PABQ 为该圆的内接梯形,底AB 为圆的直径且在x 轴上,以A 、B 为焦点的椭圆C 过P 、Q 两点.(1) 若直线QP 与椭圆C 的右准线相交于点M ,求点M 的轨迹; (2) 当梯形PABQ 周长最大时,求椭圆C 的方程.8. 已知双曲线的两个焦点分别为F1、F2,其中F1又是抛物线y2 = 4 x的一个焦点,且点A(-1, 2),B(3, 2)在双曲线上.(1)求点F2的轨迹;(2)是否存在直线y = x+m与点F2的轨迹有且只有两个公共点,若存在,求出实数m的值,若不存在,说明理由.9. 已知常数a > 0,c = (0, a),i = (1, 0),经过原点O,以c +λi为方向向量的直线与经过定点A(0 , a),以i -2λc为方向向量的直线交于点P,其中λ∈R,试问:是否存在两个定点E , F,使得| PE| + | PF | 为定值,若存在,求出E, F的坐标,若不存在,说明理由.M,,AB 边所在直线的方程为360T-,在AD边所在x y--=点(11)直线上.(I)求AD边所在直线的方程;(II)求矩形ABCD外接圆的方程;(III)若动圆P过点(20)N-,,且与矩形ABCD的外接圆外切,求动圆P的圆心的轨迹方程.11. 如图,设抛物线2yC=的焦点为F,动点P在直线0:xxl上运动,-y-2:=过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求△APB的重心G的轨迹方程.(2)证明∠PFA=∠PFB.12. 已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF (Ⅰ)设x 为点P 的横坐标,证明x aca P F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.13. 过抛物线y 2=4x 的焦点的直线l 与抛物线交于A 、B 两点,O 为坐标原点.求△AOB 的重心G 的轨迹C 的方程.14. 已知圆22:1C x y +=和点(2,0)Q ,动点M 到圆C 的切线长与||MQ 的比等于常数(0)λλ>,求动点M 的轨迹方程,并说明它表示什么曲线?15. 如图,圆1O 与圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O 、圆2O 的切线PM 、PN (M 、N 分别为切点),使得PN PM 2=.试建立适当的坐标系,并求动点P 的轨迹方程.16. 已知椭圆C:x y221691+=和点P(1,2),直线l经过点P并与椭圆C交于A、B两点,求当l倾斜角变化时,弦中点的轨迹方程。

17. 已知棱长为3的正方体ABCD A B C D-1111中,长为2的线段MN的一个端点在DD1上运动,另一个端点N在底面ABCD上运动,求MN中点P的轨迹与正方体的面所围成的几何体的体积。

18. (经典问题,值得一做,很能训练学生的思维能力)三峡工程需修建一个土石基坑,基坑成矩形ABCD,按规定,挖出的土方必须沿道路PA或PB送到P点处。

已知mABmBCmPBmPA160,60,150,100====,能否在池中确定一条界线,使得位于界线一侧的点沿道路PA送土方较近,而另一侧的点沿道路PB送土方较近?如果能,请说明这条界线是什么曲线,并求出轨迹方程。

19. 设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线20. 某检验员通常用一个直径为2 cm和一个直径为1 cm的标准圆柱,检测一个直径为3 cm的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?答案:1. 如图1,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4。

在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上。

又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点。

因此所求点的轨迹是四个点,故选C 。

2. 因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP 。

又8BC ,4AD ,CPB APD ==∠=∠, 可得CPB tan PBCBPA AD APD tan ∠===∠, 即得2ADCBPA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B (3,0)。

设点P (x,y ),则有2y)3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B 。

3. 因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB 。

所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B 。

4. 因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等。

由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D 。

5. 以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系。

设P (x,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=。

依题意|PN ||PF |=, 即|1y |1x 2-=+, 化简得0y 2y x 22=+-故动点P 的轨迹为双曲线,选B 。

6. 如图,易知线段AB 的中点P 在公垂线段MN 的中垂面α上,直线'a 、'b 为平面α内过MN 的中点O 分别平行于a 、b 的直线,'a 'AA ⊥于'A ,'b 'BB ⊥于'B ,则P 'B 'A AB =⋂,且P 也为'B 'A 的中点。

由已知MN=2,AB=4,易知,2AP ,1'AA ==得32'B 'A =。

则问题转化为求长等于32的线段'B 'A 的两个端点'A 、'B 分别在'a 、'b 上移动时其中点P 的轨迹。

现以'OB 'A ∠的角平分线为x 轴,O 为原点建立如图所示的平面直角坐标系。

设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A -)n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+。

7. 解 (1) 设椭圆C :b 2(x -1)2 + a 2y 2 = a 2 b 2 (a >b >0),由题意知 2c = 2, 故 c = 1,如图9-9,从而可得 右准线的方程 x = a 2 +1, …………………………………………………………… ①设 M(x, y),P(x 0, y 0),连PB ,则有 | PA| 2 + |PB| 2 = |AB| 2,∴ ( | PA| + | PB| )2- 2| PA|·|PB| = 4,由此可得 (2a)2- 2·2 | y P | = 4,即 y P = ±(a 2-1),………………②于是,由①②得 y =±(x - 2).又∵ 点P(x 0, y 0)是圆E 上的点,且不与AB 重合,∴ 0 < |y 0| < 1,故有 0 < a 2- 1< 1 , 即 1 < a 2 < 2…………………………………………………………… ③由①③得 2 < x < 3,∴ 点M 的轨迹是两条线段,其方程为 y =±(x -2) (2 < x < 3).(2) 设∠ABQ =θ,∵点Q 在P 点左侧,∴θ∈(45o , 90o ),又|AB| = 2, 于是,由图9-9可得 | PA| = |BQ| = 2cos θ, |PQ| = |AB|-2|BQ|cos θ= 2- 4cos 2θ,∴ 周长 L= (2-4cos 2θ) + 4cos θ+ 25)21(cos 42+--=θ.当︒==60 21cos θθ即,时,周长L 取最大值5.此时 |BQ| = 1, |AQ| =3,2a = |BQ| +|AQ| =1+3,∴232)231(22+=+=a ,23122=-=a b ,故 所求椭圆的方程为 123232)1(22=++-y x .8. 解 (1) 由题意知F 1(1, 0),设F 2(x , y),则 | |AF 1|-|AF 2| | = | |BF 1|-|BF 2| | = 2a > 0.……………………………①∵ A(-1, 2),B(3, 2) 在已知双曲线上,且 |AF 1| = | BF 1| =22.于是 (ⅰ) 当 | AF 1|-|AF 2| = |BF 1|-|BF 2|时,有 |AF 2| = |BF 2| , 再代入①得: F 2的轨迹为直线 x = 1除去两个点F 1(1, 0), D(1, 4).(ⅱ) ∵ 当 | AF 1|-|AF 2| = - ( |BF 1|-|BF 2| ) 时,有 | AF 2| + |BF 2| = |AF 1| + |BF 1| =24> 4 = |AB| ,∴ 点F 2的轨迹是以A 、B 两点为焦点的椭圆Q ,且除去F 1(1, 0),D(1, 4)两点,图9-9故所求的轨迹方程为 l :x = 1与Q :14)2(8)1(22=-+-y x ( y ≠0,y ≠ 4 ).(2) 设存在直线L :y = x+ m 满足条件.(ⅰ) 若L 过点F 1或点D ,∵ F 1、D 两点既在直线l :x = 1上,又在椭圆Q 上,但不在F 2的轨迹上, ∴ L 与F 2的轨迹只有一个公共点,不合题意.(ⅱ) )若L 不过点F 1和D 两点,(m ≠-1, m ≠3),则L 与l 必有一个公共点E ,且E 点不在椭圆Q 上,∴ 要使L 与F 2的轨迹有且只有两个公共点,则L 必与Q 有且只有一个公共点.由⎪⎩⎪⎨⎧=-+-+=,14)2(8)1(,22y x m x y 得 3x 2 - (10 - 4m) x +2m 2- 8m +1= 0,从而,有 △= (10 - 4m) 2- 12(2m 2- 8m+1) = - 8 ( m 2-2m -11) , 当△= 0时,有321±=m .即存在符合条件的直线 y = x+321±.9. 解 ∵ c +λi = (λ, a),i - 2λc = (1, - 2λa) ,由向量平行关系得 OP 与AP 的方程分别为λy = ax ,y - a = - 2λax .…………………………………… ①由此消去参数λ,得点P(x ,y)满足方程为1)2()2(81222=-+aa y x , …………………………………………… ②∵ a > 0 , 从而,有(1) 当22=a 时,方程②表示的是圆,不存在符合题意的两个定点 E ,F ;(2) 当0<22<a 时,方程②表示的是椭圆,故存在符合题意的两个定点,即为椭圆的两个焦点:)2,2121(),2,2121(22a a F a a E ---;(3) 当22>a 时,方程②表示的是椭圆,故存在合乎题意的两个定点,即为椭圆的两个焦点:) )21(21,0(,))21(21,0(22---+a a F a a E .10. 解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直, 所以直线AD 的斜率为3-. 又因为点(11)T -,在直线AD 上, 所以AD 边所在直线的方程为13(1)y x -=-+即320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,,因为矩形ABCD 两条对角线的交点为(20)M ,. 所以M 为矩形ABCD 外接圆的圆心.又AM ==从而矩形ABCD 外接圆的方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切,所以PM PN =+即PM PN -=故点P 的轨迹是以M N ,为焦点,实轴长为的双曲线的左支.因为实半轴长a =2c =.所以虚半轴长b =从而动圆P的圆心的轨迹方程为221(22x y x -=≤.11. 解:(1)设切点A 、B 坐标分别为2201110(,)(,)(()x x x x x x ≠和, ∴切线AP 的方程为:;0220=--x y x x 切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:101,2x x y x x x P P =+= 所以△APB 的重心G 的坐标为 P PG x x x x x =++=310, 222201010101014(),3333P pP G x y y y y x x x x x x x x y -+++++-====所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为2201000111111(,),(,),(,).4244x x FA x x FP x x FB x x +=-=-=-u u u r u u u r u u u r 由于P 点在抛物线外,则.0||≠∴201001001111()()4cos ,||||||x x x x x x x x FP FA AFP FP FA FP +⋅+--+⋅∠===u u u r u u u r u u ur u u u r u u u r同理有201101101111()()4cos ,||||||x x x x x x x x FP FB BFP FP FB FP +⋅+--+⋅∠===u u u r u u u r u u ur u u u r u u u r ∴∠AFP=∠PFB.方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x所以P 点到直线BF的距离为:22111111221||11|()|()||42124x x x x x x d x -++===+ 所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:202000011114(0),()0,4044x y x x x x y x x --=---+=-即 直线BF 的方程:212111111114(0),()0,4044x y x x x x y x x --=---+=-即 所以P 点到直线AF 的距离为:22201010010001120111|()()||)()||24124x x x x x x x x x x x d x +---++-===+ 同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB.12. (Ⅰ)证法一:设点P 的坐标为).,(y x由P ),(y x 在椭圆上,得.)()()(||222222221x a ca x ab bc x y c x F +=-++=++=由0,>+-≥+-≥a c x aca a x 知,所以 .||1x a c a P F +=证法二:设点P 的坐标为).,(y x 记,||,||2211r F r F == 则.)(,)(222221y c x r y c x r ++=++= 由.||,4,211222121x ac a r P F cx r r a r r +===-=+得 证法三:设点P 的坐标为).,(y x 椭圆的左准线方程为.0=+x aca由椭圆第二定义得ac ca x F =+||||21,即.||||||21x ac a c a x a c P F +=+=由0,>+-≥+-≥a c x a c a a x 知,所以.||1x ac a F +=(Ⅱ)解法一:设点T 的坐标为).,(y x当0||=时,点(a ,0)和点(-a ,0)在轨迹上. 当|0||0|2≠≠TF PT 且时,由02=⋅TF PT ,得2TF PT ⊥. 又||||2PF =,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,a F ==||21||1,所以有.222a y x =+ 综上所述,点T 的轨迹C 的方程是.222a y x =+解法二:设点T 的坐标为).,(y x 当0||=时,点(a ,0)和点(-a ,0)在轨迹上. 当|0||0|2≠≠TF 且时,由02=⋅TF ,得2TF ⊥. 又||||2PF PQ =,所以T 为线段F 2Q 的中点.设点Q 的坐标为(y x '',),则⎪⎪⎩⎪⎪⎨⎧'=+'=.2,2y y c x x 因此⎩⎨⎧='-='.2,2y y c x x ① 由a F 2||1=得.4)(222a y c x ='++' ②将①代入②,可得.222a y x =+综上所述,点T 的轨迹C 的方程是.222a y x =+(Ⅲ)解法一:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由③得a y ≤||0,由④得.||20c b y = 所以,当cb a 2≥时,存在点M ,使S=2b ;当cb a 2<时,不存在满足条件的点M当cb a 2≥时,),(),,(002001y x c MF y x c MF --=---=,由2222022021b c a y c x MF =-=+-=⋅,212121cos ||||MF F MF MF ∠⋅=⋅,22121sin ||||21b MF F MF MF S =∠⋅=,得.2tan 21=∠MF F 解法二:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由④得.||20c b y = 上式代入③得.0))((2224220≥+-=-=c b a c b a cb a x于是,当cb a 2≥时,存在点M ,使S=2b ; 当cb a 2<时,不存在满足条件的点M当c b a 2≥时,记cx y k k c x y k k M F M F -==+==00200121,,由,2||21a F F <知︒<∠9021MF F ,所以.2|1|tan 212121=+-=∠k k k k MF F13. 解:抛物线的焦点坐标为(1,0),当直线l 不垂直于x 轴时,设方程为y =k (x -1),代入y 2=4x ,得k 2x 2-x (2k 2+4)+k 2=0. 设l 方程与抛物线相交于两点, ∴k ≠0.设点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),③ ④③④根据韦达定理,有x 1+x 2=22)2(2k k +,从而y 1+y 2=k (x 1+x 2-2)=k 4. 设△AOB 的重心为G (x ,y ),x =3021x x ++=32+234k , y =3021y y ++=k 34,∴y 2=34x -98.当l 垂直于x 轴时,A 、B 的坐标分别为(1,2)和(1,-2),△AOB 的重心G (32,0),也适合y 2=34x -98,因此所求轨迹C 的方程为y 2=34x -98.14. 解:设点(,)M x y ,点M 到圆C 的切线的切点为P ,则 ||||MP MQ λ=||MP ==Q ||MQ =∴ =整理,得:222222(1)(1)4(14)0x y x λλλλ-+--++=∴ 动点M 的轨迹方程为222222(1)(1)4(14)0x y x λλλλ-+--++= 当1λ=时,它表示直线450x -=当1λ≠时,它的方程为2222222213()1(1)x y λλλλ+-+=--,表示以222(,0)λ为圆15. 解:以21O O 的中点O 为原点,21O O 所在的 直线为x 轴,建立平面直角坐标系, 则)0,2(),0,2(21O O -由已知PN PM 2=可得:222PN PM =因为两圆的半径均为1,所以)1(212221-=-PO PO设),(y x P ,则]1)2[(21)2(222-+-=-+y x x ,即33)6(22=+-y x则 消去k ,得x =32+34(43y )2,所以所求轨迹方程为:33)6(22=+-y x (或031222=+-+x y x )16. 解:设弦中点为M (x ,y ),交点为A x y B x y ()()1122,、,。

相关文档
最新文档