电磁感应中的动力学和能量问题
电磁感应中的动力学与能量问题

电磁感应中的动力学和能量问题基础知识梳理1.牛顿第二定律:∑F=ma2.共点力平衡条件:∑F=03.动能定理:W=ΔEk 常伴随着能量守恒定律4.涉及安培力的能量关系:做正功:电能转化为动能等其他形式的能做负功:其他形式的能转化为电能进而转化为内能5.焦耳定律:Q=I²Rt=克服安培力做的功=其他形式的能量的减少量6.动量定理:Ft=mv'-mv=p'-p7.动量守恒定律:m1v1+m2v2+…=m1v1ˊ+m2v2ˊ+…8.楞次定律:“增反减同,来拒去留”9.法拉第电磁感应定律:感生电动势: E=n*ΔΦ/Δt动生电动势:E=BLV10.闭合电路欧姆定律:I=E/(R+r)二.研透命题点:动力学问题1.特征:比纯力学问题多一个安培力,分析思路与力学题基本相同;注意电磁学分析与力学分析的结合。
2.两大状态:平衡态:加速度为0,匀速直线运动;列出受力平衡方程分析。
非平衡态:加速度恒定且不为0,匀加速运动;牛顿第二定律+功能关系+动量定理3.基本思路:三.例题精讲【例题】如图所示,两根质量均为m=2kg的金属棒垂直地放在光滑的水平导轨上,左右两部分导轨间距之比为1:2,导轨间有大小相等但左右两部分方向相反的匀强磁场,两棒电阻与棒长成正比,不计导轨电阻,今用250N的水平力F向右拉CD棒,在CD棒运动0.5m的过程中,CD上产生的焦耳热共为30J,此时两棒速率之比为vA:vC=1:2,立即撤去拉力F,设导轨足够长且两棒始终在不同磁场中运动,求:(1)在CD棒运动0.5m的过程中,AB棒上产生的焦耳热;(2)撤去拉力F瞬间棒速度vA和vC;(3)撤去拉力F后,到两棒最终匀速运动时通过回路的电荷量。
【变式】如图所示,M1N1P1Q1和M2N2P2Q2为在同一水平面内足够长的金属导轨,处在磁感应强度大小为B的匀强磁场中,磁场方向竖直向下。
导轨的M1N1段与M2N2段相互平行,间距为L;P1Q1段与P2Q2段也是平行的,间距为L/2 。
原创3:专题十 电磁感应中的动力学和能量问题

(2)撤去外力时导体棒的速度为 v,在导体棒匀加速过程 中,由运动学公式得 v2=2ax⑤
撤去外力后,克服安培力做的功为 W,由动能定理得 W=12mv2-0⑥ 撤去外力后回路中产生的焦耳热 Q2=W 联立以上各式解得 Q2=1.8 J.
(3)由题意可知,撤去外力前后回路中产生的焦耳热之比Q1∶Q2 =2∶1,可得Q1=3.6 J, 棒在运动的整个过程中,由功能关系得
杆受到的安培力 F 安=BIl=7.5-3.75x 由平衡条件得 F=F 安+mgsinθ F=12.5-3.75x(0≤x≤2). 画出的 F-x 图象如图所示
(3)外力 F 做的功 Wf 等于 F-x 图线下所围的面积,即 Wf =5+212.5×2 J=17.5 J
而杆的重力势能增加量 ΔEp=mg OP sinθ 故全过程产生的焦耳热 Q=Wf-ΔEp=7.5 J.
A.P=2mgvsinθ B.P=3mgvsinθ C.当导体棒速度达到v2时加速度大小为g2sinθ D.在速度达到2v以后匀速运动的过程中,R上产生的 焦耳热等于拉力所做的功
解析:对导体棒受力分析如图.当导体棒以 v 匀速运动 时(如图甲),应有:mgsinθ=F 安=BIL=B2RL2v;当加力 F 后 以 2v 匀速运动时(如图乙),F+mgsinθ=2BR2L2v,两式联立得 F=mgsinθ,则 P=F·2v=2mgvsinθ,A 正确、B 错误;
WF=Q1+Q2=5.4 J. 【答案】 (1)4.5 C (2)1.8 J (3)5.4 J
变式训练2 在如图所示的倾角为θ的光滑斜面上,存在着两个 磁感应强度大小为B的匀强磁场,区域Ⅰ的磁场方向垂直斜面向 上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个 质量为m、电阻为R、边长也为L的正方形导线框,由静止开始 沿斜面下滑,当ab边刚越过GH进入磁场Ⅰ区时,恰好以速度v1 做匀速直线运动;当ab边下滑到JP与MN的中间位置时,线框又 恰好以速度v2做匀速直线运动,从ab进入GH到MN与JP的中间 位置的过程中,线框的动能变化量为ΔEk,重力对线框做功大小 为W1,安培力对线框做功大小为W2,下列说法中正确的有( )
第45课时_电磁感应现象中的动力学问题和能量问题

第45课时 电磁感应现象中的动力学问题和能量问题◇知识整理◇:一、电磁感应中的动力学问题这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是:二、电磁感应中的能量问题无论是使闭合回路的磁通量发生变化,还是使闭合回路的部分导体切割磁感线,都要消耗其它形式的能量,转化为回路中的电能。
这个过程不仅体现了能量的转化,而且保持守恒,使我们进一步认识包含电和磁在内的能量的转化和守恒定律的普遍性。
分析问题时,应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将 能转化为 能,做正功将_____ 能转化为 能;然后利用能量守恒列出方程求解。
●预习检测●1.如图所示,在匀强磁场中,导体ab 与光滑导轨紧密接触,ab 在向右的拉力F 作用下以速度v 做匀速直线运动,当电阻R 的阻值增大时,若速度v 不变则 ( )A .F 的功率减小B .F 的功率增大C .F 的功率不变D .F 的大小不变2.如图所示,在光滑绝缘水平面上,有一矩形线圈以一定的速度进入匀强磁场区域,线圈全部进入匀强磁场区域时期动能恰好等于它在磁场外面时的一半,设磁场区域宽度大于线圈宽度,则 ( )A .线圈恰好完全离开磁场时停下B .线圈在未完全离开磁场时即已停下C .线圈能够通过场区不会停下D .线圈在磁场中某个位置停下课前准备区F=BIL临界状态态v 与a 方向关系 运动状态的分析a 变化情况F=ma 合外力 运动导体所受的安培力感应电流确定电源(E ,r ) rR EI +=◆考点突破◆考点1 动态分析与收尾速度【例1】如图所示,两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B .一根质量为m 的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度m v ,则( )A .如果B 增大,m v 将变大 B .如果α变大,m v 将变大C .如果R 变大,m v 将变大D .如果m 变小,m v 将变大【变式训练1】如图所示,AB 、CD 是两根足够长的固定平行金属导轨,两导轨间的距离为L ,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B ,在导轨的 AC 端连接一个阻值为 R 的电阻,一根质量为m 、垂直于导轨放置的金属棒ab ,从静止开始沿导轨下滑,求此过程中ab 棒的最大速度。
素养培优6 电磁感应中动力学、能量和动量的综合-2025高考物理素养培优

2 2 0
解得a1=
,a2=
3
3
由右手定则和左手定则可知加速度方向都水平向右。
0
3
1
(3) m0 2
18
(2)ab棒向左做减速运动,cd棒向右做加速运动,当电路中的电流
为零时,两导体棒达到稳定状态,做匀速直线运动,设此时速度分
别为v1和v2,则
BLv1=B×2Lv2
分析得两导体棒加速度在任意时刻都相等,则
v1=v0-t,v2=t
2
0
解得v1= v0,v2= 。
3
3
1
1
1
2
2
(3)产生的总热量Q= m0 - m1 - ×2m2 2
2
2
2
1
又Qab= Q
3
1
解得产生的热量为Qab= m0 2 。
18
动量观点在电磁感应中的应用
角度1
动量定理在电磁感应中的应用
-BILΔt+F其他Δt=mv2-mv1,
即-BLq+F其他Δt=mv2-mv1,
已知电荷量q、F其他(F其他为恒力)
时间
B2 L2 t
-
+F其他Δt=mv2-mv1,
总
2 2
即-
+F其他Δt=mv2-mv1,
总
已知位移x、F其他(F其他为恒力)
【典例3】 (多选)(2024·山东聊城一模)如图所示,四条光滑的足够
1
I1=
+
经分析知整个金属环在运动过程中可视为长度为L、电阻为Rc的金属
棒,设金属环刚开始运动时所受的安培力大小为F1、加速度大小为
a,则
F1=I1LB
由牛顿第二定律得
F1=2ma
电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题一、电磁感应中的动力学问题1.所用知识及规律(3)牛顿第二定律及功能关系2.导体的两种运动状态(1)导体的平衡状态——静止状态或匀速直线运动状态.(2)导体的非平衡状态——加速度不为零.3.两大研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为感应电流产生安培力),而感应电流I和导体棒的速度v则是联系这两大对象的纽带例1:如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab 边的边长l1=1 m,bc边的边长l2=0.6 m,线框的质量m=1 kg,电阻R=0.1 Ω,线框通过细线与重物相连,重物质量M=2 kg,斜面上ef(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B=0.5 T,如果线框从静止开始运动,进入磁场的最初一段时间做匀速运动,ef和gh的距离s=11.4 m,(取g=10 m/s2),求:(1)线框进入磁场前重物的加速度;(2)线框进入磁场时匀速运动的速度v;(3)ab边由静止开始到运动到gh处所用的时间t;(4)ab边运动到gh处的速度大小及在线框由静止开始运动到gh处的整个过程中产生的焦耳热.反思总结分析电磁感应中动力学问题的基本思路(顺序):即学即练1:如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab可沿导轨自由滑动,导轨一端连接一个定值电阻R,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F恒定,经时间t1后速度为v,加速度为a1,最终以速度2v做匀速运动;若保持拉力的功率P恒定,棒由静止经时间t2后速度为v,加速度为a2,最终也以速度2v做匀速运动,则( ).A.t2=t1 B.t1>t2C.a2=2a1 D.a2=5a1即学即练2:如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存有匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为vm.改变电阻箱的阻值R,得到vm与R的关系如图乙所示.已知轨道间距为L =2 m,重力加速度g取10 m/s2,轨道充足长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.二、电磁感应中的能量问题1.电磁感应中的能量转化2.求解焦耳热Q 的三种方法例2、如图所示,充足长的光滑平行金属导轨MN 、PQ 竖直放置,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,其下滑距离与时间的关系如下表所示,导轨电阻不计,重力加速度g 取10 m/s2.试求:(1)当t =0.7 s 时,重力对金属棒ab 做功的功率;(2)金属棒ab 在开始运动的0.7 s 内,电阻R 上产生的焦耳热;(3)从开始运动到t =0.4 s 的时间内,通过金属棒ab 的电荷量.即时训练3:如图,充足长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中 ( ).A .运动的平均速度大小为12v B .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v Rsin θ即时训练4:某兴趣小组设计了一种发电装置,如图所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为49π,磁场均沿半径方向.匝数为N 的矩形线圈abcd 的边长ab =cd =l 、bc =ad =2l .线圈以角速度ω绕中心轴匀速转动,bc 边和ad 边同时进入磁场.在磁场中,两条边所经过处的磁感应强时间t (s) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 下滑距离s (m) 0 0.1 0.3 0.7 1.4 2.1 2.8 3.5度大小均为B,方向始终与两边的运动方向垂直.线圈的总电阻为r,外接电阻为R.求:(1)线圈切割磁感线时,感应电动势的大小Em;(2)线圈切割磁感线时,bc边所受安培力的大小F;(3)外接电阻上电流的有效值I.。
第65课时电磁感应中的动力学和能量问题2025届高考物理一轮复习课件

t1时刻cd边与L2重合,t2时刻ab边与L3重合,t3时刻ab边与L4重合,已
知t1~t2的时间间隔为0.6 s,整个运动过程中线圈平面始终处于竖直方
向(重力加速度g取10 m/s2)。则(
)
目录
高中总复习·物理
A. 在0~t1时间内,通过线圈的电荷量为0.25 C
B. 线圈匀速运动的速度大小为8 m/s
2
(2L2+L1)。
目录
高中总复习·物理
1. 【功能关系在电磁感应中的应用】
(多选)如图,MN和PQ是电阻不计的平行
金属导轨,其间距为L,导轨弯曲部分光滑,
平直部分粗糙,两部分平滑连接,平直部
分右端接一个阻值为R的定值电阻。平直部
分导轨左边区域有宽度为d、方向竖直向上、磁感应强度大小为B的匀
强磁场,质量为m、电阻也为R的金属棒从高度为h处由静止释放,到
R,木块质量也为m,重力加速度为g,试求:
目录
高中总复习·物理
(1)匀强磁场的磁感应强度B大小;
答案:
4
gm2 R2
2L0 L1 4
解析:导线框匀速进入磁场时,受力平
衡,受力情况如图所示。
根据平衡条件有
FT=F安+mgsin θ
目录
高中总复习·物理
其中F安=BIL1
I=
E=BL1v
导线框与木块通过光滑细线相连,导线框匀
定的金属棒从无磁场区域中a处由静止释放,进入Ⅱ区后,经b下行
现将一金属杆垂直放置在导轨上且与两导轨接触良好,在与金属杆
垂直且沿着导轨向上的外力F的作用下,金属杆从静止开始做匀加
速直线运动。整个装置处于垂直导轨平面向上的匀强磁场中,外力
6电磁感应的动力学和能量问题
D.带电微粒不可能先向 N 板运动后向M 板运动电磁感应的动力学和能量问题知识点1电磁感应的动力学问题 当导体棒切割磁感线产生感应电流时,导体棒自身也受安培力,可知安培力大小与导体棒的运动状态有关,而根据牛顿运动定律,培力大小有关。
因此要把安培力与牛顿运动定律相结合。
知识点2电磁感应的能量问题C.金属棒ab 下滑过程中M 板电势高于N 板电势安培力做功的过程是其他能变为电能的过程。
。
若是纯电阻电 路,电能再全部变为热能。
一 W F 安=Q 热,一P F 安=卩热. 例1如图所示,光滑导轨倾斜放置,其下端连接一个灯泡, 当ab 棒下滑到稳定状态时,小灯泡获得的功率为 的功率变为2P o ,下列措施正确的是: 换一个电阻为原来一半的灯泡; 把磁感应强度 B 增为原来的2倍; 换一个质量为原来的 晅倍的金属棒;匀强磁场垂直于导线 所在平面, P o ,除灯泡外,其它电阻不计,要使灯泡 ) 72 倍; 、把导轨间距离增为原来的 练习1如图甲所示,abed 为导体做成的框架,其平面与水平面成 0角, bc 接触良好,整个装置放在垂直于框架平面的变化磁场中,磁场的磁感应强度 变化情况如图乙所示(设图甲中 B 的方向为正方向)•在0〜t 1时间内导体棒PQ 始终静止, 下面判断正确的是( ) A. 导体棒 B. 导体棒 C. 导体棒 D. 导体棒PQ 中电流方向由 Q 至P PQ 受安培力方向沿框架向下 PQ 受安培力大小在增大 PQ 受安培力大小在减小 练习2如图所示,电阻艮b =0.1 Q 的导体 滑导线框向右做匀速运动线框中接有电阻 线框放在磁感应强度 B=0.1T 的匀强磁场中 导体棒PQ 与ad 、 B 随时间t 4S* ab 沿光R=0.4Q, ,磁 X X X X X X X X 场方向垂直于线框平面,导体的ab 长度l=0.4m, 运动速度v=10m/s.线框的电阻不计. (1) 电路abcd 中相当于电源的部分是 , 相当于电源的正极是 (2) 使导体ab 向右匀速运动所需的外力 F' = N, 方向_ (3) 电阻R 上消耗的功率 P = _____ W 例2拉力所做的功如图10,两根足够长光滑平行金属导轨 PP ‘ 倾斜放置,匀强磁场垂直于导轨平面,导轨的上端与水平放置的 两金属板M 、N 相连,板间距离足够大, 板间有一带电微粒, 金属棒ab 水平跨放在导轨上, 下滑过程中与导轨接触良好.现同时由静止释放带电微粒和金属棒ab ,则()A .金属棒ab 最终可能匀速下滑B.金属棒ab —直加速下滑导体棒的运动状态也和安练习1练习 如图所示,足够长的光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导轨所在平面向上(导轨和导线电阻不计),则垂直导轨的导体棒 ab 在下滑过程中() A. 导体棒 ab 中感应电流从a 流向b B. 导体棒 ab 受到的安培力方向平行斜面向上 C. 导体棒 ab 一定匀加速下滑D. 灯泡亮度一直保持不变0的斜面上,导轨下端接有电 例3如图5所示电路,两根光滑金属导轨平行放置在倾角为 阻R,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可忽略不计的金属棒 ab 质量 为m ,受到沿斜面向上且与金属棒垂直的恒力 F 的作用•金属棒沿导轨匀速下滑, 则它在下滑高度h 的过程中,以下说法正确的是 A •作用在金属棒上各力的合力做功为零 B •重力做的功等于系统产生的电能 C.金属棒克服安培力做的功等于电阻 R 上产生的焦耳热 D •金属棒克服恒力 F 做的功等于电阻 R 上产生的焦耳热 练习1如图Z10 — 1所示,在磁感应强度为 B 的匀强磁场中,有半径为 框架,OC 为一能绕0在框架上滑动的导体棒 0、C 之间连一个电阻 R, 的电阻均不计,若要使 OC 能以角速度 3匀速转动,则外力做功的功率是 X Y B 2 3 2r 4B 23 2r 4 貫 A. R B. 2R X B 23 2r 4B 23 2r 4C. 4RD. 8Rr 的光滑半圆形导体 导体框架与导体棒 ( )X …亠 XX A Q X XX 练习2竖直放置的平行光滑导轨,其电阻不计,磁场方向如图所示,磁感应强度B=0.5 T,导体 杆ab 和cd 的长均为0.2 m,电阻均为0.1 Q ,所受重力均为0.1 N,现在用力向上推导体杆 ab,使之匀速上升(与导轨接触始终良好),此时cd 恰好静止不动,ab 上升时下列说法正确的 是( A. ab B. ab C. 在 D. 在 ) 。
2024届高考一轮复习物理课件(新教材粤教版):电磁感应中的动力学和能量问题
电磁感应中的能量问题
1.电磁感应中的能量转化 其他形式的能量 ――克――服―安――培――力――做―功―→ 电能 ―电――流――做――功→ 焦耳热或其他形式的能量
2.求解焦耳热Q的三种方法
3.解题的一般步骤 (1)确定研究对象(导体棒或回路); (2)弄清电磁感应过程中哪些力做功,以及哪些形式的能量相互转化; (3)根据功能关系或能量守恒定律列式求解.
2.用动力学观点解答电磁感应问题的一般步骤
3.导体常见运动情况的动态分析
v ↓ E=Blv ↓ I=R+E r ↓ F安=BIl ↓
F合
若F合=0
匀速直线运动 v增大,若a恒定,拉力F增大
若F合≠0 ↓
F合=ma
a、v同向 v增大,F安增大,F合减小,a减小, 做加速度减小的加速运动,减小到
a=0,匀速直线运动
A.拉力F是恒力
√B.拉力F随时间t均匀增加 √C.金属杆运动到导轨最上端时拉力F为12 N √D.金属杆运动的加速度大小为2 m/s2
t时刻,金属杆的速度大小为v=at,产生的感应电动势为E=Blv, 电路中的感应电流 I=BRlv,金属杆所受的安培力大小 为 F 安=BIl=B2Rl2at, 由牛顿第二定律可知外力 F=ma+mgsin 37°+B2Rl2at, F 是 t 的一次函数,选项 A 错误,B 正确;
答案
4 gm2R2 2L0L14
导线框匀速进入磁场时,受力平衡,受力情况如图所示. 根据平衡条件有FT=F安+mgsin θ 其中F安=BIL1 I=ER E=BL1v 导线框与木块通过细线相连,线框匀速进入磁场时,木块匀速下降, 根据平衡条件有FT=mg 对导线框和木块构成的系统,进入磁场前二者一起做匀加速直线运 动,根据牛顿第二定律有mg-mgsin θ=2ma
专题10电磁感应中的动力学问题和能量问题
电磁感应现象的定义
电磁感应现象的发现
电磁感应现象的应用
动力学问题的基本原理
电磁感应定律:法拉第电磁感应定律是电磁感应中的基本原理,它描述了磁场变化时在导体中产生感应电动势的现象。
动力学方程:在电磁感应中,由于磁场的变化,导体中的电荷会受到洛伦兹力的作用,从而产生加速度。因此,需要建立动力学方程来描述电荷的运动。
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
测量仪器误差
减小误差的方法
环境因素误差 减小误差的方法
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
选择高精度测量仪器
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
多次测量求平均值
阻尼效应:在电磁感应中,由于导体的电阻和电感的存在,电荷的运动会受到阻尼效应的影响。阻尼效应会导致电荷的运动逐渐减慢,直至停止。
能量转换:在电磁感应中,磁场能会转化为电能,而电能又会通过电阻和电感等元件转化为热能或其他形式的能量。因此,电磁感应中的动力学问题也涉及到能量转换的问题。
电磁感应与动力学问题的关系
解题思路和方法总结:总结典型例题的解题思路和方法,提炼出一般性的规律和技巧,帮助学生更好地理解和掌握电磁感应中的动力学问题。
实际应用举例:介绍电磁感应中的动力学问题在现实生活中的应用,如发电机、变压器等,增强学生对知识的理解和应用能力。
03
电磁感应中的能量问题
电磁感应中的能量转化
电磁感应中的能量损失与效率问题
电磁感应中的能量损失:主要来源于电阻发热、涡流损耗和磁滞损耗。
电磁感应中的效率问题:主要取决于电路的阻抗匹配和能量转换效率。
电磁感应中的能量损失与效率问题在现实生活中的应用:例如变压器、电动机等设备的效率问题,可以通过优化设计、选用合适的材料和改进工艺等方法来提高设备的效率和减少能量损失。
电磁感应中的动力学问题和能量问题课件
电磁感应的能量问题
1 动能定理和能量守恒定律
探索动能定理和能量守恒定律在电磁感应中 的应用。
2 自感和互感
解释自感和互感在电磁感应中的角色和效应。
3 能量传递和能量损耗
研究电磁感应中的能量传递和损耗机制。
4 E-MF方程和能量密度
介绍电磁场方程和能量密度的概念和应用。
电磁感应相关的应用
发电机的工作原理和构成
详细解释发电机的工作原理和组成部分。
变压器的工作原理和构成
探索变压器的工作原理以及不同部分的功能。
感应加热和感应焊接的原理
解释感应加热和感应焊接过程的原理和应用。
感应炉和感应加工的应用
揭示感应炉和感应加工在工业领域中的应用。
电磁感应中的动力学问题 和能量问题课件
探索电磁感应中的动力学问题和能量问题。从基本概念开始,深入解释动力 学问题和能量问题,并探讨相关应用。
电磁感应的基本概念
电磁感应的定义
了解电磁感应的基定律,解释感应电流的原理。
法拉第电磁感应定律
探索法拉第电磁感应定律的重要性和应用。
差动电动势
介绍差动电动势的概念和重要性。
电磁感应的动力学问题
1
磁场中的电流的受力
2
探讨电流在磁场中所受的力和影响因素。
3
磁阻尼和阻尼系数
4
分析磁阻尼对电磁感应的影响和阻尼系 数的计算方法。
磁场中的带电粒子的受力
研究带电粒子在磁场中所受的力和运动 规律。
感生电动势和电荷的运动方程
揭示感生电动势和电荷运动方程之间的 关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应中的动力学和能量问题透向■电磁感应中的动力学问题【模拟示例1】(2017•山东济宁市模拟)如图1所示,两根足够长的平行金属导轨固定在倾角。
=30。
的斜面上,导轨电阻不计,间距L=OA m。
导轨所在空间被分成区域I和II,两区域的边界与斜面的交线为MM I中的匀强磁场方向垂直斜面向下,H中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5T o 在区域I中,将质量加ι=0.1 kg,电阻Rl=O.1 Ω的金属条"放在导轨上,油刚好不下滑。
然后,在区域II中将质量∕m=0.4kg,电阻R2=O∙1Ω的光滑导体棒曲置于导轨上,由静止开始下滑。
Cd在滑动过程中始终处于区域H 的磁场中,ab.〃始终与导轨垂直且两端与导轨保持良好接触,取g=10m∕s2, 问:(I)Cd下滑的过程中,αb中的电流方向;(2)ob刚要向上滑动时,cd的速度。
多大;(3)从Cd开始下滑到"刚要向上滑动的过程中,M滑动的距离s=3.8 m,此过程中ab 上产生的热量Q是多少。
解析(1)根据右手定则判知Cd中电流方向由d流向c,故中电流方向由。
流向瓦⑵开始放置"刚好不下滑时,"所受摩擦力为最大静摩擦力,设其为Fn m,有∕7max = Wlgsin 3®设ab刚好要上滑时,Cd棒的感应电动势为£,由法拉第电磁感应定律有E=BZR②设电路中的感应电流为/,由闭合电路的欧姆定律有设ab所受安培力为F安,有F 安=BlL®此时ab受到的最大静摩擦力方向沿斜面向下,由平衡条件有F女=THigsin θ+F TnaX ⑤联立①©③④⑤式,代入数据解得:v=5m∕s(6)(3)设〃棒的运动过程中电路中产生的总热量为Q -由能量守恒定律有/Zgssin O=Q 总+gm2∕⑦由串联电路规律有Q=h%Q ?⑧Kiπ- A2联立解得:Q=1.3J⑨答案(1)由。
流向 b (2)5 m/s (3)1.3 J【拓展延伸】在【模拟示例1]中若两平行金属导轨光滑,两区域中磁场方向均垂直导轨平面向上,其他条件不变。
现对金属条"施加平行于轨道向上的拉力,使之匀速向上运动。
在金属条H匀速向上运动的过程中,导体棒〃始终能静止在轨道上。
求:(1)通过导体棒cd 的电流/;(2)金属条ab 受到的拉力F 的大小;(3)导体棒Cd 每产生Q=IOJ 的热量,拉力尸做的功W 。
解析(1)对Cd 棒受力分析如图所示根据平衡条件得:BIL=In2gsin 30°所以/=IOA(2)对"受力分析如图则 F~mιgsin 30o -BIL=O 代入数据得:尸=2.5 N (3)因为Rl=R2,所以Q=IOJ 时 Q 息=20 J当 Q=IoJ 时,由。
=/2/0 得 f= Is又因RI=R2 所以。
总=20 JB 2L 2V 2QE=而K代入数据得:V= 10 m/s则 W=Fm=2.5X 10X1 J=25 J答案(I)IOA (2)2.5 N (3)25 J方法技巧用“四步法”分析电磁感应中的动力学问题解决电磁感应中的动力学问题的一般思路是“先电后力”,具体思路如下:根据Q 总= B 2L 2V 2 Ri+R 2运殛>簿整黑由电磁感应T确定E和『I”的分弓AH弄清串、并联关系卜保电流H确定F安I的丝〉T确定杆或线图受力卜隔z∙RT求加速阅^23ΣZ^底工”的港Al由力和运动的关系I—4确定运动模⅞∏【变式训练I】足够长的平行金属导轨MN和0Q表面粗糙,与水平面间的夹角为。
=37。
6出37。
=0.6),间距为1m。
垂直于导轨平面向上的匀强磁场的磁感应强度的大小为4 T, P、M间所接电阻的阻值为8 Q。
质量为2 kg的金属杆"垂直导轨放置,不计杆与导轨的电阻,杆与导轨间的动摩擦因数为0.25o金属杆时在沿导轨向下且与杆垂直的恒力尸作用下,由静止开始运动,杆的最终速度为8m∕s,取g=10m∕s2,求:图2(1)当金属杆的速度为4 m/s时,金属杆的加速度大小;(2)当金属杆沿导轨的位移为6.0 m时,通过金属杆的电荷量。
解析(1)对金属杆"应用牛顿第二定律有:/+Wgsin Θ~F ^-f=maf=林NN=mgcos Θ外杆所受安培力大小为:F安=BlL而杆切割磁感线产生的感应电动势为:E=BLvE由闭合电路欧姆定律可知:/=R稼R整理得:F+mgs∖n。
一yr—RWgcos O=ma 代入:Dm=8 m/s 时α=0,解得:F=S N 代入:o=4 m/s 及尸=8 N,解得:¢/=4 m∕s2⑵设通过回路截面的电荷量为夕,则:Q=It回路中的平均电流强度为:回路中产生的平均感应电动势为:E ~~回路中的磁通量变化量为:∖Φ=BLs联立解得:q=3C答案(l)4m∕s 2 (2)3 C1 .电磁感应中的能量转化做正功:电能善必》机械能.如电动机L r . ill .飞心山H 电流一焦耳热或其他形式做负功:机械能C 电能司的能量,如发电机2 .求解焦耳热Q 的三种方法 才^(焦耳定律:Q=F"/](∣∣∣^-(⅛ra=≤=⅛≡3尼量转化:Q=AEK 能―3 .解电磁感应现象中的能量问题的一般步骤⑴在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动 势,该导体或回路就相当于电源。
(2)分析清楚有哪些力做功,就可以知道有哪些形式的能量发生了相互转化。
(3)根据能量守恒列方程求解。
【模拟示例2】(2017•湖南宜章一中模拟)如图3, 一质量为〃z,边长为h 的正方 形金属线框HCd 自某一高度由静止下落,依次经过两匀强磁场区域,且金属线考向电磁感应中的能量问题安培力做功h框be边的初始位置离磁场的上边界的高度为%两磁场的磁感应强度分别为囱和且Bι=23o, B2=80(氏已知),两磁场的间距为未知,但”>力), 线框进入磁场囱时,恰好做匀速运动,速度为0(0已知),从磁场B中穿出后又以勿匀速通过宽度也为h的磁场B20口匕图3(1)求v∖与汲的比值;(2)写出”与〃的关系式;(3)若地面离磁场&的下边界的高度为〃,求金属线框下落到地面所产生的热量。
(用m、力、g表示)思路分析线框的速度一线框的感应电动势-感应电流一线框的安培力一二力平衡一速度Vi与改的比值一功能关系(安培力做功)一摩擦产生的热量。
解析(1)金属线框分别进入磁场8和比后,做匀速运动,由平衡条件有8仍= Mg①又金属线框切割磁感线,则/=誓②联立①©得O=鬻所以A备4③(2)金属线框进入磁场Bi前和离开磁场Bi后到进入磁场史前,都是做只在重力作用下的运动,由运动学公式有况=2g1φvl~v↑=2g("一力)⑤19/?联立③④⑤得”=詈。
©(3)产生的热量等于克服安培力做功,Q=Blh4h⑦联立①©得Q=4mg鼠19〃答案(1)1 :4 (2)H=- (3)4mgh【拓展延伸】在【模拟示例2]中把正方形金属线框abed的运动改为“始终做加速度为g的匀加速直线运动,有时需对线框施加竖直方向的外力R且"=2〃,线框的电阻为R” O求:(1)当正方形金属线框H?Cd的。
边恰好进入磁场&时的竖直外力F;(2)当正方形金属线框abed从静止开始运动到be边离开磁场Bl,通过线框a点的电荷量Q。
解析(l)bc边恰好进入磁场Bi时的速度此时的安培力F-Bdh=哈再由牛顿第二定律得mg+F—F^=tng则竖直外力F=等y苧。
一ΔΦ一E(2)由法拉第电磁感应定律得E=詈,则平均电流/=聿通过线框a点的电荷量Q=∕4=萼=萼。
K K答案⑴柒俘⑵竽反思总结在较复杂的电磁感应现象中,经常涉及变力做功问题,一般应用能量守恒的方法研究,可不必追究变力作用下运动的细节问题;若涉及恒力或恒定加速度,一般用动力学的观点研究,可以研究运动的细节问题。
【变式训练2】如图4所示,正方形单匝线框历de边长L=0.4 m,每边电阻相同,总电阻R=O.16 Q。
一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止, 线框处在竖直面内。
线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4m,磁感线方向垂直于线框所在平面向里,磁感应强度大小3= LOT,磁场的下边界与线框的上边仍相距力=1.6 m。
现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,防边保持水平,刚好以。
=4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g= 10 mH,不计空气阻力。
(1)线框助边进入磁场中运动时,e、〃两点间的电势差UM为多少?(2)线框匀速穿过磁场区域的过程中产生的焦耳热。
为多少?(3)若在线框仍边刚进入磁场时,立即给物体P施加一竖直向下的力凡使线框保持进入磁场前的加速度做连续的匀加速运动穿过磁场区域,已知此过程中力F 做功WF=3.6 J,求助边上产生的焦耳热。
M为多少?解析(1)线框劭边以o=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为E=BLV= 16 V3e、。
两点间的电势差U仍=4E=I.2V。
(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力产安E1=示,解得尸安=4 N而Q=W安,故该过程中产生的焦耳热Q=3.2J(3)因为线框在磁场中运动的加速度与进入前的加速度相同,所以在通过磁场区域的过程中,线框和物体户的总机械能保持不变,故力尸做的功WF等于整个线框中产生的焦耳热Q,即场=α又。
=尸片8几故M边上产生的焦耳热Qeb=[Q' = 0∙9 J。
答案(1)1.2V (2)3.2 J (3)0.9 J。