三年级数学植树问题例题解析
三年级植树问题知识点

三年级植树问题知识点一、知识点回顾。
1. 植树问题的类型。
两端都植树:棵数 = 间隔数+1。
例如,在一条长10米的小路一旁每隔2米栽一棵树(两端都栽),间隔数为10÷2 = 5个,棵数就是5 + 1=6棵。
一端植树:棵数 = 间隔数。
比如在一条长10米的小路一端靠墙,每隔2米栽一棵树,间隔数为10÷2 = 5个,棵数也是5棵。
两端都不植树:棵数 = 间隔数 1。
例如在一条长10米的小路两旁每隔2米栽一棵树(两端不栽),间隔数为10÷2 = 5个,一旁的棵数为5-1 = 4棵,两旁就是4×2 = 8棵。
2. 关键是求出间隔数。
间隔数 = 总长度÷间隔长度。
二、题目与解析。
1. 在一条长20米的路的一边种树,每隔5米种一棵(两端都种),一共要种多少棵树?解析:首先求间隔数,间隔数=20÷5 = 4个。
因为两端都种树,棵数 = 间隔数+1,所以棵数为4 + 1 = 5棵。
2. 一条路长30米,每隔3米种一棵树(一端种),能种多少棵树?解析:间隔数=30÷3 = 10个,因为一端种树,棵数 = 间隔数,所以能种10棵树。
3. 有一条18米长的走廊,每隔2米放一盆花(两端都不放),一共要放多少盆花?解析:间隔数=18÷2 = 9个,因为两端都不放花,棵数 = 间隔数 1,所以一共要放9 1 = 8盆花。
4. 在一条长40米的道路两旁种树,每隔4米种一棵(两端都种),道路两旁共种多少棵树?解析:先求一旁的情况,间隔数=40÷4 = 10个,因为两端都种,棵数 = 间隔数+1,所以一旁种10 + 1 = 11棵树,那么道路两旁共种11×2 = 22棵树。
5. 学校操场边有一条长50米的小路,每隔5米栽一棵柳树(一端栽),可以栽多少棵柳树?解析:间隔数=50÷5 = 10个,因为一端栽树,棵数 = 间隔数,所以可以栽10棵柳树。
三年级应用题植树问题

三年级应用题植树问题一、两端都种树的情况(8题)1. 在一条长20米的小路一边植树,每隔5米栽一棵(两端都要栽),一共要栽多少棵树?- 解析:首先计算间隔数,间隔数 = 总长度÷间隔长度,即20÷5 = 4个间隔。
因为两端都要栽树,所以树的棵数比间隔数多1,即4 + 1=5棵树。
2. 同学们在全长100米的小路一边植树,每隔10米栽一棵(两端都要栽)。
一共需要多少棵树苗?- 解析:间隔数为100÷10 = 10个。
两端都栽树,树的棵数 = 间隔数+1,所以共需要10 + 1 = 11棵树苗。
3. 一条路长180米,在路的一侧从头到尾每隔6米栽一棵树,一共要栽多少棵树?- 解析:间隔数是180÷6=30个。
由于两端都栽,树的棵数为30 + 1 = 31棵。
4. 园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。
从第1棵到最后一棵的距离有多远?- 解析:因为两端都种树,间隔数 = 棵数 - 1,即36 - 1 = 35个间隔。
每个间隔6米,所以距离为35×6 = 210米。
5. 在一条长300米的公路两边种树,每隔5米种一棵(两端都种),一共种多少棵树?- 解析:先计算一边的情况,间隔数为300÷5 = 60个,两端都种时树的棵数为60+1 = 61棵。
两边种树,则一共种61×2 = 122棵树。
6. 学校要在长120米的直跑道的一侧插彩旗,每隔6米插一面(两端都插),一共需要多少面彩旗?- 解析:间隔数为120÷6 = 20个,两端都插彩旗,彩旗数 = 间隔数 + 1,所以需要20+1 = 21面彩旗。
7. 有一条长400米的公路,在公路的一侧从头到尾每隔8米栽一棵杨树,一共需要多少棵杨树苗?- 解析:间隔数为400÷8 = 50个,两端都栽树,所以需要50 + 1 = 51棵杨树苗。
8. 要在一条长50米的街道两旁安装路灯,每隔10米安装一盏(两端都要安装),一共需要安装多少盏路灯?- 解析:先算一边,间隔数为50÷10 = 5个,两端都安装时路灯数为5+1 = 6盏。
小学数学常考植树问题、年龄问题(附例题、解题思路)

植树问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷(棵距×行距)【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。
例1一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。
例2一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?解400÷4=100(棵)答:一共能栽100棵白杨树。
例3一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?解220×4÷8-4=110-4=106(个)答:一共可以安装106个照明灯。
例4给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?解96÷(0.6×0.4)=96÷0.24=400(块)答:至少需要400块地板砖。
例5一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?解(1)桥的一边有多少个电杆?500÷50+1=11(个)(2)桥的两边有多少个电杆?11×2=22(个)(3)大桥两边可安装多少盏路灯?22×2=44(盏)答:大桥两边一共可以安装44盏路灯。
年龄问题【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。
奥数专题:植树问题(讲练测)-数学三年级下册人教版

奥数专题:植树问题(讲练测)-数学三年级下册人教版知识点讲解(一)不封闭型(直线)植树问题1直线两端植树:棵数=段数1+=全长÷株距1+;全长=株距×(棵数1-);株距=全长÷(棵数1-);2直线一端植树:全长=株距⨯棵数;棵数=全长÷株距;株距=全长÷棵数;3直线两端都不植树:棵数=段数-1=全长÷株距1-;株距=全长÷(棵数1+);(二)封闭型(圆、三角形、多边形等)植树问题棵数=总距离÷棵距;总距离=棵数⨯棵距;棵距=总距离÷棵数.练习巩固一、选择题1.在一条长200米的小路一旁种树,如果每隔5米种一棵(两端都种),要种()棵树。
A.40棵B.39棵C.41棵2.中心小学为庆祝新教学楼竣工,买了一些盆花。
把60盆菊花摆成一排,每相邻两盆菊花之间摆一盆鸡冠花,一共有()盆鸡冠花。
A.59B.60C.613.亮亮的教室在4楼,每层楼梯有20级台阶。
亮亮早晨到教室上课要上()级台阶。
A.20B.80C.604.马路边一共有40根电线杆,每两根电线杆中间有一个广告牌,一共有()个广告牌。
A.39B.40C.415.小明从一楼走到三楼用了8秒,照这样,他从一楼走到六楼用()秒。
A.16B.20C.246.学校围墙一边长70米,在这一边上每隔5米插一面国旗(首尾都插),一共要插()面国旗。
A.14B.13C.157.公路一边每两根电线杆之间的距离是350米,10根电线杆之间的距离是()米?A.3150B.3500C.38508.一条长30米的小路两侧各有5棵松树(如图),要在每两棵松树中间种一棵柏树,这条路两侧一共要种()棵柏树。
A.8B.6C.4二、填空题9.一条路20米长,在路的一边,每隔4米栽1棵树,两端都栽,一共可以栽( )棵树。
10.在一条长130米的小路一侧均匀地栽树(只栽一端),一共栽了13棵树,每相邻两棵树之间的距离是( )米。
小学三年级奥数第6讲 植树问题(含答案分析)

第6讲植树问题一、知识要点1、基本概念:总长:植树路线的全长。
棵距:两棵数之间的距离。
段数:总长中共有几个棵距棵数:植树的总棵树2、基本类型以及关系式:(1)路的两端都要植树棵树=线路总长÷棵距+1线路总长=棵距×(棵树-1)棵距=线路总长÷(棵数-1)(2)路的两端都没有植树棵树=线路总长÷棵距-1棵数=段数-1(3)路的一端植树,另一端不植树棵树=线路总长÷棵距棵数=段数另外,生活中还有一些问题,可以用植树问题的方法来解答。
比如锯木头、爬楼梯问题等等,这时解题的关键是要将题目中的条件和问题与植树问题中的“总距离”、“间隔长”、“棵数”对应起来。
二、精讲精练【例题1】小朋友们在路的一边植树,先植一棵树,以后每隔3米植一棵,已经植了9棵,问第一棵和第九棵树相距多少米?练习1:(1)在路的一侧插彩旗,每隔5米插一面,从起点到终点共插了20面,这条道路有多长?(2)在学校的走廊两边,每隔4米放一盆菊花,从起点到终点一共放了20盆,这条走廊长多少米?【例题2】在一条长42米的大路两侧栽树,从起点到终点一共栽了14棵,已知相邻两棵树之间的距离都相等,问相邻两棵树之间的距离是多少米?练习2:在公园一条长30米的路的两侧放椅子,从起点到终点共放了12把椅子,相邻两把椅子的距离相等,相邻两把椅子之间相距多少米?【例题3】把一根钢管锯成小段,一共花了28分钟,已知每锯开一段需要4分钟,这根钢管被锯成了多少段?练习3:一根圆木锯成2米长的小段,一共花了12分钟。
已知每锯下一段要3分钟,这根圆木长多少米?【例题4】甲、乙两人比赛爬楼梯,甲跑到4楼时,乙恰好跑到3楼,照这样计算,甲跑到16楼时,乙跑到了多少楼?练习4:小明和小红两人爬楼梯比赛,小明跑到第4层时,小红跑到第5层,照这样计算,当小明跑到第16层时,小红跑到了第几层?【例题5】一个圆形跑道长300米,沿跑道周围每隔6米插一面红旗,每两面红旗中间插一面黄旗,跑道周围各插了多少面红旗和黄旗?练习5:(1)有一个正方形水池,周长是200米。
小学数学典型应用题9:植树问题(含解析)

小学数学典型应用题9:植树问题(含解析)植树问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】线形植树:一端植树:棵数=间隔数=距离÷棵距两端植树:棵数=间隔数+1=距离÷棵距+1两端都不植树:棵数=间隔数-1=距离÷棵距-1环形植树:棵数=间隔数=距离÷棵距正多边形植树:一周总棵数=每边棵数×边数-边数每边棵树=一周总棵数÷边数+1面积植树:棵数=面积÷(棵距×行距)解题思路和方法先弄清楚植树问题的类型,然后可以利用公式。
例1:植树节到了,少先队员要在相距72米的两幢楼房之间种8棵杨树。
如果两头都不栽,平均每两棵树之间的距离应是多少米?解:1、本题考察的是植树问题中的两端都不栽的情况,解决此类问题的关键是要理解棵数比间隔数少1。
2、因为棵数比间隔数少1,所以共有8+1=9个间隔,每个间隔距离是72÷9=8米。
3、所以每两棵树之间的距离是8米。
例2:佳一小学举行运动会,在操场周围插上彩旗。
已知操场的周长是500米,每隔5米插一根红旗,每两面红旗之间插一面黄旗,那么一共插红旗多少面,一共插黄旗多少面。
解:1、本题考查的是植树问题中封闭图形间隔问题。
本题中只要抓住棵数=间隔数,就能求出插了多少面红旗和黄旗。
2、棵数=间隔数,一共插红旗500÷5=100(面),这一百面红旗中一共有100个间隔,所以一共插黄旗100面。
例3:多多从一楼爬楼梯到三楼需要6分钟,照这样计算,从三楼爬到十楼需要多少分钟?解:1、本题考查的是植树问题中锯木头、爬楼梯问题的情况。
需要理解爬的楼层、锯的次数与层数、段数之间的关系。
所在楼层=爬的层数+1;木头段数=锯的次数+1。
2、从一楼爬楼梯到三楼,需要爬2层,需要6分钟,所以每层需要6÷2=3(分钟)。
三年级植树问题101至150题答案
三年级植树问题101至150题答案★知识点回顾:本次课的目标是让学生掌握用植树问题的公式解决封闭图形的植树问题、锯木、车站、方阵、排队、爬楼等典型题型的解题方法。
★提要:植树问题的公式表达式。
例题101:解:1000÷5=200200+1=201(棵)答:一共要准备201棵树。
例题102:解:2000÷50=4040+1=41(座)41X2=82 (座)例题103:答案:(1)间隔数=40÷4=10(个)一端都不种时,间隔数=灯=10(盏)(2)两端都不种,间隔数=12+1=13(个)马路:13×6=78(米)例题104:解:42÷6-1=6(面)6×2=12(面)例题105:解:间隔数:180 ÷ 6 = 30(个)路灯数:30 + 1 = 31(个)路灯数:31 × 2 = 62 (盏)答:一共要安装 62盏路灯。
例题106:解:24÷(7-1)=4(分钟)40÷4=10(段)10+1=11(棵)例题107:解:(16-1)×8=120(米)120÷(7-1)=20(米)例题108:解:320÷8=40(盆)1×(40-1)=39(米)例题109:解:3-1=2(次)5×2=10(分钟)例题110:解:(19-1)÷(5+1)=3(米)作业111:解:800÷20+1=41(棵)作业112:解:2500÷50-1=49(根)作业113:800÷(41-1)=20(米)作业114:解:1700÷(86-1) =20(米)作业115:解:(95-1)×5=470(米)作业116:解:6÷(4-1)=2(分钟)2×(13-1)=24(分钟)作业117:解:(19-1)÷(8+1)= 2(米)作业118:解:15×(5-1)=60(分钟)8时10分+60分钟(1小时)=9时10分作业119:解:220÷(10+1)×(7-1)=120(米)作业120:解:10÷5×(14+1)=30(米)例题121:(1)两端都栽树,共需____21__棵树苗;(2)两端都不栽树,共需___19__棵树苗;(3)只有一端栽树,共需___20___棵树苗例题122:两端都种树时:树=间隔数+1答案:马路总长÷间隔长度=间隔数上面一排:间隔数=50÷5=10(个)树=10+1=11(棵)左面一排:间隔数=40÷5=8(个)树=8+1=9(棵)总的数=11+9-1=19(棵)例题123:答案:北路树=40÷5+1=9(棵)东路树=西路树=80÷5+1=17(棵)交叉点的树被重复计算了,要减去共有树=9+17+17-2=41(棵)例题124:答案:19×4 - 4=72(个)例题125:解:120÷10=12(棵)例题126:解:30 ÷ 2 = 15(个)答:一共需要打 15 个桩。
小学奥数小升初常考题型植树问题例题讲解+练习,类型全
植树问题要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长、②间距(棵距)长、③棵数、只要知道这三个要素中任意两个要素.就可以求出第三个。
1、不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、段长三者之间的关系是:棵数 = 段数 + 1 = 全长÷段长 + 1 全长 = 段长×(棵数 - 1)段长 = 全长÷(棵数 - 1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、段长之间的关系就为:全长 = 段长×棵数;棵数 = 全长÷段长;段长 = 全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数 = 段数– 1 = 全长÷段长 - 1 段长 = 全长÷(棵数 + 1)。
2、封闭的植树路线棵数 = 段数 = 周长÷段长一、不封闭路线的植树问题例1 有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆(两端要栽),问需栽多少根电线杆?分析:要以两颗电线杆之间的距离作为分段标准,公路全长可分为若干段,由于公路两端都要求栽杆,所以电线杆的根数比分成的段数多1解:以10米为一段,公路全长可以分成900÷10 = 90(段)共需电线杆根数:90 + 1 = 91(根)答:需栽电线杆91根。
例2、马路一边每相隔9米栽有一棵柳树.从第一棵树记起,张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?由题意,我们看的出最终要求的是车的速度,关于车的量我们已经知道了时间,利用速度 = 路程÷时间,我们不难发现,只要求出汽车5分钟行走的路程即可。
路程从哪来?从树来,张军5分钟看到501棵树就意味着5分钟车行驶路程即为第1棵树到第501棵树的距离,只要求出这段路的长度就容易求出汽车速度.解: 5分钟汽车共走:9×(501 - 1)= 4 500(米)汽车每分钟走: 4 500÷5 = 900(米)汽车每小时走: 900×60 = 54 000(米)= 54(千米)列综合算式为:9×(501 - 1)÷5×60÷1 000 = 54 (千米)答:汽车每小时走54千米。
植树问题知识点公式及例题详解
植树问题知识点公式及例题详解公式直线植树:距离÷间隔 +1 = 棵数四周植树:距离÷间隔 = 棵数楼间植树:单边植树距离÷间隔 -1=棵数双边植树距离÷间隔 -1×2=棵数循环植树距离等于棵树加间距1.植树问题是在一定的线路上,根据总路程、间隔长和棵数进行植树的问题;2.为使其更直观,用图示法来说明;树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题;专题分析一、在线段上的植树问题可以分为以下三种情形;1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=段数+1;2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:棵数=间隔数;3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数-1;~4、如果植树路线的两边与两端都植树,那么植树的棵数应比要分的段数多1,再乘二,即:棵树=段数+1再乘二;二、在封闭线路上植树,棵数与段数相等,即:棵数=段数;三、在正方形线路上植树,如果每个顶点都要植树;则棵数=每边的棵数-1×边数;例题:例1长方形场地:一个长84米,宽54米的长方形园中,苹果树的株距是2米,行距是3米.这个苹果园共种苹果树多少棵解:解法一:①一行能种多少棵84÷2=42棵.|②这块地能种苹果树多少行54÷3=18行.③这块地共种苹果树多少棵42×18=756棵.如果株距、行距的方向互换,结果相同:84÷3×54÷2=28×27=756棵.解法二:①这块地的面积是多少平方米84×54=4536平方米.②一棵苹果树占地多少平方米2×3=6平方米.③这块地能种苹果树多少棵4536÷6=756棵.当长方形土地的长、宽分别能被株距、行距整除时,可用上述两种方法中的任意一种来解;当长方形土地的长、宽不能被株距、行距整除时,就只能用第二种解法来解.但有些问题从表面上看,并没有出现“植树”二字,但题目实质上是反映封闭线段或不封闭线段长度、分隔点、每段长度三者之间的关系;锯木头问题就是典型的不封闭线段上,两头不植树问题;所锯的段数总比锯的次数多一;上楼梯问题,就是把每上一层楼梯所需的时间看成一个时间间隔,那么:上楼所需总时间 =终点层—起始层×每层所需时间;而方阵队列问题,看似与植树问题毫不相干,实质上都是植树问题;例2直线场地:在一条公路的两旁植树,每隔3米植一棵,植到头还剩3棵;每隔米植一棵,植到头还缺少37棵,求这条公路的长度;解法一:代数解法设一共有x棵树x-3/2-1X3=x+37/2-1x=205公路长:205-3/2-1X3=300得:公路长度为300米解法二:算术解法这道题可以用解盈亏问题的思路来考虑:首先,我们在两边起点处各栽下一棵树,这两棵树与路长没有关系,以后每栽下一棵树,不论栽在哪一侧,植树的路线不是路就增加一个间距,为了简单起见,我们按单侧植树来考虑;当按3米的间距植树时,最后剩下3棵,也就是说植树的路线要比路长出3个间距,3×3=9米,当按米的间距植树时,最后还缺37棵树,也就是说植树的路线比路短了37个间距,×37=米,两次相差9+=米,两次植树的间距相差是3-=米,据此可以求出树的棵数:不包括起点的2棵÷=203个知道了树的棵数,就可以求出植树路线的长度了:3×203-3=600米或×203+37=600米因为是双侧植树,所以路长为:600÷2=300米综合算式为:3×〔3×3+×37÷3--3〕÷2=300米或×〔3×3+×37÷3-+37〕÷2=300米答:略例3圆形场地难题:有一个圆形花坛,绕它走一圈是120米;如果在花坛周围每隔6米栽一株丁香花,再在每相邻的两株丁香花之间等距离地栽2株月季花;可栽丁香花多少株可栽月季花多少株每2株紧相邻的月季花相距多少米解:解:根据棵数=全长÷间隔可求出栽丁香花的株数:120÷6=20株由于是在每相邻的2株丁香花之间栽2株月季花,丁香花的株数与丁香花之间的间隔数相等,因此,可栽月季花:2×20=40株由于2株花之间的2株月季花是紧相邻的,而2株丁香花之间的距离被2株月季花分为3等份,因此紧相邻2株月季花之间距离为:6÷3=2米答:可栽丁香花20株,可栽花40株,2株紧相邻月季花之间相距2米;例4在圆形水池边植树,把树植在距离岸边均为3米的圆周上,按弧长计算,每隔2米植一棵树,共植了314棵;水池的周长是多少米适于六年级程度解:先求出植树线路的长;植树线路是一个圆的周长,这个圆的周长是:2×314=628米这个圆的直径是:628÷=200米由于树是植在距离岸边均为3米的圆周上,所以圆形水池的直径是:200-3×2=194米圆形水池的周长是:194×=米综合算式:2×314÷×2×=200-6×=194×=米例5小明家门前有一条10米长的水沟,在沟的一侧每隔2米栽一棵树,一共可栽几棵两端都植树按常规解法,答案应该是610÷2+1棵,同理,如果小光家门前也有一段10米长的水沟,同样可以栽6棵,也就是两家一共可以栽12棵,这并看不出有什么不妥;但是,当小明与小光家是邻居时,我们再计算一下:两家的水沟总长是20米,20÷2+1=11棵,也就是两家一共可以栽11棵树,结果比上次计算少了一棵本人称之为“邻里冲突”,这是因为在端点处有两棵树“重合”了,这两棵树的间距为0,与题中要求间距2米不符,因此,可以看出两端植树是不妥当的;但如果两端都不植树,又会出现公共点没有树邻近的两棵树间距4米的情况,仍与题意不符;那么一端植树又会怎样呢这种要求是无法实现的,因为当一方在与邻家相接的端点上植上树后,就会使邻家地段两端都有树存在,还是不合题意;因此,要求在端点上植树或不植树都会出现矛盾,这样的计算方法也不能正确的反映出各个数量间的关系;数学是一门严谨的科学,出题者固然可以任意给定条件,但用不同的计算方法得出的结果应该是相同的,当计算结果出现矛盾时,应该找出问题的原因所在,不能简单的用“两树重合”来解释解释;再按照“棵树=段数”的方法计算一下:小明家可栽树:10÷2=5棵小光家可栽树:10÷2=5棵两家一共可栽树10棵;当两家是邻居时,可栽树:10+10÷2=10棵两次计算结果相同,因此可以说这种计算方法才能正确的反映出各个数量之间的关系; 为什么说常规的解法不够正确呢那是因为在常规解法中,只考虑了植树路段为一家独有的情况,多栽或少栽一棵都不会出现“争议”,也就无法判定栽法是否妥当;然而当植树路段为多家共有时就会出现一方或双方将树栽到了公共端点上的情况,从理论上讲这是不正确的;相对于“路边加一”,“楼间减一”也无道理,因为完全可以按“间距2米”栽下5棵而不是4棵树,至于端点处的两棵树与楼相距只有1米的情况,与题意并不矛盾:1、要求“间距2米”可以认为每棵树需要2米的生长空间,端点的树和中间的树同样都具有2米的空间;2、如果把“楼”也看做“树”而使间距不足,那么则是因为“他”将树栽倒了公共端点上而侵占了“我”的空间,“我”并没有栽错;点击图片可放大反过来想,如果要将已有的若干棵树平均分给几家,不论这些树是直线分布还是平面分布,无疑是要把分割点端点确定在两棵树之间而不是在某一棵树上,至于在某些情况下比如划分卫生分担区或除雪将端点确定在路边现有标志物如电杆或树上,那是因为分割的对象是“路”而不是“树”,这时以固有标志物为界限,具有简单方便、标志物不易移动和消失的好处;“棵数=段数”的算法不仅适用于“路边”,同样适用于“楼间”、“四周圆周”和“田间”见下图,不同颜色代表不同家庭;实际上“例1”的果园植树就是默认了“段块间”植树;实际教学中,应该按“棵数”=“段块数”作为正规解法,既不用加1,也不用减1,即在每一段块的中点植一棵树,这样就不仅没有“邻里冲突”,也能很好的适应各种情况,而端点植树或不植树只能按特殊情况来介绍;。
三年级奥数第6讲植树问题例题练习及答案
第6讲植树问题例题练习及答案(1)在一段距离中,两端都植树,棵数=段数+1;(2)在一段距离中,两端都不植树,棵数=段数-1;(3)在一段距离中,一端不植树,棵数=段数.3.在封闭曲线上植树,棵数=段数.例题精讲:例1 有一条长1000米的公路,在公路的一侧从头到尾每隔25米栽一棵树苗,一共需要准备多少棵树苗?分析:先将全长1000米的公路每25米分成一段,一共分成多少段?种树的总棵树和分成的段数的关系是棵数=段数+1.解1000÷25+1=41(棵).答:一共需要准备41棵树苗.例2 公路的一旁每隔40米有木电杆一根(两端都有).共121根.现改为水泥电杆51根(包括两端),求两根相邻水泥电杆之间的距离.分析:公路全长为40×(121-1)解40×(121-1)÷(51-1)=40×120÷50=96(米).答:两根相邻水泥杆之间的距离是96米.例3 两幢大楼相隔115米,在其间以等距离的要求埋设22根电杆,从第1根到第15根电杆之间相隔多少米?分析:在相距115米的两幢大楼之间埋设电杆,是两端都不埋电杆的情况,115米应该分成22+1=23段,那么每段长是115÷23=5米,而第1根到第15根电杆间有15-1=14段,所以第1根到第15根电杆之间相隔(5×14)米.解115÷(22+1)×(15-1)=115÷23×14=70(米)答:从第1根到第15根之间相隔70米.例4 工程队打算在长96米,宽36米的长方形工地的四周打水泥桩,要求四角各打一根,并且每相邻两根的距离是4米,共要打水泥桩多少根?分析:先求出长方形的周长是(96+36)×2=264米,每4米打一根桩,因为是沿着长方形四周打桩,所以段数和根数相等,可用264÷4来计算.解 (96+36)×2÷4=132×2÷4=66(根).答:共要打水泥桩66根.例 5 一个圆形水库,周长是2430米,每隔9米种柳树一棵.又在相邻两棵柳树之间每3米种杨树1棵,要种杨树多少棵?分析:沿着封闭的圆形水库四周植树,段数与棵数相等,沿着2430米的四周,每隔9米种柳树一棵,共可种2430÷9=270棵,也就是把水库四周平分成270段.又在相邻两棵柳树之间,每隔3米种杨树一棵,每段可种9÷3-1=2棵,总共可种杨树2×270=540棵.解 (9÷3-1)×(2430÷9)=2×270=540(棵)答:水库四周要种杨树540棵.例 6 红星小学有125人参加运动会的入场式,他们每5人为一行,前后两行的距离为2米,主席台长32米.他们以每分钟40米的速度通过主席台,需要多少分钟?分析:这是一道与植树问题有关的应用题.利用"有125人,每5人为一行"可求出一共有125÷5=25行,行数相当于植树问题中的棵数,"前后两行距离是2米"相当于每两棵树之间的距离,这样可求出队伍的长度是2×(25-1)米.再加上主席台的长度,就是队伍所要走的距离.用队伍所要走的距离,除以队伍行走的速度,可求出所需行走的时间了.解 [2×(125÷5-1)+32]÷40=[2×24+32]÷40=80÷40=2(分钟).答:队伍通过主席台要2分钟.水平测试 4A 卷一、填空题1.学校有一条长80米的走道,计划在走道的一旁栽树,每隔4米栽一棵.(1)如果两端都栽树,那么共需要______棵树.(2)如果两端栽柳树,中间栽杨树,那么共需要______杨树.(3)如果只有一端栽树,那么共需要______棵树.2.一个圆形水池的周长是60米,如果在水池的四周每隔3米放一盆花,那么一共能放______盆花.3.16米的校园大道两边都种上树苗,从路的两头起每隔2米种一棵,共种______棵4.蚂蚁爬树枝,每上一节需要10秒.它从第一节爬到第13节需要_______秒5.一根木料长24分米,现在要将这跟木料锯成长度相等的6段,每锯一次要10秒,共要______秒.二、解答题6.同学们布置教室,要将一根200厘米长的彩带剪成20厘米长的小段.如果彩带不能折叠,需要剪多少次?7.公园的一个湖的周长是1800米,在这个湖的周围每隔20米种一棵柳树.然后在每两棵柳树之间每隔4米种一棵迎春花,需要柳树多少棵、迎春花多少棵?8.在一幢高25层的大楼里,甲、乙两个比赛爬楼梯.甲到9楼时,乙刚上到5楼.照这样的速度,当甲到了顶层时乙到了几楼?9.一个人以均匀的速度在路上散步,从第1根电线杆走到第7根电线杆用了12分钟,这个人走了30分钟,他走到了第几根电线杆?他走到第30根电线杆处,用了几分钟?10.甲村到乙村,原计划栽树175棵,相邻两棵树距离8米,后决定改为栽树117棵,问相邻两树应相距多少米?11.一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后两车相隔5米,问这列车队共长多少米?B 卷一、填空题1.有一条长1000米的公路,在公路两边从头到尾每隔10米栽一棵树,共可栽______棵树.2.两幢楼房相距90米,现在要在两楼之间每隔10米种一棵树,需要种_____树.3.一根木料锯成4段需要18分钟,改成锯8段要_____分钟.4.园林工人放盆花,每7盆花距离12米.照这样计算,36盆花的距离是______米.5.某街心公园新辟一条小道长50米,从头到尾在小道的一旁等距离放6个长5米的花坛,花坛间隔是_____米.6.师专附小举行运动会入场仪式,四年级有246名同学排成6路纵队,前后每行间隔2米,主席台长40米.他们以每分钟40米的速度通过主席台.需要______分钟.二、解答题7.圆形滑冰场,周长400米,每隔40米装一盏灯.再在相邻两盏灯之间放3盆花,问共需装几盏灯?放几盆花?8.有一个正方形池塘,在它四周种树,四个顶点都有一棵,这样每边都有5棵,问池塘四周共种树多少棵?9.人民公园有一个湖泊,周长168米.现在沿边长等距离做8个长9米的花坛,问花坛间隔是多少米?10.一根木料长4米,锯成每段40厘米,需要36分钟.如果把它锯成每段长50厘米,需要多少时间?11.在铁路一旁,每隔50米有电杆一根.一旅客在行进的火车里,从经过第1根电杆起到第89根电杆为止,恰好经过了4分钟,问火车行进的速度是每小时多少千米?12.有一根长180米厘米的绳子,从它的一端开始,每3厘米作一个记号,每4厘米也作一个记号.然后将有记号的地方剪开,问绳子共可剪成多少段?C 卷一、填空题1.在相距100米的两楼之间栽树,每隔10米栽一棵,共栽了______棵树.2.一个长方形的池塘长120米、宽28米,在池塘边每隔2米种一棵树,一共需要种_____棵树.3.一个人以均匀的速度在路上散步,从第一根电线杆走到第七根电线杆用了12分钟,这个人走了30分钟,他走到了第______根电线杆.4.国庆节接受检阅的一列车队共52辆,每辆车长4米,前后每辆车相隔6米,车队每分钟行驶105米,这列车队要通过536米长的检阅场地,要______分钟.5.锯一条4米长的圆柱形的钢条,锯5段耗时1小时20分钟.如果把这样的钢条锯成半米长的小段,需要______分钟.6.小王要到大厦的36层去上班,一日因停电他步行上楼,他从一层到六层用了100秒.如果用同样的速度走到36层,还需要_____秒.二、解答题7.马路的一边每隔10米种一棵树,小明乘汽车2分钟共看到201棵树,汽车每小时行多少千米?8.公园里有个湖,湖边周长是3600米,按等距离共种了120棵柳树.现在要在每3棵柳树间等距离地安放一条长椅供游人休息,沿湖边安放一周需要多少条长椅?两条长椅间相距多少? 9.公路两旁距离均匀地栽有一批杨树.清晨琳琳以同一速度在公路一侧跑步,从第1棵树跑到第9棵树用了4分钟.她准备往返跑步30分钟,琳琳应该跑到第几棵树时返回?10.一条道路的一边,每隔30米有一根电线杆,共有51根.现在要进行线路改造,每隔50米设一根电线杆,改造过程中有多少根电线杆不需要移动?11.图2是五个大小相同的铁环连在一起的图形,它的长度是多少毫米?十个这样的铁环连在一起有多少毫米长?12.盒子里有许多黑色和白色的围棋子,明明从盒子里取出19枚,排成一排.他先放1枚白色棋子,放几枚黑色棋子;再放1枚白色棋子,放几枚黑色棋子;......每次放的黑色棋子的枚数都相同.巧的是最后一枚也是白色棋子.请你在图中画出棋子的摆法:植树问题答案:水平测试 4A卷1.(1)21. 80÷4+1=21(棵)(2)19. 80÷4-1=19(棵)(3)20. 80÷4=20(棵)2.20. 这是一个封闭图形.60÷3=20(盆).3.18. 注意这是两边种树.先求一边:16÷2+1=9(棵),9×2=18(棵)4.120. (13-1)×10=120(秒)5.50. (6-1)×10=50(秒)6.9次. 200÷2-1=97.柳树90棵,迎春花360棵.柳树:1800÷20=90(棵),迎春花:(20÷4-1)×90=360(棵).8.13楼. 甲上到9楼就是上了8层楼梯,乙上到5楼就是上了4层楼梯,这样甲的速度就是乙的2倍.(9-1)÷(5-1)=2,(25-1)÷2+1=13(楼).9.16根,58分钟. 第一根电线杆到第七根电线杆之间有6个间距,走6个间距要12分钟,可知走一个间距所需时间.12÷(7-1)=2(分钟),30÷2+1=16(根),(30-1)×2=58(分钟).10.12米. 先求出两村距离:(175-1)×8=1392(米).再求间距:1392÷(117-1)=12(米).11.265米. 30辆车之间有29个间隔,这个车队的长度包括车长和间隔.30×4+(30-1)×5=265(米).B 卷1.202. (1000÷10+1)×2=202(棵).2.8. 90÷10-1=8(棵).3.42. 锯一段所需时间,18÷(4-1)=6(分钟),6×(8-1)=42(分钟).4.70. 两盆花之间的距离:12÷(7-1)=2(米),(36-1)×2=70(米).5.4. (50-6×5)÷(6-1)=4(米)6.3. 同学们通过主席台所走的路程包括:主席台的长度和队伍本身的长度.队伍长:(246÷6-1)×2=80(米),(80+40)÷40=3(分钟).7.在封闭曲线上,分成段数就是需装灯的盏数.同时,因为每段上放3盆花,所以花的盆数是段数的3倍.400÷40=10(盏)......灯,3×10=30(盆)......花.8.从图可看到,四边共种了16棵,若每边种了(5-1)棵,则4边种了4×4=16棵;若每边种5棵树,四边共5×4=20棵树,去掉四个角上重复的棵数,那么也成了20-1×4=16棵;解法一(5-1)×4=16(棵); 解法二5×4-1×4=16(棵).9.花坛的总长是9×8=72(米),还剩下的米数是168-72=96(米).在封闭曲线上,8个花坛间有8个间隔,每个间隔的距离是96÷8=12(米).(168-9×8)÷8=96÷8=12(米).10.4m=400cm,36÷(400÷40-1)×(400÷50-1)=36÷9×7=28(分钟).11.从第1根到第89根,火车共走了50×(89-1)=50×88=4400米.走这些路程用了4分钟,所以火车每分钟走4400÷4=1100米,那么1小时可走1100×60÷1000=66千米.50×(89-1)÷4×60÷1000=50×88÷4×60÷1000=66(千米/小时).12.180米长的绳子,每隔3厘米做一个记号,记号数比段数少1,有180÷3-1=59个记号.同样每隔4厘米做一个记号,则有180÷4-1=44个记号.由于3×4=12厘米,可以想象,每隔12厘米,3厘米处的记号与4厘米处的记号重复一次,那么在180厘米长的绳子上共重复了180÷12-1=14次,所以绳子上的记号总数为59+44-14=89个,而记号处都要剪开,共剪了89次,剪成了90段(段数比次数多1).(180÷3-1)+(180÷4-1)-[180÷(3×4)-1]+1=59+44-14+1=90(段).C 卷1.9. 100÷10-1=9(棵).2.148. (120+28)×2÷2=148(棵)3.16. 12÷(7-1)=2(分钟),30÷2+1=16(根).4.10. 车队行进的长度包括检阅场地和车队本身长度.(52-1)×6+52×4=514(米),(514+536)÷105=10(分钟).5.140. 1小时20分=80分,80÷(5-1)=20(分钟),(4×2-1)×20=140(分钟).6.640. 100÷(6-1)=20(秒),(36-1)×20=740(秒),740-100=640(秒).7.60千米/时. 小明2分钟经过了201棵树,这之间就有201-1=200(个)间隔,每个间隔10米,就能求出汽车开过的路程.(201-1)×10=2000(米)=2(千米),2÷2×60=60(千米/时). 8.60条,60米. 三棵树之间的间距:3600÷120×2=60(米),也就是每60米要放一张长椅,所以3600÷60=60(条).9.31棵. 4分钟=240秒.240÷(9-1)=30(秒),琳琳30秒跑一个间距.30分钟=1800秒,1800÷30=60(个),琳琳1800秒要跑60个间距,往返各30个间距,所以30+1=31(棵).琳琳跑到第31棵树时返回.10.11根. 道路总长度:30×(51-1)=1500(米).当30米与50米的公倍数150米处时,这根电线杆不需要移动,还有开头的这根也不需要移动.1500÷150+1=11根.11.152米,292米.4cm=40mm,40-4×6=16(mm),40×3+16×2=152(mm).40×5+16×4+(40-12)=292(米).12.略.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年级数学植树问题例题解析
摘要:
1.植树问题的基本概念
2.三年级数学植树问题的例题
3.例题的解析方法
4.植树问题的实际应用
正文:
【植树问题的基本概念】
植树问题是一种典型的数学问题,主要涉及到树的种植方式和数量。
一般来说,植树问题可以分为两类:一是在直线上种植树木,二是在平面上种植树木。
在三年级数学中,通常学习的是在直线上种植树木的问题。
【三年级数学植树问题的例题】
例题:小明家到学校有一条长为500 米的路,他想在这条路上种一些树,每隔5 米种一棵,问小明可以在这条路上种多少棵树?
【例题的解析方法】
解:首先,我们要知道,树的两端都是不能种植树木的,所以,小明在这条500 米长的路上,最后一棵树距离路的终点应该是5 米,而不是0 米。
因此,小明实际上只能在这条路上种(500-5)/5=99 棵树。
【植树问题的实际应用】
植树问题在生活中有很多实际应用,比如,我们要计算在一条街道上需要种多少棵树,或者计算在一块土地上需要种多少棵树,都可以用植树问题的方
法来解决。