第7讲 平面直角坐标系

合集下载

人教版七年级数学下册第七章平面直角坐标系PPT课件全套

人教版七年级数学下册第七章平面直角坐标系PPT课件全套

有序数对在生活中的应用
知 识 点 二
如图是某学校的平面示意图.如果用 (5,1)表示学校大门的位置,那么运动场表 宿舍楼 (6,8) ,(8,5)表示的场所是_____. 示为_____
有序数对在生活中的应用
知 识 点 二
如图3,甲处表示2街与5巷的十字路口,乙处表 示5街与2巷的十字路口,如果用(2,5)表示甲处的位 置,那么“(2,5)→(3,5) →(4,5) →(5,5) →(5,4) →(5,3) →(5,2)”表示从甲处到乙处的一种路线,请 你用 这种形式写出两种从甲处到乙处的最短路线.
这就是我们接下来要学习的相关概念的内容。
2、在平面内画两条互相____、原点____的数轴, 垂直 重合 横轴 组成平面直角坐标系.水平的数轴称为____或____, x轴 y轴 习惯上取向_____为正方向;竖直的数轴称为___ 右 _或____,取向____为正方向;两个坐标轴的_ 上 纵轴 ___为平面直角坐标系的原点 . 交点 y轴
D
-4 -3 -2 -1 -1 4 3 2 1
y A
O1
2 3
4
x
C
-2 -3
B
4、如图所示,在第三象限的点是(C ) A.点A B.点B C.点C D.点D
(1)
学习目标
1
会根据实际情况建立适当的坐 标系;
2
通过点的位置关系探索坐标之间 的关系及根据坐标之间的关系探 索点的位置关系.
讲授新课
认真阅读课本第67至68页的内容,
分别为:A( 0,0 ),B(6,0),C(6,6 ),D(0,6). y 2、若以线段DC所在的直线为x轴,纵轴(y 轴)位置不变,则四个顶点的坐标分别为: 6,0 ), A( 0,-6),B( 6,-6 ),C( D( 0,0 ).

初中数学第七章 平面直角坐标系

初中数学第七章 平面直角坐标系
-1
-2
Hale Waihona Puke ①两条数轴-3-4
②互相垂直
-5
-6
③公共原点组成平面直角坐标系
纵轴 y
2.已知位置-求坐标
5
4
B(-4,1)
3
N2

1
-4 -3 -2 -1 0 -1 -2 -3
-4
A的横坐标为4 A的纵坐标为2 有序数对(4, 2)就叫做A的坐标 记作:A(4,2)
· A X轴上点的坐标 写在前面
12345
-2
第三象限 -3 -4
第四象限
(-,-) -5 (+,-)
-6
2、坐标轴上点坐标
X轴:纵坐标0,记为(X,0)
y
Y轴:横坐标0, 记为(0,Y)
6 A (0,5)
5
4
3
2
B(-4,0) 1 (C0,0)
-4 -3 -2 -1 o -1
123
-2
-3 E (0,-3)
D (4,0)
4
x
3、象限角平分线上点
(28,30)
例2、如图是丁丁画的一张脸的示意图,如果
用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的
位置可以表示成( A )
(0,2)
(2,2)
A. (1,0) C. (−1,1)
B. (−1,0) D. (1,−1)
例3、如图,A(1,1),B(−1,1),C(−1,−2),D(1,−2).把一条 长为2014个单位长度且没有弹性的细线(线的粗细忽略 不计)的一端固定在点A处,并按A−B−C−D−A…的规律 绕在四边形ABCD的边上,则细线另一端所在位置的点 的坐标是( D)

人教版七年级数学下册《用坐标表示地理位置》平面直角坐标系PPT

人教版七年级数学下册《用坐标表示地理位置》平面直角坐标系PPT

知识要点
知识点一:用坐标表示地理位置 利用平面直角坐标系绘制区域内一些地点分布情况平面图的 过程: (1)建立坐标系:选择一个适当的 参照点 为坐标原点,确定 x轴和y轴的 正 方向; (2)根据具体问题确定 单位长度 ;
(3)在坐标平面内画出这些点,写出各点的 坐标 和各个地 点的名称. 温馨提示:①选择坐标原点时,要以能简捷地确定平面内点的 坐标为原则;②一般将正北作为y轴正方向,将正东作为x轴正 方向;③应使尽可能多的点落在坐标轴上,使点的坐标比较简 单.
,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么
这个地点就用代码010045表示.按这种表示方式,南偏东45°
方向78 km的位置,可用路上经过的地方:葡萄园,杏林,桃林,梅林,山楂林,枣林,梨 园,苹果园.图略.
5.【例2】小花和爸爸、妈妈周末到动物园游玩,回到家后,她 利用平面直角坐标系画出了动物园的景区地图,如图所示.可 是她忘记了在图中标出原点和x轴、y轴,只知道马的坐标为( -3,-3),你能帮她建立平面直角坐标系并求出其他各景点的 坐标吗?
2.(北师8上P56改编)如图是象棋棋盘的一部分,若“帅”位于点 (1,-2)上,“相”位于点(3,-2)上,则“炮”位于点( C )
A.(-1,1) B.(-1,2) C.(-2,1) D.(-2,2)
知识点三:用方向和距离表示地理位置 用方向和距离表示地理位置的方法: (1)找到 参照点 ; (2)在该点建立方向标; (3)测量出方位角和两点之间的距离; (4)根据 方位角 和 距离 表示出平面内的点(x,y). 温馨提示:描述方位角时,通常写成北偏东(西)或南偏东(西)的 形式.
9.(人教7下P79、北师8上P60)如图,这是一所学校的平面示意 图,建立适当的平面直角坐标系,并写出教学楼、校门和图书 馆的坐标.

人教版七年级数学下册课件 7.1.2 平面直角坐标系 (共22张PPT)

人教版七年级数学下册课件 7.1.2 平面直角坐标系 (共22张PPT)

-3 -2 -1 0 1 2 3 4
A: -3; B: 2. 点C. 思考2 : 由(1)你发现数轴上的点与实数是什么关系?
一一对应. ①数轴上的每个点都对应一个实数(这个实数叫作这个
点在数轴上的坐标); ②反过来,知道一个数, 这个数在数轴上的位置就确定了.
新课导入
1596-1650
数学家笛卡儿潜心研究能否用代数中的 计算来代替几何中的证明. 有一天, 在梦中他 用金钥匙打开了数学宫殿的大门, 遍地的珠 子光彩夺目, 他看见窗框角上有一只蜘蛛正 忙着结网, 顺着吐出的丝在空中飘动, 一个念 头闪过脑际: 眼前这一条条的横线和竖线不 正是自己全力研究的直线和曲线吗?
5 N
A
平面内的点就可以用一个
4
x轴上的点的
(3, 4)
有序数对来表示了.
纵坐标为0; y 3
轴上的点的 2 C 例如, 由点 A 分别向 x 轴、横坐标为0. 1
原点O的坐标 为(0, 0)
y轴作垂线, 垂足M 在 x 轴 上的坐标3, 垂足 N 在 y 轴 -4 -3
-2
-1 O
M 1 2 3456
y
D (0, 6)
6
C(6, 6)
5
4
3
2
1
A(O) (0,10)2 3 4 5 B (6, 0)
x
新知探究
请另建立一个平面直角坐标系, 这时正方形的顶点A, B, C, D 的坐标又分别是什么?与同学们交流一下.
y
D (-3,3)
C (3,3)
A (-3,-3)
B (3,-3)
x
新知探究
由上得知, 建立的平面直角坐标系不同, 则各点的坐标也 不同. 你认为怎样建立直角坐标系才比较适当?

最新人教版七年级数学下册第7章平面直角坐标系复习教学设计

最新人教版七年级数学下册第7章平面直角坐标系复习教学设计

平面直角坐标系复习教学目标:1.能准确画出平面直角坐标系,由点的位置写出坐标,由点的坐标确定点的位置.掌握特殊位置点的坐标特征,并能用坐标表示平移变换.2.会建立适当的平面直角坐标系,用坐标表示地理位置.3.通过观察、尝试、交流,提高学生数形结合思想,培养学生归纳,整理所学知识和应用数学的意识.教学重点:1.准确确定平面内点的位置和坐标,并能进行综合应用.2.根据实际问题建立适当的平面直角坐标系,并解决实际问题教学难点:1.正确运用坐标特征解决实际问题.2.平面直角坐标系的实际应用.教学方法:启发、讨论、交流.教具准备:多媒体课件.教学过程:一、创设情景,导入新课这是一张某市旅游景点示意图,我们以中心广场所在水平线为横轴,以中心广场所在铅垂线为纵轴建立平面直角坐标系,你们能说出各景点的坐标吗?平面直角坐标系是确定平面内点的坐标的重要工具,用它可以解决很多实际问题,本节课我们大家一起来复习“平面直角坐标系”这一章.(由一个具体实例引出课题,可激发学生的兴趣,创造积极的求知氛围)二、师生互动,构建知识框架1.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b).2.平面直角坐标系的意义:在平面内,两条具有、并且______的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,取向______方向为正方向,竖直的数轴叫做______或_______,取向______方向为正方向,横轴与纵轴的交点叫做平面直角坐标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限.注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同.3.坐标平面内点的坐标的符号特征(填“+”或“-”):4.特殊点的坐标性质:(1)平行于坐标轴直线上的点的坐标:平行于x轴的直线上的各点的________相同,_______不同;平行于y轴的直线上的各点的_________相同,__________不同;(2)点P(x,y)在第一、三象限的角平分线上,则,P(x,y)在第二、四象限的角平分线上,则;(3)对称点的坐标:点P(a,b)关于x轴对称的点为_________,点P(a,b)关于y轴对称的点为__________;(4)点到两轴的距离的意义:点P(x,y)到x轴的距离为_____,到y轴的距离为____;(5)点的坐标与图形平移的关系:一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化,可以简单地理解为:左、右平移纵坐标,横坐标,变化规律是,上下平移横坐标,纵坐标,变化规律是.5.用坐标表示地理位置的一般过程:(1);(2);(3).(学生独立思考后与同伴交流各自的答案,学生代表发言,教师纠正学生出现的问题.)评析:复习时以点的坐标特征为主线,把全章知识系统化,条理化,全面化,以便于应用,同时也培养了学生的归纳概括能力.三、运用知识,进行基础训练例1在已给的平面直角坐标系中描出下列各点,并指出各点所在的象限或坐标轴.A(2,3),B(-2,-3),C(4,-3),D(1.5,0),E(-1,5),F(0,-2),G(0,0).练习1:1.点A(-3,4)在第象限,点B(2,-5)在第象限;2.如果点A( a,b)在第四象限,那么点B(b,-a)在第象限;若C(x,y)满足xy=0,则点C一定在;(根据点的坐标特征确定点的位置)(学生通过描点,加深了对平面直角坐标系和坐标的认识,为解决后面的问题作好铺垫)3.已知点P(1+2a,3-a)在x轴上,则点P的坐标为;4.已知线段AB∥y 轴,且A(-2,3),AB =5,那么点B的坐标是;5.若点P( 2a+5,4a-3)在第一、三象限的角平分线上,则点P的坐标为;6.已知点P( a-4,2-3a)在二、四象限的角平分线上,则点P的坐标为;(根据特殊位置点的坐标特征确定点的坐标)7.在平面直角坐标系中,若点P在第二象限,点P到x轴的距离是3,到y轴的距离是2,则点P的坐标是;(根据点的坐标的几何意义确定点的坐标)8.已知点P(2,-3)先向左平移3个单位长度,再向上平移5个单位长度得到点P′,则点P′坐标为;(根据点的平移变换与坐标变化规律确定点的坐标)9.点P(3,-2)关于y 轴对称点的坐标是.(根据对称点坐标的规律确定点的坐标)评析:这些题型不仅对所学知识能进一步理解和应用,而且也提高了学生用数学知识解决问题的能力.例2如图是某市部分平面简图(图中小正方形的边长代表100 m长),请建立适当的平面直角坐标系,并写出各地的坐标.(学生在自己设计的活动中体验怎样建立平面直角坐标系,训练学生数学表达能力,也给学生极大的创造空间,有利于学生个性发展)四、拓宽知识,实现知识迁移师:平面直角坐标系是建立图形和数量关系的桥梁,反映了数学中重要的思想方法——数形结合,下面我们以图形面积为例说明怎样用数形结合思想、转化思想解决有关问题.例3在平面直角坐标系中,△ABC的顶点都在网格点上.(1)平移△ABC,使得点C与坐标原点O重合,请画出平移后的△A′B′C′;(2)写出A、B两点对应点A′、B′的坐标;(3)求△A′B′C′的面积.(学生自己动手画图,作适当的辅助线,将所求图形的面积转化为规则图形的面积差来求,然后同伴相互交流)评析:学生在做数学的过程中掌握了一些数学思想方法,积累了数学解题经验,感受到了数学的应用价值.练习21.在平面直角坐标系中,点P(m2+1,-4)在象限.2.已知点A(a,-5),B(8,b),根据下列要求,确定a,b的值:(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点在第一,三象限的平分线上.3.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.4.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(2,1),图书馆位置坐标为B(﹣1,﹣2),解答以下问题:(1)在图中试找出坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.五、师生小结,概括本章内容通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会.(通过学生自己总结,加强学生对复习课的认识和学习方法的掌握)六、布置作业,拓展思维空间1.书本P84第1,2,4题;2.请你绘制一幅学校平面分布图,并用坐标表示.(强化用坐标表示地理位置的实际应用).。

平面直角坐标系课件

平面直角坐标系课件
y (2,3)
(-3,0)
(0,0)
(3,0)
x
(3,-3)
2、春天到了,初一某班组织同学到人民公园春游.张明、 王丽二位同学和其他同学走散了.同学们已经到了中心广
场,而他们仍在牡丹园赏花,他们对着景区示意图在电 话中向老师告知了他们的位置.
张明:“我这里的坐标是(300,300)”
王丽:“我这里的坐标是(200,30y0)”. y
图3-5
解 如图3-5,先在x 轴上找到表示5的点,再在y 轴 上找出表示4 的点,过这两个点分别作x 轴,y
轴的垂线,垂线的交点就是点A. 类似地,其他
各点的位置如图所示.点A 在第一象限,点B 在 第二象限,点C在第三象限,点D在第四象限.
图3-5
写出平面直角坐标系中的A、B、C、E、F、G、H、O、T
2叫做点A的纵坐B(标2,3) A点在平面内的坐标为(3, 2) 记作:A(3,2)
·
·A(3,2)
方法:先横后纵
-4 -3 -2 -1 0 -1
1 2 3 4 5 x 横轴
平面直角坐标系上-2的点和有序实数对一一对应
-3
D
-4
E
(-3,-3)
(5,-4)
笛卡尔,法国数学家、 科学家和哲学家.早在 1637年以前,他受到了 经纬度的启示.(地理上 的经纬度是以赤道和本 初子午线为标准的,这 两条线从局部上看可以 看成平面内互相垂直的 两条线.)发明了平面直 角坐标系,又称笛卡尔 坐标系.
我们把北偏西60°,南偏东60°这样的角称为方位角.
例4 如图3-10,12 时我渔政船在H 岛正南方向, 距H岛30海里的A 处,渔政船以每小时40 海 里的速度向东航行, 13 时到达B处,并测 得H 岛的方向是北偏西53°6′. 那么此时渔 政船相对于H岛的位置怎样描述呢?

《平面直角坐标系》PPT精品课件


第三种类型
y
4
A3
2
1
A(0,2 2 ), B(2 2,0), C(0, 2 2 ), D( 2 2,0)
-4 B-3 -2 -1 0 1 2 3D 4 5 x
-1
-2 -3 C
以正方形的中心为原点, 两条对角线分别为x轴和y 轴建系
建立坐标系常用的方法有哪些? (1)以图形上的某已知点或线段的中点为原点; (2)以图形上某线段所在直线为x轴(或y 轴); (3)利用图形的轴对称性以对称轴为x 轴(或y 轴).
y
5
4
A
3
2C
横坐标
1
x0
-4 -3 -2 -1O 1 2 3 4 5 x
-1
-2
-3 D
B y-04
P(x0,y0)
纵坐标
分别写出右图中各点的坐标. A(3,4) B(-3,-4) C(0,2) D(0,-3) E(-4,0) F(5,0)
y
5
4
A(3,4)
3
E(-4,0)
2 C(0,2) 1
F(5,0)
-2
-3 D(0,-3) B(-3,-4-)4
点的位置
横坐标的符号(或值) 纵坐标的符号(或值)
在x轴的正半轴上
+
0
在x轴的负半轴上
-
0
在y轴的正半轴上
0
+
在y轴的负半轴上
0
-
y
5
B4 3
2
C
1
A
-4
-3
-2
-1
O -1
1
2 3 4x
-2
-3 -4 E
在平面直角坐标系中,两条坐标轴(即横轴和纵 轴)把平面分成如图所示的Ⅰ,Ⅱ ,Ⅲ,Ⅳ四个区 域,我们把这四个区域分别称为第一,二,三,四 象限,坐标轴上的点不属于任何一个象限.

平面直角坐标系 课件

+
= 1.
3
2
9
4
' = 3,
∴经过伸缩变换
后,
' = 2
圆 x +y =1 变成了椭圆
2
2
'2
9
+
'2
4
= 1.
反思我们在使用伸缩变换时,要注意点的对应性,即分清变换前后
的坐标.P'(x',y')是伸缩变换后的点的坐标,P(x,y)是伸缩变换前的点
的坐标.
易错辨析
易错点:对平面直角坐标系中的伸缩变换公式把握不准而致错
【例 4】 在平面直角坐标系中,求方程 x+y+2=0 所对应的图形经
1
' = ,
2
过伸缩变换
后的图形.
' = 4
错解直线x+8y+4=0.
错因分析:点(x,y)在变换前的图形上,点(x',y')在变换后的图形上,
因此点(x,y)的坐标满足变换前的图形对应的方程,点(x',y')的坐标满
足变换后的图形对应的方程.错解混淆了(x,y)和(x',y')的含义.
4

2
5
= 1(≥2).②
联立①②,解得 x=8 或 x=−
当 x=8 时,y=5 3.
所以点 P 的坐标为(8,5 3).
32
11
(舍去).
平面直角坐标系中的轨迹问题
【例2】 已知△ABC的顶点A固定,角A的对边BC的长是2a,边BC
上的高的长是b,边BC沿一条直线移动,试建立适当的平面直角坐标
因为|PB|=|PC|,

《平面直角坐标系》数学教学PPT课件(5篇)


新知讲解
练习:
如图,在平面直角坐标系中,你能分别写出点A,B,
C,D的坐标吗?x轴和y轴上的点的坐标有什么特点?原
点的坐标是什么?
新知讲解
解:
A(4,0),B(-2,0),
C(0,5),D(0,-3)
① x轴上的点的纵坐标为0,一般记为(x,0);
② y轴上的点的横坐标为0,一般记为(0,y);
横轴,一般取向右方向为正方向;竖直的数轴称为y轴或纵轴,
一般取向上方向为正方向。
3.坐标原点:在平面直角坐标系中,两坐标轴的交点为平面
直角坐标系的原点,一般用O来表示。
再 见
第七章 平面直角坐标系
平面直角坐标系
学习目标
1
了解平面直角坐标系及相关概念.
2
用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐
为象限.

-2

第三象限
-1
-2
-3
-4
O
1
4
2
3
x

第四象限
5
第二象限
4

3
y
第一象限
点的位置 横坐标符号 纵坐标符号

第一象限
2
1
-4
-1
-3
-2

第三象限
-1
-2
-3
-4
第二象限
O
1
4
2
3
x

第四象限
第三象限
第四象限
x轴
y轴








纵坐标为0
横坐标为0
例2

七年级下数学第七章-平面直角坐标系知识点总结

七年级下数学第七章 平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a 与b 组成的数对。

1、记作(a ,b );2、注意:a 、b 的先后顺序对位置的影响。

3、坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,) 一一对应;其中,a 为横坐标,b 为纵坐标坐标;4、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;(二)平面直角坐标系 平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

3、各种特殊点的坐标特点。

象限:坐标轴上的点不属于任何象限 第一象限:x>0,y>0第二象限:x<0,y>0第三象限:x<0,y<0 第四象限:x>0,y<0横坐标轴上的点:(x ,0) 纵坐标轴上的点:(0,y )(三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标相同; 平行于y 轴(或纵轴)的直线上的点的横坐标相同。

a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;XY点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。

c) 若点P (n m ,)在第一、三象限的角平分线上,则nm =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数e)点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; f)点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:• 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八 、点到坐标轴的距离:点到x 轴的距离=纵坐标的绝对值,点到y 轴的距离=横坐标的绝对值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲:平面直角坐标系
一、知识要点:
1、特殊位置的点的特征
(1)各个象限的点的横、纵坐标符号
(2)坐标轴上的点的坐标:x 轴上的点的坐标为)0,(x ,即纵坐标为0;
y 轴上的点的坐标为),0(y ,即横坐标为0;
2、具有特殊位置的点的坐标特征 设),(111y x P 、),(222y x P
1P 、2P 两点关于x 轴对称⇔21x x =,且21y y -=; 1P 、2P 两点关于y 轴对称⇔21x x -=,且21y y =; 1P 、2P 两点关于原点轴对称⇔21x x -=,且21y y -=。

3、距离
(1)点A ),(y x 到轴的距离:点A 到x 轴的距离为|y |;点A 到y 轴的距离为|x |; (2)同一坐标轴上两点之间的距离:
A )0,(A x 、
B )0,(B x ,则||B A x x AB -=;A ),0(A y 、B ),0(B y ,则||B A y y AB -=;
二、典型例题
1、已知点M 的坐标为(x ,y ),如果xy<0 , 则点M 的位置( ) (A)第二、第三象限 (B)第三、第四象限 (C)第二、第四象限 (D)第一、第四象限
2.点P (m ,1)在第二象限内,则点Q (-m ,0)在( )
A .x 轴正半轴上
B .x 轴负半轴上
C .y 轴正半轴上
D .y 轴负半轴上 3.已知点A (a ,b )在第四象限,那么点B (b ,a )在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 4.点P (1,-2)关于y 轴的对称点的坐标是( ) A .(-1,-2) B .(1,2) C .(-1,2) D .(-2,1)
5.如果点M (1-x ,1-y ) 在第二象限,那么点N (1-x ,y-1)在第 象限,
点Q (x-1,1-y )在第 象限。

6.如图是中国象棋的一盘残局,如果用(4,o)表示帅的位置,
用(3,9)表示将的位置,那么炮的位置应表示为 A .(8,7) B .(7,8) C .(8,9)D .(8,8)
7.在平面直角坐标系中,平行四边形ABCD 的顶点A 、B 、D 的坐标分别为(0,0), (5,0),(2,3)则顶点C 的坐标为( )
A .(3,7)
B .(5,3)
C .(7,3)
D .(8,2) 8.已知点P (x , x ),则点P 一定 ( )
A .在第一象限
B .在第一或第四象限
C .在x 轴上方
D .不在x 轴下方 9.已知长方形ABCD 中,AB=5,BC=8,并且A B ∥x 轴,若点A 的坐标为(-2,4),则点C 的坐标为___(3,-4)(-7,-4)(3,12)(-7,12)______。

10.三角形ABC 三个顶点的坐标分别是A (-4,-1),B (1,1),C (-1,4),将三角形ABC 向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是( C ) A .(2,2),(3,4),(1,7) B .(-2,2),(4,3),(1,7) C .(-2,2),(3,4),(1,7) D .(2,-2),(3,3),(1,7) 11.“若点P 、Q 的坐标是(x 1,y 1)、(x 2,y 2),则线段PQ 中点的坐标为(
122x x +12
2
y y +,).”
已知点A 、B 、C 的坐标分别为(-5,0)、(3,0)、(1,4),利用上述结论求线段AC 、
BC 的中点D 、E 的坐标,并判断DE 与AB 的位置关系. 解:由“中点公式”得D (-2,2),E (2,2),DE ∥AB .
12.如图,在平面直角坐标系中,A 点坐标为(34),,将OA 绕原点O 逆时针旋转90得到OA ',则点A '的坐标是
( )
A.(43)-, B.(34)-, C.(34)-, D.(43)-, 分析:
A 9
A 10A 5
A 4A 7A 6
A 8
A 3A 2
A 1
o
y
x
13.如图,三角形AOB 中,A 、B 两点的坐标分别为(-4,-6),
(-6,-3),求三角形AOB 的面积 解:做辅助线如图.
S △AOB =S 梯形BCDO -(S △ABC +S △OAD ) =
12×(3+6)×6-(12×2×3+1
2
×4×6)=27-(3+12)=12.
14.如图,四边形ABCD 各个顶点的坐标分别为 (–2,8),(–11,6),(–14,0),(0,0)。

(1)确定这个四边形的面积,你是怎么做的? (2)如果把原来ABCD 各个顶点纵坐标保持不变,
横坐标增加2,所得的四边形面积又是多少?
分析:
(1)80 (2)面积不变
15.如图,已知A 1(1,0)、 A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、 A 5(2,-1),…,则点A 2007的坐标为______________________.
答案:(-502,502)。

相关文档
最新文档