小学三年级奥数 10 植树问题

合集下载

三年奥数 植树与方阵问题 有答案

三年奥数 植树与方阵问题 有答案

植树与方阵问题一、植树问题要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长.②间距(棵距)长.③棵数.只要知道这三个要素中任意两个要素.就可以求出第三个。

关于植树的路线,有封闭与不封闭两种路线。

1.不封闭路线例:如图间距总长①若题目中要求在植树的线路两端都植树,则棵数比段数多1.如上图把总长平均分成5段,但植树棵数是6棵。

全长、棵数、株距三者之间的关系是:棵数=段数+1=全长÷株距+1全长=株距×(棵数-1)株距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距×棵数;棵数=全长÷株距;株距=全长÷棵数。

③如果植树路线的两端都不植树,则棵数就比②中还少1棵。

株距全长棵数=段数-1=全长÷株距-1.如上图所示.段数为5段,植树棵数为4棵。

株距=全长÷(棵数+1)。

2.封闭的植树路线棵数=段数=周长÷株距.二、方阵问题学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

方阵的基本特点是:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。

②每边人(或物)数和四周人(或物)数的关系:四周人(或物)数=[每边人(或物)数-1]×4;每边人(或物)数=四周人(或物)数÷4+1。

③中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数。

例1有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?分析要以两棵电线杆之间的距离作为分段标准.公路全长可分成若干段.由于公路的两端都要求栽杆,所以电线杆的根数比分成的段数多1。

解:以10米为一段,公路全长可以分成900÷10=90(段)共需电线杆根数:90+1=91(根)答:可栽电线杆91根。

奥数专题:植树问题(讲练测)-数学三年级下册人教版

奥数专题:植树问题(讲练测)-数学三年级下册人教版

奥数专题:植树问题(讲练测)-数学三年级下册人教版知识点讲解(一)不封闭型(直线)植树问题1直线两端植树:棵数=段数1+=全长÷株距1+;全长=株距×(棵数1-);株距=全长÷(棵数1-);2直线一端植树:全长=株距⨯棵数;棵数=全长÷株距;株距=全长÷棵数;3直线两端都不植树:棵数=段数-1=全长÷株距1-;株距=全长÷(棵数1+);(二)封闭型(圆、三角形、多边形等)植树问题棵数=总距离÷棵距;总距离=棵数⨯棵距;棵距=总距离÷棵数.练习巩固一、选择题1.在一条长200米的小路一旁种树,如果每隔5米种一棵(两端都种),要种()棵树。

A.40棵B.39棵C.41棵2.中心小学为庆祝新教学楼竣工,买了一些盆花。

把60盆菊花摆成一排,每相邻两盆菊花之间摆一盆鸡冠花,一共有()盆鸡冠花。

A.59B.60C.613.亮亮的教室在4楼,每层楼梯有20级台阶。

亮亮早晨到教室上课要上()级台阶。

A.20B.80C.604.马路边一共有40根电线杆,每两根电线杆中间有一个广告牌,一共有()个广告牌。

A.39B.40C.415.小明从一楼走到三楼用了8秒,照这样,他从一楼走到六楼用()秒。

A.16B.20C.246.学校围墙一边长70米,在这一边上每隔5米插一面国旗(首尾都插),一共要插()面国旗。

A.14B.13C.157.公路一边每两根电线杆之间的距离是350米,10根电线杆之间的距离是()米?A.3150B.3500C.38508.一条长30米的小路两侧各有5棵松树(如图),要在每两棵松树中间种一棵柏树,这条路两侧一共要种()棵柏树。

A.8B.6C.4二、填空题9.一条路20米长,在路的一边,每隔4米栽1棵树,两端都栽,一共可以栽( )棵树。

10.在一条长130米的小路一侧均匀地栽树(只栽一端),一共栽了13棵树,每相邻两棵树之间的距离是( )米。

小学奥数小升初常考题型植树问题例题讲解+练习,类型全

小学奥数小升初常考题型植树问题例题讲解+练习,类型全

植树问题要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长、②间距(棵距)长、③棵数、只要知道这三个要素中任意两个要素.就可以求出第三个。

1、不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、段长三者之间的关系是:棵数 = 段数 + 1 = 全长÷段长 + 1 全长 = 段长×(棵数 - 1)段长 = 全长÷(棵数 - 1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、段长之间的关系就为:全长 = 段长×棵数;棵数 = 全长÷段长;段长 = 全长÷棵数。

③如果植树路线的两端都不植树,则棵数就比②中还少1棵。

棵数 = 段数– 1 = 全长÷段长 - 1 段长 = 全长÷(棵数 + 1)。

2、封闭的植树路线棵数 = 段数 = 周长÷段长一、不封闭路线的植树问题例1 有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆(两端要栽),问需栽多少根电线杆?分析:要以两颗电线杆之间的距离作为分段标准,公路全长可分为若干段,由于公路两端都要求栽杆,所以电线杆的根数比分成的段数多1解:以10米为一段,公路全长可以分成900÷10 = 90(段)共需电线杆根数:90 + 1 = 91(根)答:需栽电线杆91根。

例2、马路一边每相隔9米栽有一棵柳树.从第一棵树记起,张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?由题意,我们看的出最终要求的是车的速度,关于车的量我们已经知道了时间,利用速度 = 路程÷时间,我们不难发现,只要求出汽车5分钟行走的路程即可。

路程从哪来?从树来,张军5分钟看到501棵树就意味着5分钟车行驶路程即为第1棵树到第501棵树的距离,只要求出这段路的长度就容易求出汽车速度.解: 5分钟汽车共走:9×(501 - 1)= 4 500(米)汽车每分钟走: 4 500÷5 = 900(米)汽车每小时走: 900×60 = 54 000(米)= 54(千米)列综合算式为:9×(501 - 1)÷5×60÷1 000 = 54 (千米)答:汽车每小时走54千米。

小学奥数 植树问题 知识点+例题+练习 (分类全面)

小学奥数 植树问题 知识点+例题+练习 (分类全面)

一、植树问题知识点梳理要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长.②间距(棵距)长.③棵数.只要知道这三个要素中任意两个要素.就可以求出第三个。

关于植树的路线,有封闭与不封闭两种路线。

封闭型的和不封闭型的植树问题,区别在于间隔数(段数)与棵数的关系:1、不封闭型的(多为直线上),一般情况为两端植树,如下图所示,其路长、间距、棵数的关系是:但如果只在一端植树,如右图所示,这时路长、间距、棵数的关系就是:如果两端都不植树,那么棵数比一端植树还要再少一棵,其路长、间距、棵数的关系就是:2、封闭型的情况(多为圆周形),如下图所示,那么:数量关系:线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷(棵距×行距)例题:一、线型植树1、求棵树例1、一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?拓展:有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?2、求线路长例2 、马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?拓展:在一条路上按相等的距离植树.甲乙二人同时从路的一端的某一棵树出发.当甲走到从自己这边数的第22棵树时,乙刚走到从乙那边数的第10棵树.已知乙每分钟走36米.问:甲每分钟走多少米?拓展:一个人以均匀的速度在路上散步,从第一根电线杆走到第七根电线杆用了12分钟,这个人走了30分钟,他走到了第______根电线杆.二、封闭型1、圆形例3、一个圆形池塘,它的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株?拓展:一个圆形鱼塘的周长是1500米,沿鱼塘周围每隔6米栽一棵杨树,需要种多少棵杨树?例4、一个圆形水库,周长是2430米,每隔9米种柳树一棵.又在相邻两棵柳树之间每3米种杨树1棵,要种杨树多少棵?拓展:圆形滑冰场,周长400米,每隔40米装一盏灯.再在相邻两盏灯之间放3盆花,问共需装几盏灯?放几盆花?例5、公园里有个湖,湖边周长是3600米,按等距离共种了120棵柳树.现在要在每3棵柳树间等距离地安放一条长椅供游人休息,沿湖边安放一周需要多少条长椅?两条长椅间相距多少?拓展:人民公园有一个湖泊,周长168米.现在沿边长等距离做8个长9米的花坛,问花坛间隔是多少米?拓展:某街心公园新辟一条小道长50米,从头到尾在小道的一旁等距离放6个长5米的花坛,花坛间隔是多少米.2、正方形例6、有一正方形操场,每边都栽种17棵树,四个角各种1棵,共种树多少棵?拓展:一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?拓展:有一个正方形池塘,在它四周种树,四个顶点都有一棵,这样每边都有5棵,问池塘四周共种树多少棵?3、三角形例7、一个街心花园如下图所示,它由四个大小相等的等边三角形组成。

三年级奥数植树问题

三年级奥数植树问题

城镇规划师(植树问题)知识图谱城镇规划师知识精讲植树问题是一种常见的实际问题,主要是学习植树棵数,植树间隔(株距)和植树线路总长三者之间的关系.植树问题通常有两种形式,一种是在不封闭的线路上植树,如沿直线上植树;另一种是在封闭的线路上植树,如在正方形、长方形、圆形等的边长上植树.根据不同情形,其数量关系如下:一.在不封闭的线路上植树问题1.两端都要植树:棵数=总长÷株距1+;总长=株距()1棵数.÷-⨯-棵数;株距=总长()1 2.只在一端植树,另一端不植:棵数=总长÷株距;总长=株距⨯棵数;株距=总长÷棵数.3.两端都不植树:棵数=总长÷株距1-;总长=株距()1棵数.÷+棵数;株距=总长()1⨯+二.在封闭路线上植树问题1.在封闭路线上植树问题中,植树的棵数与段数相等.相当于在不封闭的线路上,只在一端植树,另一端不值树.2.计算公式:棵数=总长÷株距;总长=株距⨯棵数;株距=总长÷棵数.三.解决植树问题,要根据实际问题的具体情形,正确分析总长、株距、棵数之间的数量关系.多条线段上的间隔问题,注意线段间的公共点.三点剖析本讲主要培养学生的实践应用能力,其次培养学生的运算能力和观察推理能力.本讲内容是在基本应用题的基础上,进一步学习与实际相关的植树问题.从实际生活出发,让学生理解间隔的含义,了解株距并能解决实际问题等内容.后续课程还会继续学习间隔问题.课堂引入例题1、经过一系列的培训和学习之后,柯小南、唐小虎成为了合格的“城镇规划师”,正式参与高斯小镇新开发区的城镇规划.在其他区域都规划好之后,有一条南北走向的长约180米的公路还没有安装路灯,作为城镇规划项目组的小参谋——柯小南,在查阅了一系列的资料后,认为在马路一侧每隔15米安装一盏路灯比较合适.为了给准备进入城镇或离开城镇的人一个好印象,柯小南认为路的两端也要安装路灯.那么你能帮柯小南数一数,需要多少盏路灯呢?例题2、另一个规划师——唐小虎觉得这条路在居民区中间,如果路灯离得太近,会比较浪费资源,应该每隔20米一盏路灯.你帮唐小虎算一算需要多少盏路灯?直线上植树例题1、(1)马路一侧种树,且两端种树.若每隔6米种一棵树,马路长42米,则共种多少棵树?(2)马路的一侧种树,且两端种树.若每隔6米种一棵树,共种12棵树,则马路长多少米?(3)在一条长50米的马路两侧种树,且两端种树.每隔5米种一棵树,一共要种多少棵树?(4)学校门前有条长100米的马路,马路两侧一共种了42棵树,每侧相邻两棵树之间的距离都相等,而且马路的两端都种了.相邻两棵树之间的距离是多少?大家一定要认真读题,看看到底是在哪种树呢?例题2、(1)马路一侧种树,且一端种树.若每隔8米种一棵树,共种10棵树,则马路长多少米?(2)马路的两侧种树,且一端种树.若每隔8米种一棵树,马路长104米,则共种多少棵树?这道题跟上一题好像有些区别~例题3、 (1)马路的一侧种树,且两端不种树.若每隔6米种一棵树,马路长48米,则共种多少棵树? (2)马路的两侧种树,且两端不种树.若每隔6米种一棵树,共种24棵树,则马路长多少米?(3)马路的两侧种树,且两端不种树.若马路长33米,共种了20棵树,相邻两棵树之间的距离相等,则相邻两树之间距离多少米?例题4、 如图有2条马路.现在要在马路的一侧种树,且每条马路的两端都种树.已知横向的路长45米,纵向的路长50米.每隔5米种一棵树,问共种几棵树?例题5、 在如图两条马路的一侧安路灯,且每条马路的两端都没有路灯.若每隔6米安一盏路灯,一共安了16盏路灯.已知北路长48米,则西路长多少米?例题6、 有如图三条马路.现在要在马路的一侧种树,且每条马路的两端都种树.已知北路长30米,东路和西路分别长60米.每隔3米种一棵树,则共种多少棵树?随练1、 (1)社区门口有一条长为100米的东西方向的马路,现在要在这条马路的一侧种树,每隔10米种一棵,而且马路的两端都要种.一共需要种多少棵树?(2)马路的两侧种树,且两端种树.若马路长40米,共种了18棵树,相邻两棵树之间的距离相等,则相邻两树之间距离多少米?随练2、 马路的一侧种树,且一端不种树.若每隔6米种一棵树,马路长48米,则共种多少棵树?随练3、 马路的两侧种树,且两端不种树.若马路长40米,共种了18棵树,相邻两棵树之间的距离相等,则相邻两树之间距离________米.两侧都种树,两端都不种树?50米45米多条线路时,公共点只能用一次.西路北路这也是两条路上“种树”.西路北路东路有三条路,跟上面的两条路有什么关系吗?随练4、 有如图三条马路,现在要在马路的一侧种树,且每条马路的两端都种树.已知北路长40米,东路和西路分别长80米.每隔5米种一棵树,则共种________棵树.环形上植树例题1、 (1)用蜡烛摆成一个周长60厘米圆形的造型,如果共有20根蜡烛,且相邻两个蜡烛间隔相同,那么相邻的两根蜡烛间的距离是多少厘米?(2)学校有一个圆形水池,水池的周长为40米.如果绕着水池每隔4米种一棵树,一共要种多少棵树?例题2、 (1)同学12人围着长480米的操场玩游戏,每两名同学间距离相等.如果在每两名同学间插入3名老师,使每两人间距离相等,那么每两人间距离是多少米?(2)有如图三条马路,长度都是100米.现在要在马路的一侧种树,且每条马路的两端都种树.每隔5米种一棵树,问共种多少棵树?例题3、 一块长方形草地,长120米,宽100米.现在它的四周种树,四个角和各边中点都要求种树,且相邻两棵树之间的距离相等.请测算:最少要种多少棵树?例题4、 如图,有一个长方形的“田”字道路,整个长方形的长为100米,宽为70米.现在需要在所有道路上种树,相邻两棵树之间的距离都相等,而且拐弯的地点(顶点或中点)都要种上树.那么最少要种多少棵树?西路北路东路刚刚的题目都是直线上植树,现在是环形上种树了.虽说不是圆环,但是还是环状的,也可以用“环形上植树”解决问题.每条边的中点也要种树呀,那我们是不是应该先找到相邻两棵树之间的距离呢?随练1、用蜡烛摆成一个周长60厘米圆形的造型,如果共有20根蜡烛,且相邻两个蜡烛间隔相同,那么相邻的两根蜡烛间的距离是________厘米.随练2、有一块三角形土地,三条边的长度分别为120米、150米、80米.如果在边界上每隔10米种一棵树,三角形的每个顶点都必须种,一共要种________棵树.随练3、50个男生沿着300米的跑道站成一圈,并且相邻两人之间的距离都相等.现在,每相邻两个男生之间又加入了两个女生,相邻两人之间的距离还是相等.一共加入了________个女生.加入女生后,相邻两人之间的距离又是________米.易错纠改例题1、有如图4条马路.现在要在马路的一侧种树,且每条马路的两端都种树.几条路的长度如图所示.每隔5米种一棵树,问共种几棵树?你觉得唐小虎和柯小南做的正确吗?如果不正确,请你写出正确的解答过程.拓展1、有一条长1250米的公路,在公路的一侧从头到尾每隔25米栽一棵杨树,园林部门需运来__________棵杨树苗.A.50B.49C.25D.512、马路的一侧种树,且一端种树.若每隔8米种一棵树,共种10棵树,则马路长__________米.3、学校有一个圆形水池,周长为48米,若绕着水池每隔6米种一棵树,则共种__________棵树.4、马路的两侧种树,且两端种树.若马路长30米,共种了12棵树,相邻两棵树之间的距离相等,则相邻两树之间距离__________米.5、同学12人围着长480米的操场玩游戏,每两名同学间距离相等.如果在每两名同学间插入3名老师,使每两人间距离相等,那么每两人间距离是__________米.6、有一块五边形土地,五条边的长度分别为120米、150米、80米、140米、110米.如果在边界上每隔10米种一棵树,五边形的每个顶点都必须种,一共要种多少棵树?50中点中点3530米70米45米20米我们可以把所有的路都连成一条线,然后两端都种树,是不是就可以了?应该是棵树.对,也可以看作是一部分环形种树,一部分是直线种树.环形上要种棵,直线上要种棵,所以总共要种46棵树.哎呀,咱俩算的不一样,我们俩谁算错了吗?7、一条路的一边种树,并且两头都不种树,如果每隔12米种一棵树,若马路长120米,则种了__________棵树.8、马路的一侧种树,且两端不种树.若每隔6米种一棵树,共种6棵树,则马路长__________米.9、马路的两侧种树,且两端不种树.若马路长30米,共种了10棵树,相邻两棵树之间的距离相等,则相邻两树之间距离__________米.10、分析并口述题目的做题思路及方法.一条长500米的路的两边都要种树,并且两端都要种,如果每隔5米种一棵树,一共要种多少棵树?。

【三升四】小学数学奥数第10讲:植树问题-教案

【三升四】小学数学奥数第10讲:植树问题-教案

(四年级)备课教员:×××第十讲植树问题一、教学目标:1、以植树为内容,研究植树的棵数,研究棵与棵之间的距离和需要植树的总长度等数量之间的关系;2、探索植树问题的两种情况,即在直线上或不封闭的曲线上植树和在封闭线路上植树。

二、教学重点:1、理解并掌握解决植树问题的方法;2、在直线上或不封闭的曲线上植树。

如果首尾两端都可以种一棵树,那么植树的棵数要比分的段数多1,即:棵数=总长÷棵距+1;如果首尾两端都不植树,那么植树的棵数要比分的段数少1,即:棵数=总长÷棵距-1。

3、在封闭路线上植树。

因为首尾两端重合在一起,所以植树的棵数就等于可分的段数,即:棵数=总长÷棵距。

三、教学难点:理解并掌握解决植树问题的方法。

四、教学准备:ppt五、教学过程:第一课时(50分钟)一、导入(5分)师:我们每人都有一双灵巧的小手,可以画画、写字、干活……,而且这双小手里还有很多数学知识呢!举出左手张开五指,每两个手指间都有一个指缝。

五指间有几个指缝?生:4个。

师:4个手指有几个指缝?生:3个。

师:你们这么快就能算出来,有什么小窍门吗?生:指缝数+1=手指数手指数-1=指缝数师:同学们真了不起,短短的两分钟,就总结出了一个这么重要的规律。

我相信在今天的课堂上,你们的表现会更让老师惊叹!(出示例题一)二、探索发现授课(42分)(一)例题一:(14分)在一个周长是240米的游泳池周围栽树,每隔5米栽一棵,一共要栽多少棵?师:同学们来看一下这一问题是封闭的还是不封闭的植树问题?生:封闭的。

师:没错,我们知道这是一个游泳池,绕着游泳池植树,即首尾是重合在一起的,那这样的棵数要怎么算呢?生:……师:从题中得知游泳池一圈的长度是240米,每隔5米种一棵。

求棵数的是多少?封闭路线上的植树公式为:“棵数=总长÷棵距。

”师:棵数我们不知道,但总长我们知道,是多少呢?生:240米。

三年级奥数之植树问题

三年级奥数之植树问题

三年级奥数之植树问题知识点:解答植树问题,要考虑植树的方式,一般在不封闭的的路线上植树:棵树=总距离÷间隔长+1在封闭的路线上植树:棵树=总距离÷间隔长经典例题一:一段公路全长800米,在公路的一边从头到尾每隔5米栽一棵杨树,可载多少棵杨树?【巩固练习】1、一条公路长400米,在公路的一侧从头到尾每隔8米竖一根电线杆,一共要竖多少根电线杆?2、有一段江堤全长1200米,从头到尾每隔5米种一棵杨树。

可栽多少棵杨树?经典例题二:一段公路全长2400米,在公路两旁每隔8米栽一棵杨树,从头到尾一共可以栽多少棵杨树?【巩固练习】1、在一条长2千米的街道两侧安装路灯(两端也要安装),每隔50米安一盏,一共要安装多少盏路灯?2、在一条长600米的公路两边栽树,从头到尾每隔4米栽一棵,一共要栽多少棵树?经典例题三:一个圆形花坛周围长150米,沿花坛周围每隔3米栽一棵月季花,中间栽一棵菊花,花坛周围各栽了多少棵月季花和菊花?【巩固练习】1、一个湖泊周围长3600米,沿湖泊周围每隔4米栽一棵柳树,中间栽一颗松树,湖泊周围各栽了多少棵松树和柳树?2、一个圆形花坛,它的周长是200米,每隔4米栽一棵柏树,中间栽一棵雪松,花坛周围各栽了多少棵柏树和雪松?经典例题四:把一根钢管锯成5小段,每段锯开一处,需要3分钟,全部锯完需要多少时间?【巩固练习】1、把一根木料锯成小段,一共花了32分钟,已知每锯开一段需要4分钟,这根木料被锯成多少段?2、有两根木材,把每根据成4段,锯每段要3分钟,全部锯完要用多长时间?3、一根木条长13米,木工师傅先把一头损坏部分锯下1米,然后锯了3次,锯成都一样的短木条。

每根短木条长多少米?。

三年级奥数——植树问题(完)

三年级奥数——植树问题(完)

三年级奥数——植树问题例1.从公园通往湖心的小岛有一条长900米的小路,在小路的两侧,从头到尾每隔15米栽1棵桃树,需要多少棵桃树?例2. 12名小学生排成一排,要求在每两名小学生中间放2盆花,需要摆放几盆花?例3.某城市举行马拉松长跑比赛,从市体育馆出发,最后再回到市体育馆,全长42千米,沿途等距离设茶水站7个,求每两个相邻的茶水站之间的距离?例4.马路的一边,每隔8米有1棵杨树,小明乘汽车从学校回家,从看到第1棵树起到153棵树止花了4分钟,而且小明从学校到家共坐了半小时的汽车。

小明的家距离学校有多远?例5.村民们在村庄的周围栽树,要求每隔15米栽1棵杨树,而且每两棵杨树中间栽2棵柳树,使每两棵相邻的树间距相等,已知村庄周长为4500米。

问:需要多少棵杨树?多少棵柳树?相邻两棵树之间的间距是多少米?例6. 大人上楼的速度为小孩的2倍,小孩从一楼到四楼要6分钟,大人从一楼到六楼要几分钟?随堂练习随堂练习1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?随堂练习2. 12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多棵桃树?随堂练习3. 400米的圆形跑道,等距离5个站台啦啦队,每两个相邻站之间的是多少?随堂练习4.公路的一边每隔8米栽1棵梧桐树,小军骑自行车5分钟共看到251棵树,小军每分钟骑多少米?随堂练习5.已知公园的周长为8040米,在公园的周围栽树绿化,每隔8米栽垂柳1棵,然后在相邻两棵垂柳之间每隔2米栽海棠树1棵,应准备垂柳与海棠各多少棵?随堂练习6.小明从一楼跑到五楼需要4分钟,小芳的速度是小明的一半,小芳从一楼到四楼需要多少时间?练习题:1.一根长200厘米的木条,要锯成10厘米长的小段,需要锯几次?2.蚂蚁爬树枝,每上一节需要10秒钟,从第1节爬到第13节需要多少分钟?3.在花圃的周围放上菊花,每隔1米放1盆,花圃周围共20米长,需放多少盆菊花?4.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米,从发电厂到闹市区有多远?5.小明在剪一根长22米的绳子,共剪了10次,剪成了许多一样长的短绳子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学三年级奥数10 植树问题
本教程共30讲
第10讲植树问题
绿化工程是造福子孙后代的大事。

确定在一定条件下栽树、种花的棵数是最简单、最基本的“植树问题”。

还有许多应用题可以化为“植树问题”来解,或借助解“植树问题”的思考方法来解。

先介绍四类最简单、最基本的植树问题。

为使其更直观,我们用图示法来说明。

树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。

显然,只有下面四种情形:
(1)非封闭线的两端都有“点”时,
“点数”=“段数”+1。

(2)非封闭线只有一端有“点”时,
“点数”=“段数”。

(3)非封闭线的两端都没有“点”时,
“点数”=“段数”-1。

(4)封闭线上,“点数”=“段数”。

最简单、最基本的植树问题只有这四类情形。

例如,一条河堤长420米,从头到尾每隔3米栽一棵树,要栽多少棵树?这是第(1)种情形,所以要栽树420÷3+1=141(棵)。

又如,肖林家门口到公路边有一条小路,长40米。

肖林要在小路一旁每隔2米栽一棵树,一共要栽多少棵树?由于门的一端不能栽树,公路边要栽树,所以,属于第(2)种情形,要栽树40÷2=20(棵)。

再如,两座楼房之间相距30米,每隔2米栽一棵树,一直行能栽多少棵树?因紧挨楼房的墙根不能栽树,所以,属于第(3)种情形,能栽树30÷2-1=14(棵)。

再例如,一个圆形水池的围台圈长60米。

如果在此台圈上每隔3米放一盆花,那么一共能放多少盆花?这属于第(4)种情形,共能放花60÷3=20(盆)。

许多应用题都可以借助或归结为上述植树问题求解。

例1在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。

这段路长多少米?
解:这是第(1)种情形,所以,“段数”=10-1=9。

这段路长为50×(10-1)=450(米)。

答:这段路长450米。

例2小明要到高层建筑的11层,他走到5层用了100秒,照此速度计算,他还需走多少秒?
分析:因为1层不用走楼梯,走到5层走了4段楼梯,由此可求出走每段楼梯用100÷(5-1)=25(秒)。

走到11层要走10段楼梯,还要走6段楼梯,所以还需
25×6=150(秒)。

解:[100÷(5-1)]×(11-5)=150(秒)。

答:还需150秒。

例3一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。

这列车队共排列了多长?如果车队每秒行驶2米,那么这列车队要通过535米长的检阅场地,需要多少时间?
解:车队间隔共有
30-1=29(个),
每个间隔5米,所以,间隔的总长为
(30-1)×5=145(米),
而车身的总长为30×4=120(米),故这列车队的总长为
(30-1)×5+30×4=265(米)。

由于车队要行265+535=800(米),且每秒行2米,所以,车队通过检阅场地需要
(265+535)÷2=400(秒)=6分40秒。

答:这列车队共长265米,通过检阅场地需要6分40秒。

例4下图是五个大小相同的铁环连在一起的图形。

它的长度是多少?十个这样的铁环连在一起有多长?
解:如上图所示。

关键是求出重叠的“环扣”数(每个长6毫米)。

根据植树问题的第(3)种情形知,五个连在一起的“环扣”数为5-1=4(个),所以重叠部分的长为
6×(5-1)=24(毫米),
又4厘米=40毫米,所以五个铁环连在一起长
40×5-6×(5-1)=176(毫米)。

同理,十个铁环连在一起的长度为
40×10-6×(10-1)=346(毫米)。

答:五个铁环连在一起的长度为176毫米。

十个铁环连在一起的长度为346毫米。

例5父子俩一起攀登一个有300个台阶的山坡,父亲每步上3个台阶,儿子每步上2个台阶。

从起点处开始,父子俩走完这段路共踏了多少个台阶?(重复踏的台阶只算一个)。

解:因为两端的台阶只有顶的台阶被踏过,根据已知条件,儿子踏过的台阶数为
300÷2=150(个),
父亲踏过的台阶数为300÷3=100(个)。

由于2×3=6,所以父子俩每6个台阶要共同踏一个台阶,共重复踏了300÷6=50(个)。

所以父子俩共踏了台阶
150+100-50=200(个)。

答:父子俩共踏了200个台阶。

练习10
1.学校有一条长60米的走道,计划在道路一旁栽树。

每隔3米栽一棵。

(1)如果两端都各栽一棵树,那么共需多少棵树苗?
(2)如果两端都不栽树,那么共需多少棵树苗?
(3)如果只有一端栽树,那么共需多少棵树苗?
2.一个长100米,宽20米的长方形游泳池,在离池边3米的外围圈(仍为长方形)上每隔2米种一棵树。

共种了多少棵树?
3.一根90厘米长的钢条,要锯成9厘米长的小段,一共要锯几次?
4.测量人员测量一条路的长度。

先立了一个标杆,然后每隔40米立一根标杆。

当立杆10根时,第1根与第10根相距多少米?
5.学校举行运动会。

参加入场式的仪仗队共180人,每6人一行,前后两行间隔120厘米。

这个仪仗队共排了多长?
6.在一条长1200米的河堤边等距离植树(两端都要植树)。

已挖好每隔6米植一棵树的坑,后要改成每隔4米植一棵树。

还要挖多少个坑?需要填上多少个坑?
7.一个车队以5米/秒的速度缓缓地通过一座210米长的大桥,共用100秒。

已知每辆车长5米,两车之间相隔10米,那么这个车队共有多少辆车?
答案与提示练习10
1.(1)21棵;(2)19棵;(3)20棵。

2.132棵。

解:(100+3×2)×2+(20+3×2)×2=264(米),
264÷2=132(棵)。

3.9次。

4.360米。

5.34米80厘米。

解:180÷6=30(行),120×(30-1)=3480厘米)。

6.200个;100个。

解:原有坑1200÷6+1=201(个),
现有坑1200÷4+1=301(个),
其中重复而不需要新挖的坑有1200÷12+1=101(个),需要新挖的坑有301-101=200(个),需要填上的坑有201-101=100(个)。

7.20辆。

解:车队长5×100-210=290(米),
共有车(290-5)÷(5+10)+1=20(辆)。

相关文档
最新文档