数据结构(C语言版)第三四章习题答案解析
数据结构第三章习题答案解析

第三章习题1.按图3.1(b)所示铁道(两侧铁道均为单向行驶道)进行车厢调度,回答:⑴如进站的车厢序列为123,则可能得到的出站车厢序列是什么?⑵如进站的车厢序列为123456,能否得到435612和135426的出站序列,并说明原因。
(即写出以“S”表示进栈、以“X”表示出栈的栈操作序列)。
2.设队列中有A、B、C、D、E这5个元素,其中队首元素为A。
如果对这个队列重复执行下列4步操作:(1)输出队首元素;(2)把队首元素值插入到队尾;(3)删除队首元素;(4)再次删除队首元素。
直到队列成为空队列为止,得到输出序列:(1)A、C、E、C、C (2) A、C、E(3) A、C、E、C、C、C (4) A、C、E、C3.给出栈的两种存储结构形式名称,在这两种栈的存储结构中如何判别栈空与栈满?4.按照四则运算加、减、乘、除和幂运算(↑)优先关系的惯例,画出对下列算术表达式求值时操作数栈和运算符栈的变化过程:A-B*C/D+E↑F5.试写一个算法,判断依次读入的一个以@为结束符的字母序列,是否为形如‘序列1& 序列2’模式的字符序列。
其中序列1和序列2中都不含字符’&’,且序列2是序列1的逆序列。
例如,‘a+b&b+a’是属该模式的字符序列,而‘1+3&3-1’则不是。
6.假设表达式由单字母变量和双目四则运算算符构成。
试写一个算法,将一个通常书写形式且书写正确的表达式转换为逆波兰式。
7.假设以带头结点的循环链表表示队列,并且只设一个指针指向队尾元素结点(注意不设头指针),试编写相应的队列初始化、入队列和出队列的算法。
8.要求循环队列不损失一个空间全部都能得到利用, 设置一个标志域tag , 以tag为0或1来区分头尾指针相同时的队列状态的空与满,请编写与此结构相应的入队与出队算法。
9.简述以下算法的功能(其中栈和队列的元素类型均为int):(1)void proc_1(Stack S){ int i, n, A[255];n=0;while(!EmptyStack(S)){n++; Pop(&S, &A[n]);}for(i=1; i<=n; i++)Push(&S, A[i]);}(2)void proc_2(Stack S, int e){ Stack T; int d;InitStack(&T);while(!EmptyStack(S)){ Pop(&S, &d);if (d!=e) Push( &T, d);}while(!EmptyStack(T)){ Pop(&T, &d);Push( &S, d);}}(3)void proc_3(Queue *Q){ Stack S; int d;InitStack(&S);while(!EmptyQueue(*Q)){DeleteQueue(Q, &d);Push( &S, d);}while(!EmptyStack(S)){ Pop(&S, &d);EnterQueue(Q,d)}}实习题1.回文判断。
严蔚敏数据结构课后习题及答案解析

严蔚敏数据结构课后习题及答案解析数据结构课程是计算机科学与技术专业中非常重要的一门基础课程,对于学习者来说,课后习题的巩固和答案解析是学习的重要辅助材料。
本文将针对严蔚敏老师所著的《数据结构(C语言版)》中的课后习题及答案解析进行介绍和总结。
1. 第一章:绪论(略)2. 第二章:线性表(略)3. 第三章:栈和队列3.1 课后习题3.1.1 课后习题一:给定一个整数序列,请设计一个算法,其中删除整数序列中重复出现的元素,使得每个元素只出现一次。
要求空间复杂度为O(1)。
3.1.2 课后习题二:使用栈操作实现一个队列(其中队列操作包括入队列和出队列)。
3.2 答案解析3.2.1 答案解析一:我们可以使用双指针法来实现这一算法。
设定两个指针,一个指向当前元素,另一个指向当前元素的下一个元素。
比较两个元素是否相等,如果相等,则删除下一个元素,并移动指针。
如果不相等,则继续移动指针。
这样,当指针指向序列的最后一个元素时,算法结束。
空间复杂度为O(1),时间复杂度为O(n)。
3.2.2 答案解析二:使用两个栈来实现一个队列。
一个栈用于入队列操作,另一个栈用于出队列操作。
当需要入队列时,将元素直接入栈1。
当需要出队列时,判断栈2是否为空,如果为空,则将栈1中的元素逐个弹出并压入栈2中,然后从栈2中弹出栈顶元素。
如果栈2非空,则直接从栈2中弹出栈顶元素。
这样,就可以实现使用栈操作来实现队列操作。
4. 第四章:串(略)5. 第五章:数组和广义表(略)6. 第六章:树和二叉树(略)7. 第七章:图(略)通过对严蔚敏老师所著《数据结构(C语言版)》中的课后习题及答案解析的介绍,可以帮助学习者更好地理解和掌握数据结构这门课程的知识内容。
课后习题不仅可以帮助巩固所学知识,更加于提升学习者的能力和应用水平。
希望本文对于学习者们有所帮助。
(文章结束)。
数据结构第三章的习题答案

数据结构第三章的习题答案数据结构第三章的习题答案在学习数据结构的过程中,习题是巩固知识和提高能力的重要方式。
第三章的习题主要涉及线性表、栈和队列的实现和操作。
本文将对这些习题进行解答,并给出详细的步骤和思路。
1. 第一题要求实现一个线性表的插入操作。
线性表是一种常用的数据结构,它的特点是元素之间存在一对一的关系。
要实现插入操作,首先需要定义线性表的数据结构,可以使用数组或链表来实现。
然后,根据插入位置,将插入位置之后的元素依次后移,为要插入的元素腾出空间。
最后,将要插入的元素放入插入位置。
2. 第二题要求实现一个栈的压栈和出栈操作。
栈是一种后进先出(LIFO)的数据结构,可以使用数组或链表来实现。
压栈操作就是将元素放入栈顶,出栈操作就是将栈顶元素取出并删除。
要实现这两个操作,可以使用一个指针来指示栈顶位置,每次压栈时将指针加一,出栈时将指针减一。
需要注意的是,栈满时不能再进行压栈操作,栈空时不能进行出栈操作。
3. 第三题要求实现一个队列的入队和出队操作。
队列是一种先进先出(FIFO)的数据结构,同样可以使用数组或链表来实现。
入队操作就是将元素放入队尾,出队操作就是将队头元素取出并删除。
与栈不同的是,队列需要维护队头和队尾两个指针。
每次入队时将元素放入队尾,并将队尾指针后移一位;出队时将队头元素取出,并将队头指针后移一位。
需要注意的是,队列满时不能再进行入队操作,队列空时不能进行出队操作。
4. 第四题要求实现一个栈的括号匹配算法。
括号匹配是一种常见的应用场景,例如编程语言中的括号匹配。
要实现这个算法,可以使用栈来辅助。
遍历字符串中的每个字符,如果是左括号,则将其压入栈中;如果是右括号,则将栈顶元素取出并判断是否与右括号匹配。
如果匹配,则继续遍历下一个字符;如果不匹配,则说明括号不匹配,返回错误。
最后,如果栈为空,则说明括号匹配成功;如果栈不为空,则说明括号不匹配,返回错误。
5. 第五题要求使用栈实现一个逆波兰表达式的计算器。
数据结构c语言版试题大全(含答案)

数据结构c语言版试题大全(含答案)数据结构C语言版试题大全(含答案)第一章:基本概念与算法设计1.1 数据结构的定义与特点数据结构是指相互之间存在一种或多种特定关系的数据元素的集合,它包括了数据的存储、组织和管理方式。
数据结构的特点包括以下几个方面:- 数据元素之间存在某种关系,构成逻辑结构- 对数据元素的操作对应于对其逻辑结构的操作- 数据结构有存储结构,包括顺序存储结构和链式存储结构- 算法是对数据结构的操作步骤的描述和实现1.2 算法的基本概念算法是解决特定问题或完成特定任务的一系列操作步骤。
算法的基本概念包括以下几个方面:- 有穷性:算法必须能在有限步骤内完成- 确定性:算法的每一步骤必须有确定的含义和结果- 可行性:算法的每一步骤必须可行,能够通过执行有限次数实现- 输入:算法接受的输入数据是原始问题的实例- 输出:算法产生的输出数据与输入有明确的关系1.3 算法的描述方法算法可以用自然语言、伪代码或流程图来描述。
常用的伪代码描述方法包括结构化语言和算法描述语言,结构化语言包括顺序结构、分支结构和循环结构。
第二章:线性结构2.1 线性表的定义与基本操作线性表是n个数据元素的有限序列,其中相邻元素之间存在唯一的前驱和后继关系。
线性表的基本操作包括插入、删除、查找和修改等。
2.2 数组与广义表数组是指具有相同数据类型的一组数据元素的集合,可以通过下标访问元素。
广义表是线性表的推广,其中元素可以是基本数据类型或另一个广义表。
第三章:树与二叉树3.1 树的定义与基本术语树是n(n≥0)个结点的一个有限集合,其中满足以下条件:- 有且仅有一个特定的称为根的结点- 其余结点可分为m(m≥0)个互不相交的有限集合,每个集合本身又是一棵树3.2 二叉树的定义与性质二叉树是指每个结点最多有两个子结点的树结构。
二叉树的性质包括以下几个方面:- 深度为k的二叉树最多有2^k-1个结点- 一棵二叉树的第i层最多有2^(i-1)个结点- 在二叉树的第i层上至多有2^(n-i+1)-1个结点(n为树的深度)第四章:图4.1 图的基本概念与术语图是由顶点的有穷非空集合和边的有穷集合组成的。
数据结构(C语言版)第三章习题解答

第三章习题解答1.分别写出对链栈的入栈和出栈操作的算法。
链栈的结点类型定义如下:Typedef struct stacknode {SElemtype data;struct stacknode *next;}stacknode, *linkstack;入栈操作:Status push( linkstack &S, SElemtype e){ p=(linkstack)malloc(sizeof(stacknode));If (!p) return ERROR;p->data=e;p->next=S;S=p;return OK;}出栈操作:Status pop(linkstack &S, SElemtype &e){ if (!S) return ERROR;p=s;s=p->next;free(p);return OK;}P24/3.15假设以顺序存储结构实现一个双向栈,即在一维数组的存储空间中存在着两个栈,它们的栈底分别设在数组的两个端点。
试编写实现这个双向栈tws的三个操作:初始化inistack(tws),入栈push(tws,i,x)和出栈pop(tws,i)的算法,其中i为0或1,用以分别指示设在数组两端的两个栈,并讨论按过程(正/误状态变量可设为变参)或函数设计这些操作算法各有什么优缺点。
双栈的结构类型定义如下:typedef struct{Elemtype *base[2];Elemtype *top[2];}BDStacktype; //双向栈类型栈的初始化操作:status Init_Stack(BDStacktype &tws,int m)//初始化一个大小为m的双向栈tws{ tws.base[0]=(Elemtype*)malloc(m*sizeof(Elemtype));tws.base[1]=tws.base[0]+m-1;tws.top[0]=tws.base[0];tws.top[1]=tws.base[1];return OK;}入栈操作:Status push(BDStacktype &tws,int i,Elemtype x) // x入栈,i=0表示低端栈,i=1表示高端栈{ if (tws.top[0]>tws.top[1]) return OVERFLOW;//注意此时的栈满条件if (i==0) *tws.top[0]++=x;elseif (i==1) *tws.top[1]--=x;else return ERROR;return OK;}出栈操作:Status pop(BDStacktype &tws, int i, Elemtype &x) // x出栈,i=0表示低端栈,i=1表示高端栈{ if (i==0){ if (tws.top[0]==tws.base[0]) return OVERFLOW;x=*--tws.top[0];}else if (i==1){ if (tws.top[1]==tws.base[1]) return OVERFLOW;x=*++tws.top[1];}else return ERROR;return OK;}P24/3.18试写一个判别表达式中开、闭括号是否配对出现的算法。
数据结构习题集答案(C语言版严蔚敏)第四章串

第四章串4.10void String_Reverse(Stringtype s,Stringtype &r)//求s的逆串r{StrAssign(r,''); //初始化r为空串for(i=Strlen(s);i;i--){StrAssign(c,SubString(s,i,1));StrAssign(r,Concat(r,c)); //把s的字符从后往前添加到r中}}//String_Reverse4.11void String_Subtract(Stringtype s,Stringtype t,Stringtype &r)//求所有包含在串s中而t中没有的字符构成的新串r{StrAssign(r,'');for(i=1;i<=Strlen(s);i++){StrAssign(c,SubString(s,i,1));for(j=1;j<i&&StrCompare(c,SubString(s,j,1));j++); //判断s的当前字符c是否第一次出现if(i==j){for(k=1;k<=Strlen(t)&&StrCompare(c,SubString(t,k,1));k++); //判断当前字符是否包含在t中if(k>Strlen(t)) StrAssign(r,Concat(r,c));}}//for}//String_Subtract4.12int Replace(Stringtype &S,Stringtype T,Stringtype V);//将串S中所有子串T替换为V,并返回置换次数{for(n=0,i=1;i<=Strlen(S)-Strlen(T)+1;i++) //注意i的取值范围if(!StrCompare(SubString(S,i,Strlen(T)),T)) //找到了与T匹配的子串{ //分别把T的前面和后面部分保存为head和tailStrAssign(head,SubString(S,1,i-1));StrAssign(tail,SubString(S,i+Strlen(T),Strlen(S)-i-Strlen(T)+1));StrAssign(S,Concat(head,V));StrAssign(S,Concat(S,tail)); //把head,V,tail连接为新串i+=Strlen(V); //当前指针跳到插入串以后n++;}//ifreturn n;}//Replace分析:i+=Strlen(V);这一句是必需的,也是容易忽略的.如省掉这一句,则在某些情况下,会引起不希望的后果,虽然在大多数情况下没有影响.请思考:设S='place', T='ace', V='face',则省掉i+=Strlen(V);运行时会出现什么结果?4.13int Delete_SubString(Stringtype &s,Stringtype t)//从串s中删除所有与t相同的子串,并返回删除次数{for(n=0,i=1;i<=Strlen(s)-Strlen(t)+1;i++)if(!StrCompare(SubString(s,i,Strlen(t)),t)){StrAssign(head,SubString(S,1,i-1));StrAssign(tail,SubString(S,i+Strlen(t),Strlen(s)-i-Strlen(t)+1));StrAssign(S,Concat(head,tail)); //把head,tail连接为新串n++;}//ifreturn n,}//Delete_SubString4.14Status NiBoLan_to_BoLan(Stringtype str,Stringtype &new)//把前缀表达式str转换为后缀式new{Initstack(s); //s的元素为Stringtype类型for(i=1;i<=Strlen(str);i++){r=SubString(str,i,1);if(r为字母) push(s,r);else{if(StackEmpty(s)) return ERROR;pop(s,a);if(StackEmpty(s)) return ERROR;pop(s,b);StrAssign(t,Concat(r,b));StrAssign(c,Concat(t,a)); //把算符r,子前缀表达式a,b连接为新子前缀表达式cpush(s,c);}}//forpop(s,new);if(!StackEmpty(s)) return ERROR;return OK;}//NiBoLan_to_BoLan分析:基本思想见书后注释3.23.请读者用此程序取代作者早些时候对3.23题给出的程序.4.15void StrAssign(Stringtype &T,char chars&#;)//用字符数组chars给串T赋值,Stringtype的定义见课本{for(i=0,T[0]=0;chars[i];T[0]++,i++) T[i+1]=chars[i];}//StrAssign4.16char StrCompare(Stringtype s,Stringtype t)//串的比较,s>t时返回正数,s=t时返回0,s<t时返回负数{for(i=1;i<=s[0]&&i<=t[0]&&s[i]==t[i];i++);if(i>s[0]&&i>t[0]) return 0;else if(i>s[0]) return -t[i];else if(i>t[0]) return s[i];else return s[i]-t[i];}//StrCompare4.17int String_Replace(Stringtype &S,Stringtype T,Stringtype V);//将串S中所有子串T替换为V,并返回置换次数{for(n=0,i=1;i<=S[0]-T[0]+1;i++){for(j=i,k=1;T[k]&&S[j]==T[k];j++,k++);if(k>T[0]) //找到了与T匹配的子串:分三种情况处理{if(T[0]==V[0])for(l=1;l<=T[0];l++) //新子串长度与原子串相同时:直接替换S[i+l-1]=V[l];else if(T[0]<V[0]) //新子串长度大于原子串时:先将后部右移{for(l=S[0];l>=i+T[0];l--)S[l+V[0]-T[0]]=S[l];for(l=1;l<=V[0];l++)S[i+l-1]=V[l];}else //新子串长度小于原子串时:先将后部左移{for(l=i+V[0];l<=S[0]+V[0]-T[0];l++)S[l]=S[l-V[0]+T[0]];for(l=1;l<=V[0];l++)S[i+l-1]=V[l];}S[0]=S[0]-T[0]+V[0];i+=V[0];n++;}//if}//forreturn n;}//String_Replace4.18typedef struct {char ch;int num;} mytype;void StrAnalyze(Stringtype S)//统计串S中字符的种类和个数{mytype T[MAXSIZE]; //用结构数组T存储统计结果for(i=1;i<=S[0];i++){c=S[i];j=0;while(T[j].ch&&T[j].ch!=c) j++; //查找当前字符c是否已记录过if(T[j].ch) T[j].num++;else T[j]={c,1};}//forfor(j=0;T[j].ch;j++)printf("%c: %d\n",T[j].ch,T[j].num);}//StrAnalyze4.19void Subtract_String(Stringtype s,Stringtype t,Stringtype &r)//求所有包含在串s中而t中没有的字符构成的新串r{r[0]=0;for(i=1;i<=s[0];i++){c=s[i];for(j=1;j<i&&s[j]!=c;j++); //判断s的当前字符c是否第一次出现if(i==j){for(k=1;k<=t[0]&&t[k]!=c;k++); //判断当前字符是否包含在t中if(k>t[0]) r[++r[0]]=c;}}//for}//Subtract_String4.20int SubString_Delete(Stringtype &s,Stringtype t)//从串s中删除所有与t相同的子串,并返回删除次数{for(n=0,i=1;i<=s[0]-t[0]+1;i++){for(j=1;j<=t[0]&&s[i+j-1]==t[i];j++);if(j>m) //找到了与t匹配的子串{for(k=i;k<=s[0]-t[0];k++) s[k]=s[k+t[0]]; //左移删除s[0]-=t[0];n++;}}//forreturn n;}//Delete_SubString4.21typedef struct{char ch;LStrNode *next;} LStrNode,*LString; //链串结构void StringAssign(LString &s,LString t)//把串t赋值给串s{s=malloc(sizeof(LStrNode));for(q=s,p=t->next;p;p=p->next){r=(LStrNode*)malloc(sizeof(LStrNode));r->ch=p->ch;q->next=r;q=r;}q->next=NULL;}//StringAssignvoid StringCopy(LString &s,LString t)//把串t复制为串s.与前一个程序的区别在于,串s业已存在.{for(p=s->next,q=t->next;p&&q;p=p->next,q=q->next){p->ch=q->ch;pre=p;}while(q){p=(LStrNode*)malloc(sizeof(LStrNode));p->ch=q->ch;pre->next=p;pre=p;}p->next=NULL;}//StringCopychar StringCompare(LString s,LString t)//串的比较,s>t时返回正数,s=t时返回0,s<t时返回负数{for(p=s->next,q=t->next;p&&q&&p->ch==q->ch;p=p->next,q=q->next);if(!p&&!q) return 0;else if(!p) return -(q->ch);else if(!q) return p->ch;else return p->ch-q->ch;}//StringCompareint StringLen(LString s)//求串s的长度(元素个数){for(i=0,p=s->next;p;p=p->next,i++);return i;}//StringLenLString * Concat(LString s,LString t)//连接串s和串t形成新串,并返回指针{p=malloc(sizeof(LStrNode));for(q=p,r=s->next;r;r=r->next){q->next=(LStrNode*)malloc(sizeof(LStrNode));q=q->next;q->ch=r->ch;}//for //复制串sfor(r=t->next;r;r=r->next){q->next=(LStrNode*)malloc(sizeof(LStrNode));q=q->next;q->ch=r->ch;}//for //复制串tq->next=NULL;return p;}//ConcatLString * Sub_String(LString s,int start,int len)//返回一个串,其值等于串s从start位置起长为len的子串{p=malloc(sizeof(LStrNode));q=p;for(r=s;start;start--,r=r->next); //找到start所对应的结点指针rfor(i=1;i<=len;i++,r=r->next){q->next=(LStrNode*)malloc(sizeof(LStrNode));q=q->next;q->ch=r->ch;} //复制串tq->next=NULL;return p;}//Sub_String4.22void LString_Concat(LString &t,LString &s,char c)//用块链存储结构,把串s插入到串t的字符c 之后{p=t.head;while(p&&!(i=Find_Char(p,c))) p=p->next; //查找字符cif(!p) //没找到{t.tail->next=s.head;t.tail=s.tail; //把s连接在t的后面}else{q=p->next;r=(Chunk*)malloc(sizeof(Chunk)); //将包含字符c的节点p分裂为两个for(j=0;j<i;j++) r->ch[j]='#'; //原结点p包含c及其以前的部分for(j=i;j<CHUNKSIZE;j++) //新结点r包含c以后的部分{r->ch[j]=p->ch[j];p->ch[j]='#'; //p的后半部分和r的前半部分的字符改为无效字符'#'}p->next=s.head;s.tail->next=r;r->next=q; //把串s插入到结点p和r之间}//elset.curlen+=s.curlen; //修改串长s.curlen=0;}//LString_Concatint Find_Char(Chunk *p,char c)//在某个块中查找字符c,如找到则返回位置是第几个字符,如没找到则返回0{for(i=0;i<CHUNKSIZE&&p->ch[i]!=c;i++);if(i==CHUNKSIZE) return 0;else return i+1;}//Find_Char4.23int LString_Palindrome(LString L)//判断以块链结构存储的串L是否为回文序列,是则返回1,否则返回0{InitStack(S);p=S.head;i=0;k=1; //i指示元素在块中的下标,k指示元素在整个序列中的序号(从1开始) for(k=1;k<=S.curlen;k++){if(k<=S.curlen/2) Push(S,p->ch[i]); //将前半段的字符入串else if(k>(S.curlen+1)/2){Pop(S,c); //将后半段的字符与栈中的元素相匹配if(p->ch[i]!=c) return 0; //失配}if(++i==CHUNKSIZE) //转到下一个元素,当为块中最后一个元素时,转到下一块{p=p->next;i=0;}}//forreturn 1; //成功匹配}//LString_Palindrome4.24void HString_Concat(HString s1,HString s2,HString &t)//将堆结构表示的串s1和s2连接为新串t{if(t.ch) free(t.ch);t.ch=malloc((s1.length+s2.length)*sizeof(char));for(i=1;i<=s1.length;i++) t.ch[i-1]=s1.ch[i-1];for(j=1;j<=s2.length;j++,i++) t.ch[i-1]=s2.ch[j-1];t.length=s1.length+s2.length;}//HString_Concat4.25int HString_Replace(HString &S,HString T,HString V)//堆结构串上的置换操作,返回置换次数{for(n=0,i=0;i<=S.length-T.length;i++){for(j=i,k=0;k<T.length&&S.ch[j]==T.ch[k];j++,k++);if(k==T.length) //找到了与T匹配的子串:分三种情况处理{if(T.length==V.length)for(l=1;l<=T.length;l++) //新子串长度与原子串相同时:直接替换S.ch[i+l-1]=V.ch[l-1];else if(T.length<V.length) //新子串长度大于原子串时:先将后部右移{for(l=S.length-1;l>=i+T.length;l--)S.ch[l+V.length-T.length]=S.ch[l];for(l=0;l<V.length;l++)S[i+l]=V[l];}else //新子串长度小于原子串时:先将后部左移{for(l=i+V.length;l<S.length+V.length-T.length;l++)S.ch[l]=S.ch[l-V.length+T.length];for(l=0;l<V.length;l++)S[i+l]=V[l];}S.length+=V.length-T.length;i+=V.length;n++;}//if}//forreturn n;}//HString_Replace4.26Status HString_Insert(HString &S,int pos,HString T)//把T插入堆结构表示的串S的第pos个字符之前{if(pos<1) return ERROR;if(pos>S.length) pos=S.length+1;//当插入位置大于串长时,看作添加在串尾S.ch=realloc(S.ch,(S.length+T.length)*sizeof(char));for(i=S.length-1;i>=pos-1;i--)S.ch[i+T.length]=S.ch[i]; //后移为插入字符串让出位置for(i=0;i<T.length;i++)S.ch[pos+i-1]=T.ch[pos]; //插入串TS.length+=T.length;return OK;}//HString_Insert4.27int Index_New(Stringtype s,Stringtype t)//改进的定位算法{i=1;j=1;while(i<=s[0]&&j<=t[0]){if((j!=1&&s[i]==t[j])||(j==1&&s[i]==t[j]&&s[i+t[0]-1]==t[t[0]])){ //当j==1即匹配模式串的第一个字符时,需同时匹配其最后一个i=i+j-2;j=1;}else{i++;j++;}}//whileif(j>t[0]) return i-t[0];}//Index_New4.28void LGet_next(LString &T)//链串上的get_next算法{p=T->succ;p->next=T;q=T;while(p->succ){if(q==T||p->data==q->data){p=p->succ;q=q->succ;p->next=q;}else q=q->next;}//while}//LGet_nextLStrNode * LIndex_KMP(LString S,LString T,LStrNode *pos)//链串上的KMP匹配算法,返回值为匹配的子串首指针{p=pos;q=T->succ;while(p&&q){if(q==T||p->chdata==q->chdata){p=p->succ;q=q->succ;}else q=q->next;}//whileif(!q){for(i=1;i<=Strlen(T);i++)p=p->next;return p;} //发现匹配后,要往回找子串的头return NULL;}//LIndex_KMP4.30void Get_LRepSub(Stringtype S)//求S的最长重复子串的位置和长度{for(maxlen=0,i=1;i<S[0];i++)//串S2向右移i格{for(k=0,j=1;j<=S[0]-i;j++)//j为串S2的当前指针,此时串S1的当前指针为i+j,两指针同步移动{if(S[j]==S[j+i]) k++; //用k记录连续相同的字符数else k=0; //失配时k归零if(k>maxlen) //发现了比以前发现的更长的重复子串{lrs1=j-k+1;lrs2=mrs1+i;maxlen=k; //作记录}}//forif(maxlen){printf("Longest Repeating Substring length:%d\n",maxlen);printf("Position1:%d Position 2:%d\n",lrs1,lrs2);}else printf("No Repeating Substring found!\n");}//Get_LRepSub分析:i代表"错位值".本算法的思想是,依次把串S的一个副本S2向右错位平移1格,2格,3格,...与自身S1相匹配,如果存在最长重复子串,则必然能在此过程中被发现.用变量lrs1,lrs2,maxlen 来记录已发现的最长重复子串第一次出现位置,第二次出现位置和长度.题目中未说明"重复子串"是否允许有重叠部分,本算法假定允许.如不允许,只需在第二个for语句的循环条件中加上k<=i即可.本算法时间复杂度为O(Strlen(S)^2).4.31void Get_LPubSub(Stringtype S,Stringtype T)//求串S和串T的最长公共子串位置和长度{if(S[0]>=T[0]){StrAssign(A,S);StrAssign(B,T);}else{StrAssign(A,T);StrAssign(B,S);} //为简化设计,令S和T中较长的那个为A,较短的那个为Bfor(maxlen=0,i=1-B[0];i<A[0];i++){if(i<0) //i为B相对于A的错位值,向左为负,左端对齐为0,向右为正{jmin=1;jmax=i+B[0];}//B有一部分在A左端的左边else if(i>A[0]-B[0]){jmin=i;jmax=A[0];}//B有一部分在A右端的右边else{jmin=i;jmax=i+B[0];}//B在A左右两端之间.//以上是根据A和B不同的相对位置确定A上需要匹配的区间(与B重合的区间)的端点:jmin,jmax.for(k=0,j=jmin;j<=jmax;j++){if(A[j]==B[j-i]) k++;else k=0;if(k>maxlen){lps1=j-k+1;lps2=j-i-k+1;maxlen=k;}}//for}//forif(maxlen){if(S[0]>=T[0]){lpsS=lps1;lpsT=lps2;}else{lpsS=lps2;lpsT=lps1;} //将A,B上的位置映射回S,T上的位置printf("Longest Public Substring length:%d\n",maxlen);printf("Position in S:%d Position in T:%d\n",lpsS,lpsT);}//ifelse printf("No Repeating Substring found!\n");}//Get_LPubSub分析:本题基本思路与上题同.唯一的区别是,由于A,B互不相同,因此B不仅要向右错位,而且还要向左错位,以保证不漏掉一些情况.当B相对于A的位置不同时,需要匹配的区间的计算公式也各不相同,请读者自己画图以帮助理解.本算法的时间复杂度是o(strlrn(s)*strlen(t))。
数据结构(c语言版)第三版习题解答
A.n− i B.n− i+1 C.n− i− 1 D.i (5)若长度为n的线性表采用顺序存储结构存储,在第i个位置上插入一个新元素的时 间复杂度为( A )。
定义:f (n)=O (g (n)) 当且仅当存在正的常数c和n0,使得对于所有的n≥n0,有f (n) ≤c g(n)。
2
上述定义表明,函数f顶多是函数g的c倍,除非n 小于n0。因此对于足够大的n (如n≥n0), g是f 的一个上限(不考虑常数因子c)。在为函数f 提供一个上限函数g 时,通常使用比较 简单的函数形式。比较典型的形式是含有n的单个项(带一个常数系数)。表1-1列出了一些 常用的g函数及其名称。对于表1-1中的对数函数logn,没有给出对数基,原因是对于任何大 于1的常数a和b都有logan =logbn/logba,所以logan和logbn都有一个相对的乘法系数1/logba, 其中a是一个常量。
void verge(seqlist *L)
{int t,i,j; i=0; j=L->length-1; while (i<j) { t=L->data[i]; L->data[i++]=L->data[j]; L->data[j-的,设计一个算法,插入一个值为x的结点,
数据结构
(C语言版)(第3版)
习题解析
揭安全 李云清 杨庆红 编著
江西师范大学计算机信息工程学院
联系方式:jieanquan@
2012年12月
1
第1章 绪论
数据结构(C语言版)习题解答(DOC)
1.3设n是正整数。
试写出下列程序段中用记号“△”标注的语句的频度:(2) i=1; k=0;do {△k+=10*i;i++;}while(i<=n-1)当n=1时,执行1;当n>=2时,执行n-1次;(3)i=1; k=0;do {△k+ = 10*i; i++;}while(i==n);当n=2时,执行2次;当n!=2时,执行1次;(4) i=1; j=0;while(i+j≤n) {△if(i<j) i++; else j++;}执行n次;(5) x=n; y=0; //n是不小于1的常数while(x>=(y+1)*(y+1)){△y++;}执行向下取整)(6) x=91; y=100;while ( y>0 )△if(x>100) { x-=10; y--; }else x++ ;}If语句执行100次(7) for( i=0; i<n; i++)for( j=i; j<n; j++)for( k=j; k<n; k++)△x+=2;过程:n1n1i0j in(n1)(n2) (n j)6--==++ -=∑∑第二章2.3 已知顺序表La中数据元素按非递减有序排列。
试写一个算法,将元素x插到La的合适位置上,保持该表的有序性。
思路:先判断线性表的存储空间是否满,若满返回Error;否则从后向前先移动数据,找到合适的位置插入。
Status Insert_SqList(SqList &La,int x)//把x 插入递增有序表La 中{if(La.length==La.listsize) return ERROR;for(i=La.length-1;La.elem[i]>x&&i>=0;i--)La.elem[i+1]=La.elem[i];La.elem[i+1]=x;La.length++;return OK;}//Insert_SqList2.5 试写一个算法,实现顺序表的就地逆置,即在原表的存储空间将线性表(a1,a2, ..., an-1,an)逆置为(an,an-1, ..., a2,a1)//思路就是两个指示变量i,j同时分别从顺序表的开始和结尾处相向改变void reverse(SqList &A)//顺序表的就地逆置{ElemType p;for(i=1,j=A.length;i<j;i++,j--){//A.elem[i]<->A.elem[j];p=A.elem[i];A.elem[i[=A.elem[j];A.elem[j]=p;}}//reverse2.7 已知线性表L采用顺序存储结构存放,对两种不同情况分别写出算法,删除L中多余的元素,使得L中没有重复元素:(1)L中数据元素无序排列;(2)L中数据元素非递减有序排列。
数据结构(C语言版)第三版__清华大学出版社_习题参考答案
数据结构(C语言版)第三版__清华大学出版社_习题参考答案数据结构(C语言版)第三版__清华大学出版社_习题参考答案引言:数据结构是计算机科学的基础,对于学习和理解数据结构的相关概念和算法非常重要。
本文将对清华大学出版社出版的《数据结构(C语言版)第三版》中的习题进行参考答案的提供。
通过正确的理解和掌握这些习题的解答,读者可以加深对数据结构的认识,并提高自己的编程能力。
第一章:绪论1.1 数据结构的定义与作用数据结构是指数据对象以及数据对象之间的关系、运算和存储结构的总称。
数据结构的作用是在计算机中高效地组织和存储数据,同时支持常见的数据操作和算法。
1.2 算法的定义与特性算法是解决特定问题的一系列步骤和规则。
算法具有确定性、有穷性、可行性和输入输出性等特点。
第二章:线性表2.1 线性表的定义和基本操作线性表是同类型数据元素的一个有限序列。
线性表的基本操作包括初始化、查找、插入、删除和遍历等。
2.2 顺序存储结构顺序存储结构是将线性表中的元素按顺序存放在一块连续的存储空间中。
顺序存储结构的特点是随机存取、插入和删除操作需要移动大量元素。
2.3 链式存储结构链式存储结构通过结点之间的指针链表来表示线性表。
链式存储结构的特点是插入和删除操作方便,但查找操作需要遍历整个链表。
第三章:栈和队列3.1 栈的定义和基本操作栈是只能在一端进行插入和删除操作的线性表。
栈的基本操作包括初始化、入栈、出栈和获取栈顶元素等。
3.2 队列的定义和基本操作队列是只能在一端插入操作,在另一端进行删除操作的线性表。
队列的基本操作包括初始化、入队、出队和获取队头元素等。
第四章:串4.1 串的定义和基本操作串是由零个或多个字符组成的有限序列。
串的基本操作包括初始化、串的赋值、串的连接和串的比较等。
第五章:树5.1 树的基本概念和术语树是n(n>=0)个结点的有限集。
树的基本概念包括根结点、子树、深度和高度等。
5.2 二叉树二叉树是每个结点最多有两个子树的树结构。
《数据结构(C语言版 第2版)》(严蔚敏 著)第四章练习题答案
《数据结构(C语言版第2版)》(严蔚敏著)第四章练习题答案第4章串、数组和广义表1.选择题(1)串是一种特殊的线性表,其特殊性体现在()。
A.可以顺序存储B.数据元素是一个字符C.可以链式存储D.数据元素可以是多个字符若答案:B(2)串下面关于串的的叙述中,()是不正确的?A.串是字符的有限序列B.空串是由空格构成的串C.模式匹配是串的一种重要运算D.串既可以采用顺序存储,也可以采用链式存储答案:B解释:空格常常是串的字符集合中的一个元素,有一个或多个空格组成的串成为空格串,零个字符的串成为空串,其长度为零。
(3)串“ababaaababaa”的next数组为()。
A.012345678999 B.012121111212 C.011234223456 D.0123012322345答案:C(4)串“ababaabab”的nextval为()。
A.010104101B.010102101 C.010100011 D.010101011答案:A(5)串的长度是指()。
A.串中所含不同字母的个数B.串中所含字符的个数C.串中所含不同字符的个数D.串中所含非空格字符的个数答案:B解释:串中字符的数目称为串的长度。
(6)假设以行序为主序存储二维数组A=array[1..100,1..100],设每个数据元素占2个存储单元,基地址为10,则LOC[5,5]=()。
A.808 B.818 C.1010 D.1020答案:B解释:以行序为主,则LOC[5,5]=[(5-1)*100+(5-1)]*2+10=818。
(7)设有数组A[i,j],数组的每个元素长度为3字节,i的值为1到8,j的值为1到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为()。
A.BA+141 B.BA+180 C.BA+222 D.BA+225答案:B解释:以列序为主,则LOC[5,8]=[(8-1)*8+(5-1)]*3+BA=BA+180。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章栈和队列习题1.选择题(1)若让元素1,2,3,4,5依次进栈,则出栈次序不可能出现在()种情况。
A.5,4,3,2,1 B.2,1,5,4,3 C.4,3,1,2,5 D.2,3,5,4,1(2)若已知一个栈的入栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,…,pn,若p1=n,则pi为()。
A.i B.n-i C.n-i+1 D.不确定(3)数组Q[n]用来表示一个循环队列,f为当前队列头元素的前一位置,r为队尾元素的位置,假定队列中元素的个数小于n,计算队列中元素个数的公式为()。
A.r-f B.(n+f-r)%n C.n+r-f D.(n+r-f)%n (4)链式栈结点为:(data,link),top指向栈顶.若想摘除栈顶结点,并将删除结点的值保存到x中,则应执行操作()。
A.x=top->data;top=top->link; B.top=top->link;x=top->link;C.x=top;top=top->link; D.x=top->link;(5)设有一个递归算法如下int fact(int n) { //n大于等于0if(n<=0) return 1;else return n*fact(n-1); }则计算fact(n)需要调用该函数的次数为()。
A. n+1 B. n-1 C. n D. n+2 (6)栈在()中有所应用。
A.递归调用 B.函数调用 C.表达式求值 D.前三个选项都有(7)为解决计算机主机与打印机间速度不匹配问题,通常设一个打印数据缓冲区。
主机将要输出的数据依次写入该缓冲区,而打印机则依次从该缓冲区中取出数据。
该缓冲区的逻辑结构应该是()。
A.队列 B.栈 C.线性表 D.有序表(8)设栈S和队列Q的初始状态为空,元素e1、e2、e3、e4、e5和e6依次进入栈S,一个元素出栈后即进入Q,若6个元素出队的序列是e2、e4、e3、e6、e5和e1,则栈S的容量至少应该是()。
A.2 B.3 C.4 D. 6 (9)在一个具有n个单元的顺序栈中,假设以地址高端作为栈底,以top作为栈顶指针,则当作进栈处理时,top的变化为()。
A.top不变 B.top=0 C.top-- D.top++ (10)设计一个判别表达式中左,右括号是否配对出现的算法,采用()数据结构最佳。
A.线性表的顺序存储结构 B.队列C. 线性表的链式存储结构D. 栈(11)用链接方式存储的队列,在进行删除运算时()。
A. 仅修改头指针B. 仅修改尾指针C. 头、尾指针都要修改D. 头、尾指针可能都要修改(12)循环队列存储在数组A[0..m]中,则入队时的操作为()。
A. rear=rear+1B. rear=(rear+1)%(m-1)C. rear=(rear+1)%mD. rear=(rear+1)%(m+1)(13)最大容量为n的循环队列,队尾指针是rear,队头是front,则队空的条件是()。
A. (rear+1)%n==frontB. rear==frontC.rear+1==front D. (rear-l)%n==front (14)栈和队列的共同点是()。
A. 都是先进先出B. 都是先进后出C. 只允许在端点处插入和删除元素D. 没有共同点(15)一个递归算法必须包括()。
A. 递归部分B. 终止条件和递归部分C. 迭代部分D. 终止条件和迭代部分(2)回文是指正读反读均相同的字符序列,如“abba”和“abdba”均是回文,但“good”不是回文。
试写一个算法判定给定的字符向量是否为回文。
(提示:将一半字符入栈)根据提示,算法可设计为://以下为顺序栈的存储结构定义#define StackSize 100 //假定预分配的栈空间最多为100个元素typedef char DataType;//假定栈元素的数据类型为字符typedef struct{DataType data[StackSize];int top;}SeqStack;int IsHuiwen( char *t){//判断t字符向量是否为回文,若是,返回1,否则返回0SeqStack s;int i , len;char temp;InitStack( &s);len=strlen(t); //求向量长度for ( i=0; i<len/2; i++)//将一半字符入栈Push( &s, t[i]);while( !EmptyStack( &s)){// 每弹出一个字符与相应字符比较temp=Pop (&s);if( temp!=S[i]) return 0 ;// 不等则返回0else i++;}return 1 ; // 比较完毕均相等则返回 1}(3)设从键盘输入一整数的序列:a1, a2, a3,…,a n,试编写算法实现:用栈结构存储输入的整数,当a i≠-1时,将a i进栈;当a i=-1时,输出栈顶整数并出栈。
算法应对异常情况(入栈满等)给出相应的信息。
#define maxsize 栈空间容量void InOutS(int s[maxsize])//s是元素为整数的栈,本算法进行入栈和退栈操作。
{int top=0; //top为栈顶指针,定义top=0时为栈空。
for(i=1; i<=n; i++) //n个整数序列作处理。
{scanf(“%d”,&x); //从键盘读入整数序列。
if(x!=-1) // 读入的整数不等于-1时入栈。
if(top==maxsize-1){printf(“栈满\n”);exit(0);}else s[++top]=x; //x入栈。
else //读入的整数等于-1时退栈。
{if(top==0){printf(“栈空\n”);exit(0);} else printf(“出栈元素是%d\n”,s[top--]);}}}//算法结束。
(4)从键盘上输入一个后缀表达式,试编写算法计算表达式的值。
规定:逆波兰表达式的长度不超过一行,以$符作为输入结束,操作数之间用空格分隔,操作符只可能有+、-、*、/四种运算。
例如:234 34+2*$。
[题目分析]逆波兰表达式(即后缀表达式)求值规则如下:设立运算数栈OPND,对表达式从左到右扫描(读入),当表达式中扫描到数时,压入OPND栈。
当扫描到运算符时,从OPND 退出两个数,进行相应运算,结果再压入OPND栈。
这个过程一直进行到读出表达式结束符$,这时OPND栈中只有一个数,就是结果。
float expr( )//从键盘输入逆波兰表达式,以‘$’表示输入结束,本算法求逆波兰式表达式的值。
{float OPND[30]; // OPND是操作数栈。
init(OPND); //两栈初始化。
float num=0.0; //数字初始化。
scanf (“%c”,&x);//x是字符型变量。
while(x!=’$’){switch{case‘0’<=x<=’9’:while((x>=’0’&&x<=’9’)||x==’.’) //拼数if(x!=’.’) //处理整数{num=num*10+(ord(x)-ord(‘0’)); scanf(“%c”,&x);}else //处理小数部分。
{scale=10.0; scanf(“%c”,&x);while(x>=’0’&&x<=’9’){num=num+(ord(x)-ord(‘0’)/scale;scale=scale*10; scanf(“%c”,&x); } }//elsepush(OPND,num); num=0.0;//数压入栈,下个数初始化case x=‘’:break; //遇空格,继续读下一个字符。
case x=‘+’:push(OPND,pop(OPND)+pop(OPND));break;case x=‘-’:x1=pop(OPND);x2=pop(OPND);push(OPND,x2-x1);break;case x=‘*’:push(OPND,pop(OPND)*pop(OPND));break;case x=‘/’:x1=pop(OPND);x2=pop(OPND);push(OPND,x2/x1);break;default: //其它符号不作处理。
}//结束switchscanf(“%c”,&x);//读入表达式中下一个字符。
}//结束while(x!=‘$’)printf(“后缀表达式的值为%f”,pop(OPND));}//算法结束。
[算法讨论]假设输入的后缀表达式是正确的,未作错误检查。
算法中拼数部分是核心。
若遇到大于等于‘0’且小于等于‘9’的字符,认为是数。
这种字符的序号减去字符‘0’的序号得出数。
对于整数,每读入一个数字字符,前面得到的部分数要乘上10再加新读入的数得到新的部分数。
当读到小数点,认为数的整数部分已完,要接着处理小数部分。
小数部分的数要除以10(或10的幂数)变成十分位,百分位,千分位数等等,与前面部分数相加。
在拼数过程中,若遇非数字字符,表示数已拼完,将数压入栈中,并且将变量num恢复为0,准备下一个数。
这时对新读入的字符进入‘+’、‘-’、‘*’、‘/’及空格的判断,因此在结束处理数字字符的case后,不能加入break语句。
(5)假设以I和O分别表示入栈和出栈操作。
栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。
①下面所示的序列中哪些是合法的?A. IOIIOIOOB. IOOIOIIOC. IIIOIOIOD. IIIOOIOO②通过对①的分析,写出一个算法,判定所给的操作序列是否合法。
若合法,返回true,否则返回false(假定被判定的操作序列已存入一维数组中)。
①A和D是合法序列,B和C 是非法序列。
②设被判定的操作序列已存入一维数组A中。
int Judge(char A[])//判断字符数组A中的输入输出序列是否是合法序列。
如是,返回true,否则返回false。
{i=0; //i为下标。
j=k=0; //j和k分别为I和字母O的的个数。
while(A[i]!=‘\0’) //当未到字符数组尾就作。
{switch(A[i]){case‘I’: j++; break; //入栈次数增1。
case‘O’: k++; if(k>j){printf(“序列非法\n”);exit(0);}}i++; //不论A[i]是‘I’或‘O’,指针i均后移。