铜及铜合金的焊接性及焊接工艺

合集下载

铜及铜合金碳弧焊的焊接工艺

铜及铜合金碳弧焊的焊接工艺
(mm)
电极直径(mm)
焊接电流
(A)
电弧电压
(V)
预热温度
(℃)
碳极
石墨极
1~2
2~5
6~8
9~10
2
2~3
4
5
15
15
18
22
12
12
15
18
140~180
220~300
320~380
450~550
32~38
32~38
35~40
40~42
200~300
200~300
300~400
300~400
⑶焊接工艺电源采用直流正接,长弧焊,焊接黄铜时弧长要适当缩短,以减少锌的烧损。焊件厚度小于5mm时,开I形坡口;超过5mm时采用Y形或双Y形坡口、间隙、钝边为2~3mm。焊后可对焊缝进行锤击和热处理(加热至500~650℃,水中急冷)。
⑴电极和焊线电极有碳棒和石墨极两种,直径10~20mm,长度200~500mm。石墨极允许使用的焊接电流密度(2~6A/mm2)比碳极(1~2A/mm2高得多,应用较广。为使电弧稳定地燃烧,应将电极端部加工成30°的尖角。
纯铜碳弧焊用焊丝HS202,黄铜碳弧焊用焊丝HS221、HS222(表46)。
但碳极烧损太快影响电弧稳定燃烧并限制了线电极有碳棒和石墨极两种直径1020mm长度200500mm
铜及铜合金碳弧焊的焊接工艺。
利用碳棒作电极进行焊接的电弧焊方法称为碳弧焊。由于其电弧功率比气体火焰大,热量集中,因此在提高生产率、减少焊件受热变形和防止接头过热方面都比气焊有明显的优点。但碳极烧损太快,影响电弧稳定燃烧,并限制了电流密度的增大,所以目前只用于焊接一些不重要的中薄铜焊件。

铜及铜合金的焊接

铜及铜合金的焊接

铜及铜合金的焊接铜合金的制造铜合金材料在运用于连接器的加工过程中,先是被加工成为薄片状的板材,然后切成条带形状以适应后面的冲压过程的需要。

线材同样应用于连接器中,但是在端子组件和其他类型的连接器中这样的材料应用得很少。

图4.1描述了一个典型的薄板和条带铜合金的制造流程。

此外在参考书目3中可以得到更详细的描述。

合金线材以同样的方式制造但具有几个显著的特点:热挤压,轧制,和通过冲模的拉拔以改变热轧制和冷轧制在板材中的应用,以及退火处理过程经常用于这种产品。

连接器技术之4.1.1 铜合金的制造溶炼和铸造铜合金是最先用于可回收的商业应用的金属之一,这是因为工业上能用经济的办法将铜合金中的杂质维持在一个较低的水平。

溶炼常用于电溶炉之中而少见于铜合金在真空和惰性气体下的溶炼和铸造过程中。

碳层能提供一足够的保护。

此外,利用真空或特殊的空气环境将会很大的增加合金制造的成本。

氢、氧和碳的污染影响由溶炼过程和热力学方法来平衡其溶炼层进行控制,其中氢能溶解于铜,氧能与铜和一些合金元素形成氧化物,而碳能与有碳化物组分的合金起反应。

溶炼控制包括纯电解阴极铜和有选择的兼容合金碎屑。

当一些纯组分如镍、锡、硅或起支配作用的合金如磷、铍、和铬合金组分增加时,都会引起合金成份改变。

板材锻造的制造过程是从不连续的铸造成大矩形横截面金属锭或薄铸片开始的。

前述大金属锭的典型尺寸为约150 毫米厚,300 到900 毫米宽,并且经过热轧制处理以有效的减少其厚度并消除在铸造过程中残余的铸造微片。

另一种铸造方法是薄铸片(常用于窄条状铸造材料),其典型的尺寸是约15 毫米厚,150 到450 毫米宽,这些薄铸片将直接转到冷轧过程之中。

选择条形铸造是基于经济上的考虑因素(热研磨需要较高的资金成本)以及合金的特性(一些铜合金不容易在热条件下工作)。

前述半连续且大的金属锭在铸造过程中垂直利用一个中空水冷的铜模,在开始时此铜模的下底部被封住。

溶化的金属实际上并未象图4.1中所示的直接进入溶模。

铜与铜合金的钎焊工艺要点

铜与铜合金的钎焊工艺要点

铜与铜合金的钎焊工艺要点
1. 准备工作:清洁表面,去除油污、氧化物和其他杂质,确保焊接表面干净。

2. 选择合适的钎焊材料:钎料应与铜或铜合金相容,并具有良好的润湿性和流动性。

3. 确定适当的焊接温度:根据钎料的要求和工件的材料特性,确定合适的钎焊温度,一般在铜合金的熔点以下进行钎焊。

4. 使用适当的焊接设备:选择合适的焊接设备,例如氧乙炔焊、电弧焊或激光焊等工艺进行钎焊。

5. 控制焊接速度和压力:在钎焊过程中,要控制焊接速度和压力,确保钎料能够充分润湿并均匀地流动。

6. 注意保护气氛:在钎焊过程中,要确保焊接区域处于惰性气氛或者良好的气氛保护下,以防止氧化和腐蚀。

7. 检查焊接质量:完成钎焊后,要进行质量检查,确保焊接接头无裂纹、气孔等缺陷,并进行必要的后处理工艺,如清洗、抛光等处理。

有色金属的焊接(Cu)

有色金属的焊接(Cu)
► (四)焊接接头性能下降
► 1、主要表现:熔化焊过程中,由于晶粒严重长大以及合金元 素蒸发,烧损与杂质的渗入使焊接接头的力学性能、导电性 能和耐蚀性能下降。
► 1)塑性显著降低
► 2)导电性下降
► 3)耐蚀性能下降
► 2、改善措施:主要是控制杂质的含量,减少合金烧损,通过 合金化对焊缝进行变质处理等;其次尽量减少热作用,焊后 进行消除应力处理等。
► 薄铜件焊后要立即对焊缝两侧的热影响区进行锤击。
► 5mm以上的中厚板,需要加热至500~600℃后进行锤 击。锤击后将焊件加热至500~600℃,然后在水中急冷, 可提高接头的塑性和韧性。
► 黄铜应在焊后尽快在500℃左右退火。
12
► 2.埋弧焊 ► 埋弧焊焊接铜及铜合金时,δ<20mm的焊件在不预热和不开坡口的条件
7
► 三、铜及铜合金的焊接工艺要点 ► (一)焊接方法的选择 ► 选用原则,应该根据被焊材料的成分、厚度、结
构特点及使用性能要求综合考虑。 ► 从铜是在常用的焊接金属中导热性最好这一点考
虑,焊接铜及其合金是需要大功率、高能量密度 的焊接方法,热效率越高、能量越集中越好。 ► 不同厚度的材料对各种焊接方法有其适应性。
► ①气焊薄板时应采用左焊法,这有利于抑制晶粒长大。当焊 件厚度大于6mm时,则采用右焊法;
► ②焊炬运动要尽可能的快,每条焊缝不要随意中断焊接过程, 最好单道焊,一次焊完。
► ③焊接长焊缝时,焊前必须留有合适的收缩余量,并要先点 固后焊接,焊接时应采用分段退焊法,以减少变形。
► ④对受力或较重要的铜焊件,必须采取焊后锤击接头和热处 理工艺措施。
热性强,焊缝易生成粗大晶粒。这也会加剧热裂纹的生成。 ► 2、铜及铜合金的焊接可采取哪些措施,防止热裂纹? ► 1)严格限制铜中杂质(氧、铋、铅、硫等)的含量。 ► 2)增强对焊缝的脱氧能力,通过焊丝加入硅、锰、磷等合金

铜及铜合金焊接施工工艺标准

铜及铜合金焊接施工工艺标准

铜及铜合金焊接施工工艺标准1适用范围本工艺标准适用于紫铜钨极氩弧焊、黄铜的氧乙炔焰焊以及紫铜、黄铜的氧乙炔焰钎焊。

2施工准备2.1规范性引用文件下列标准适合的条款通过本标准引用则构成本标准的条文,使用本标准的各方应探讨使用下列标准最新版本的可能性。

铜及铜合金焊接及钎焊技术规程》HGJ223铜及铜合金焊条》GB/T367铜及铜合金焊丝》GB9460铜基钎料》GB6418银基钎料》GB10046纯铜板》GB2024黄铜板和带》GB2041拄制铜管》GB1527挤制铜管》GB1528拄制黄铜管》GB1529挤制黄铜管》GB15302.2材料2.2.1工程中应优先选用已列入国家标准或行业标准的母材和焊接材料2.2.2工程中选用的母材和焊接材料必须具有质量证明书或合格证,无质量证明书的材料不得使用,对质量证明书或合格证中的数据有怀疑时应进行必要的检验。

2.2.3用于压力容器受压元件的铜及铜合金应为退火状态。

2.2.4母材和焊接材料应妥善保管,防止损伤、污染和腐蚀。

2.2.5施工中应按设计要求或国家现行的标准、规范中的规定选用焊丝、钎料、焊剂、钎剂。

2.2.6如果选用未列入国家标准的母材或焊接材料,应对该材料按国家有关标准进行复验,并提出满足设计要求的焊接工艺试验资料。

2.2.7手工钨极氩弧焊使用的氩气纯度不应低于96.96%,并符合GB4842《氩气》的规定,焊接或钎焊使用的乙炔气纯度不应低于96.5%,氧气纯度不应低于99.2%。

2.2.8焊丝、焊剂、钎料、钎剂选用参考表2.3作业人员:焊工、管道工2.4焊接设备及工具2.4.1手工钨极氩弧焊应采用直流正接并选用性能稳定且应附有高频引弧和电流衰减装置及满足工艺要求的其它设施。

2.4.2氧乙炔焰焊接和钎焊时应根据工件状况选用合适型号及咀头的焊枪。

2.4.3根据工件及焊丝清洁度的要求配备角向砂轮机,不锈钢丝刷及砂布等。

2.5施焊环境焊接场所应保持清洁,当焊接、钎焊区域出现下列情况之一,且无有效防护措施时应停止焊接、钎焊作业:①气温低于5°C②钨极氩弧焊时风速>2m/s③雾、雨、雪环境3施工工艺流程3.1工艺操作过程3.1.1编制焊接工艺评定3.1.1.1施工单位应根据设计文件要求进行焊接工艺评定,如设计文件没有明确规定评定所要执行的标准时,焊接工艺评定可按HGJ223《铜及铜焊接及钎焊技术规程》的要求进行。

铜及铜合金的焊接介绍

铜及铜合金的焊接介绍

铜及铜合金的焊接介绍1铜及铜合金的分类纯铜是紫红色,俗称紫铜。

在纯铜的基础上加入不同的合金元素,可以成为不同性能的铜合金,常用的铜合金有黄铜、青铜及白铜等。

2铜及铜合金的焊接性铜及铜合金经辗压或拉伸成不同厚度的铜板及铜合金板,不同规格的管子或各种不同形状的材料,都可以用焊接的方法制成各种不同的产品。

铸造的铜及铜合金是通过模型直接浇铸成需要形状的部件或产品,焊接只用于修复或补焊。

在焊接与补焊中易产生下列不良影响:2.1难熔合:铜及铜合金的导热性比钢好的多,铜的导热系数是钢的7倍,大量的热被传导出去,母材难以象钢那样局部熔化,对厚大铜及铜合金材料的焊接应焊前预热,采用功率大,热量集中的焊接方法进行焊接或补焊为宜。

2.2易氧化:铜在常温时不易被氧化。

但随着温度的升高,当超过300℃时,其氧化能力很快增大,当温度接近熔点时,其氧化能力最强,氧化的结果生成氧化亚铜(Cu2O)。

焊缝金属结晶时,氧化亚铜和铜形成低熔点(1064℃)结晶。

分布在铜的晶界上,加上通过焊前预热,并采用功率大,热量集中的焊接方法使被焊工件热影响区很宽,焊缝区域晶粒较粗大,从而大大降低了焊接接头的机械性能,所以铜的焊接接头的性能一般低母材。

2.3易产生气孔:铜导热性好,焊接熔池,比钢凝固速度快,液态熔池中气体上浮的时间短来不及逸出也会形成气孔。

2.4易产生热裂纹:铜及铜合金焊接时在焊缝及熔合区易产生热裂纹。

形成裂纹的主要原因:2.4.1铜及铜合金的线膨胀系数几乎比低碳钢大50%以上,由液态转变到固态时的收缩率也较大,对于刚性大的工件,焊接时会产生较大的内应力。

2.4.2熔池结晶过程中,在晶界易形成低熔点的氧化亚铜—铜的共晶物(Cu+Cu2O)。

2.4.3凝固金属中的过饱和氢向金属的显微缺陷中扩散,或者它们与偏析物(如Cu2O)及应生成的H2O在金属中造成很大的压力。

2.4.4母材中的铋、铝等低熔点杂质在晶界上形成偏析。

2.4.5施焊时,由于合金元素的氧化及蒸发、有害杂质的侵入,焊缝金属及热影响区组织的粗大、加上一些焊接缺陷等问题,使焊接接头的强度、塑性、导电性、耐腐蚀性等往往低于母材所致。

铜及铜合金的焊接

铜227是比较通用的一种铜焊条,它可用于磷青铜、黄铜等材料的焊接,又可用于耐腐蚀、耐磨工件(如磷青铜轴衬、船舶螺旋桨叶片等)的堆焊。
铜237可用于焊接铝青铜,用这种焊条焊材的焊缝中合金元素含量高,可以说是强度、耐磨性及耐腐蚀性最高的一种铜焊条。其焊条的通用性也比较大,主要用于铜合金制的各种化工机械、海水散热器、阀门的焊接,水泵、气缸堆焊及船舶螺旋桨的修补上。
青铜具有较高的机械性能、耐磨性、铸造性能和耐腐蚀性能。常用来制造各种耐磨、耐蚀的零件,如轴套、轴瓦、阀体、泵壳、涡轮等.
青铜可分为压力加工用的青铜和铸造用的青铜,在工业上应用较多的是铸造青铜.
青铜常以字母Q编号,字母后标以主要合金元素的化学符号及平均含量,并在最后还标出其他合金元素的平均含量,余量为铜.例如QSn3-7-5—1,表示含锡3%、锌7%、铅5%镍1%的锡锌铅镍青铜.
二、铜及铜合金的焊接性
1。紫铜的导热率高。常温下紫铜的导热系数比碳钢约大8倍,要把紫铜焊件局部加热到熔化温度比较困难,因此在焊接时要采用能量集中的热源.
2.铜及铜合金焊接时常会出现裂缝。裂缝的位置在焊缝、熔合线及热影响区。裂缝呈晶间破坏,从断面上可看到明显的氧化色。
焊接结晶过程中,微量氧与铜形成Cu2O,并与α铜组成低熔点共晶(α+Cu2O),其熔点为1064℃。铅不溶于固态铜,铅与铜生成熔点约326℃的低熔点共晶体.高温下的铜及铜合金接头在焊接内应力的作用下,在焊接接头的脆弱部位形成裂纹。另外,焊缝中的氢也可 Nhomakorabea致裂纹。
HS202
流动性较一般紫铜好,适用于氧乙炔气焊、亚弧焊紫铜.
HS221
流动性能和机械性能均较好,适用于氧-乙炔气焊黄铜和钎焊铜、铜镍合金、灰铸铁和钢,也用于镶嵌硬质合金刀具。

铜和铜合金的焊接工艺

铜和铜合金的焊接工艺1铜和铜合金的焊接操作纯铜又称紫铜,铜与锌的合金称为黄铜,铜与锡的合金称为青铜,含镍量低于50%的铜镍合金称为白铜,铜内有害杂质的含量对铜的性能影响很大,最危险的物质是铋和铅,铋和铅不熔于铜中而在晶粒周围形成了易熔薄层,此外,硫和氧在铜中形成脆化合物,给热加工和焊接带来困难。

铜及铜合金的焊接工艺差,在焊接时易出现以下问题:难熔合、流动性大、易变形、易氧化、易开裂、易产生气孔等缺陷。

铜及铜合金的焊接方法很多,如气焊、碳弧焊、焊条电弧焊和手工钨极氩弧焊等几种,其中紫铜和黄铜是比较难焊的材料,一般是不采用焊条电弧焊的焊接方法,锡青铜、铝青铜可采用焊条电弧焊,若采用手工钨极氩弧焊,不仅能保证焊缝的质量还能提生产效率。

2.焊条的选择焊条电弧焊焊接铜和铜合金的焊条有紫铜焊条(ECu)锡青铜焊条(EcuSn-B)和铝青铜焊条(EcuA1-C)等,焊条均为碱性低氢性,使用直流电源并反接。

铜及铜合金焊条在焊接时应预热,焊后应进行热处理。

3.焊接措施焊条电弧焊焊接铜和铜合金时,应严格控制氧氢的来源,焊接应仔细清除待焊处的油污,锈垢,采取焊前预热措施得当。

焊件厚不超过4mm 时,可以不开坡口,当焊件厚度为5mm~10mm时,可开单面V形和U形坡口,若采用垫板可获得单面焊双面成形的焊缝,若焊件厚度大于10mm,应双面开坡口,并提高预热温度,焊接时应采用直流反接短弧焊,焊条一般不做横向摆动,在焊接中断或要换焊条,动作要快,焊条的操作角度基本与焊接碳钢相同,较长的焊缝应尽量有较多的定位焊,并且应用分段焊法焊接,以减小焊接应力和变形,多层焊时应彻底消除层间熔渣,避免夹渣的产生,焊接结束后,应采取锤击式热处理的方法,消除焊接应力,由于铜的流动性好,所以应尽量采用平焊的位置进行焊接。

铜及铜合金具有难熔合及易变形性

铜及铜合金具有难熔合及易变形性。

铜的导热系数比铁大可达11倍多。

焊接时热量迅速从加热区传导出去,使母材与填充金属难以熔合。

铜的线膨胀系数和收缩率也比较大,如表铜的线膨胀系数比铁大15%,而收缩率比铁大一倍以上。

加上铜及多数铜合金导热能力强,使焊接热影响区加宽,焊接时如加工工件刚度不够,必然会产生较大的变形。

铜及合金易产生热裂纹。

氧是铜中经常存在的杂质,铜在焊接熔化状态时较容易氧化。

氧化产物能与铜形成的低熔点共晶。

其共晶温度低于铜的熔点,使焊缝容易产生热裂纹。

对于特别重要的焊接结构件来说,其含氧量不应超过0.01%,而Pb、Bi、S则是铜及其合金中经常存在的有害杂质。

Bi事实上不溶解于铜,而与铜形成低熔点共晶,析出于晶间。

Pb能很微量溶于铜,但Pb量稍增高的时候就与铜形成低熔点共晶。

这些共晶严重降低了焊缝金属的抗热裂纹能力。

研究结果显示,铜及其合金中含Pb、Bi量较高时,就会出现裂纹,热影响区还会出现液化裂纹,因此必须严格限制用于制造焊接结构的纯铜的含Pb量和Bi量。

S能较好的溶解在熔化状态中的铜,但当凝固结晶时,其在固态铜中的溶解度几乎为零,硫与铜形成共晶,其熔点低于铜,可使焊缝形成热裂纹,故焊缝中的含硫量也要严格的控制。

纯铜焊接时,其焊缝为单相组织,且由于纯铜导热性强,焊缝易生长成粗大晶粒。

这些都是加剧热裂纹生成的因素。

纯铜及黄铜的收缩率及线膨胀系数大,焊接应力较大,也是促使热裂纹形成的原因。

同时铜及合金焊接时易产生气孔。

气孔是铜及铜合金焊接时的一个主要问题,尤其熔化焊时,其出现的倾向比低碳钢严重的多。

铜中气孔主要是溶解性气体氢直接引起的扩散性气孔和氧化还原反应引起的反应气孔,由于铜自身的性质使其产生气孔的倾向大为加剧,成为铜及其焊接的主要困难。

在平衡状态下,其氢的过饱和比钢焊缝大好几倍,在凝固结晶时形成氢气孔倾向大;熔池中的氧化铜与氢或一氧化碳反应生成的水蒸气或二氧化碳不溶于铜而促使反应性气孔的出现。

铜及铜合金的焊接工艺

铜及铜合金的焊接工艺一、常用铜及铜合金及其分类铜及铜合金以它独特而优越的综合性能,如导电性、导热性、耐蚀性、延展性及一定的强度等特性,在各行业中获得了广泛的应用。

铜及铜合金种类繁多,常用的铜及铜合金可从它的表面颜色看出其区别,如常用的纯铜(又称紫铜)、黄铜、青铜和白铜,实际上就是纯铜、铜锌、铜铝、铜锡、铜硅和铜镍的合金。

二、铜及铜合金的焊接特点1、高热导率的影响由于铜及铜合金的高热导率、线膨胀系数和收缩率,在焊接铜及铜合金时,采用的焊接参数与焊接同厚度低碳钢差不多时,母材就很难熔化,且填充金属与母材也不能很好地熔合,产生了焊不透的现象;焊后的变形也比较严重,外观成形差。

因此即使焊接使用大功率热源,还得在焊前预热或焊接过程中采取同步加热的措施。

另外,母材厚度越大,散热愈严重,也愈难达到熔化温度。

2、焊接接头的热裂倾向大焊接时,铜能与其中的杂质分别生成多种低熔点共晶,加上铜及铜合金在加热过程中无同素异构转变,铜焊缝中也生成大量的柱状晶;同时铜及铜合金的线膨胀系数和收缩率较大,增加了焊接接头的应力,也更增大了接头的热裂倾向。

因此熔化焊时,常采取以下措施:①严格限制铜中的杂质含量,特别是氧的含量;②通过焊丝加入硅、锰、磷等合金元素,增强对焊缝的脱氧能力;③选用能获得双相组织的焊丝,使焊缝晶粒细化等。

3、气孔熔化焊时,气孔出现的倾向比低碳钢要严重得多,所形成的气孔几乎分布在焊缝的各个部位,且主要是由溶解的氢直接引起的扩散性气孔和氧化还原反应引起的反应性气孔。

因此,为了减少或消除铜焊缝中的气孔,主要的措施是减少氢和氧的来源,用预热来延长熔池存在的时间,使气体易于逸出。

4、接头性能的变化在熔化焊过程中,由于晶粒长大,杂质和合金元素的掺入,以及有用合金元素的氧化、蒸发等,使接头出现以下变化:塑性变坏、导电性下降、耐蚀性下降、晶粒粗化等。

要改善接头的性能,除了尽量减少热作用、焊后进行消除应力热处理外,主要的措施是控制杂质含量和通过合金化对焊缝进行变质处理,并根据不同铜合金接头的不同要求来选用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铜及铜合金的焊接性及焊接工艺
一、铜的焊接性:
铜与铜合金焊接的主要问题是焊接区和熔合区容易产生裂纹。

热影响区存在两种形式的裂纹:焊接绝缘裂纹和熔透裂纹。

1、焊接裂纹,钢、铜及其合金焊缝中的裂纹是热裂纹,是由以下原因引起的:
①铜和钢的物理性能差别很大,钢和铜的热膨胀和热导率差别很大,焊接过程中接头存在很大的应力,导致焊缝产生裂纹。

②铜及铜金属焊接热裂倾向较大,钢及铜及铜合金焊接焊缝为铁与铜的混合物,热裂倾向随铜含量的增加而增大。

2)热影响区穿透裂纹。

钢与铜及铜合金焊接时,钢与液态铜及铜合金接触时容易产生穿透裂纹,并在高温下形成穿透裂纹。

究其原因,是由于液态铜和铜合金在钢上的渗透和拉应力,从焊缝冷却的那一刻起,接头就会产生拉应力,这种应力会随着冷却的持续而增大。

此外,在晶化过程中,金属的显微组织往往是有缺陷的,并且在钢的结晶表面会出现微裂纹。

在焊接拉应力作用下,热影响区(HAZ)形成熔透裂纹.
当焊缝中镍含量大于16%时,低碳钢中不出现熔透裂纹(NiCu合金)。

二、铜及合金的焊接工艺:
手工电弧焊、氩弧焊和气体保护焊都可以焊接钢和铜及其合金的不同接头。

在铜和钢及其合金的焊接过程中,采用填充金属直接焊接两种金属,然后在铜或钢上堆焊过渡层,然后焊接。

由于含镍焊缝具有很强的抗穿透开裂能力,采用纯镍或含铜镍基合金沉积过渡层,可以大大减少或消除铜及铜合金对钢的穿透,有利于消除热影响区的穿透裂纹。

堆焊过渡层,然后进行焊接。

1.紫钢与低碳钢焊接。

堆焊过渡层后,铜可作为填充金属材料201、202。

为加强熔池脱氧,采用硅锰青铜丝和QSi3-1焊,焊接质量和效果较好。

2.硅青铜和铝青铜与低碳钢焊接在一起。

过渡层堆焊后,此时可采用铝青铜作为填充金属材料QAL9-2,焊缝采用两相结构,焊缝具有较高的抗热裂纹能力,而铜237焊条也可用于去除涂层并作为填充线清洗,铝还可减少热影响区的穿透裂纹,焊接强度高于铜。

交流氩弧焊焊接。

3.黄铜和低碳钢焊接.
过渡层堆焊后,为了减少黄铜和锌的蒸发,填充金属采用QSI3-1硅锰青铜丝,焊接采用交流电源,填充金属采用QAL9-2铝锰青铜丝。

如果没有圆形青铜丝,可使用铜237电极去除涂层并擦拭干净,使用交流氩弧焊。

4.当铁白铜与低碳钢焊接时,当低碳钢与铁白铜(主要成分为Ni5~6.5%,Fe1.0~1.4%,isCu)堆焊过渡层后,BFe5~1可作为填充金属材料。

焊缝含铁量约为32%,并具有足够的抗热开裂能力。

在焊接
过程中,电弧应偏离坡口中心,向铁白铜侧移动,以保证焊接接头的性能;由于Ni-Cu合金的导热系数和导热系数与低碳钢相似,在焊接过程中不需要预热。

5.有摩擦焊接。

虽然我们对摩擦焊并不熟悉,但摩擦焊也能获得优良的焊接接头。

相关文档
最新文档