全等三角形的判定方法50道经典题
全等三角形判定基础50题

全等三角形的判定基础50题专练1.已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,问BE =CF 吗?说明理由。
2.已知AC =BD ,AE =CF ,BE =DF ,问AE ∥CF 吗?3.已知AB =CD ,BE =DF ,AE =CF ,问AB ∥CD 吗?4.已知在四边形ABCD 中,AB =CD ,AD =CB ,问AB ∥CD 吗?说明理由。
5.已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,问ABD ≌⊿ACE .吗?为什么? 6.已知CD ∥AB ,DF ∥EB ,DF =EB ,问AF =CE 吗?说明理由。
7.已知BE =CF ,AB =CD , ∠B =∠C .问AF =DE 吗? 8.已知AD =CB , ∠A =∠C ,AE =CF ,问EB ∥DF 吗?说明理由。
9.已知,M 是AB 的中点,∠1=∠2,MC =MD ,问∠C =∠D 吗?说明理由。
AB CDFEA CB DE FDCF EA BAD E1 2 A D C E F B A C D B E F B A D F E C M A B C D 1 210.已知,AE =DF ,BF =CE ,AE ∥DF ,问AB =CD 吗?说明理由。
11.已知∠1=∠2,∠3=∠4,问AC =AD 吗?说明理由。
12.已知∠E =∠F ,∠1=∠2,AB =CD ,问AE =DF 吗?说明理由。
13.已知ED ⊥AB ,EF ⊥BC ,BD =EF ,问BM =ME 吗?说明理由。
14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么? 15.已知∠A =∠D ,AC ∥FD ,AC =FD ,问AB ∥DE 吗?说明理由。
16.已知AC =AB ,AE =AD , ∠1=∠2,问∠3=∠4吗? 17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,问⊿ABC ≌⊿DEF 吗?说明理由。
三角形全等的判定(含例题)

1.判定两个三角形全等的基本事实:边边边(SSS)(1)基本事实:三边分别相等的两个三角形全等,简写成“__________”或“SSS”.(2)这个基本事实告诉我们:当三角形的三边确定后,其形状、大小也随之确定.这也是三角形具有稳定性的原因.2.判定两个三角形全等的基本事实:边角边(SAS)(1)基本事实:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“__________”.(2)此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【注意】(1)此方法是证明两个三角形全等最常用的方法之一,应用时,可以从图形上直接观察到三个对应元素必须符合“两边夹角”,即“SAS”,不要误认为有两边一角就能判定两个三角形全等.(2)在书写时也要按照“边→角→边”的顺序排列条件,必须牢记“边边角”不能作为判定两个三角形全等的条件.3.判定两个三角形全等的基本事实:角边角(ASA)(1)基本事实:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“__________”.(2)用“ASA”来判定两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边分别相等,证明时要加强对夹边的认识.4.判定两个三角形全等的基本事实:角角边(AAS)(1)基本事实:两角和其中一个角的对边分别相等的两个三角形全等,简写成“角角边”或“__________”.(2)这一结论很容易由“ASA”推得,将这一结论与“ASA”结合起来,即可得出:两个三角形如果具备两角和一条边对应相等,就可判定其全等.5.直角三角形全等的判定方法:斜边、直角边(HL)(1)基本事实:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“________”.(2)“HL ”定理是直角三角形所独有的,对于一般三角形不成立. 【归纳】判定两个三角形全等常用的思路方法如下: HL SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎩一直角边一斜边—已知两边找夹角—找另一边—边为角的对边—找任一角—找夹角的另一边—已知一边一角边为角的邻边找夹边的另一角—找边的对角—找夹边—已知两角找任一角的对边—K 知识参考答案:1.(1)边边边2.(1)SAS 3.(1)ASA4.(1)AAS5.(1)HLK —重点 三角形全等的判定K —难点 三角形全等的判定和性质的综合运用 K —易错三角形全等的判定一、用边边边(SSS )证明三角形全等明确要证明全等的两个三角形,在书写两个三角形全等时,“≌”左边三角形的三边与“≌”右边三角形的三边的前后顺序要保持一致.【例1】如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可判定A .ABD △≌ACD △B .ABE △≌ACE △△D.以上答案都不对C.BDE△≌CDE【答案】B二、用边角边(SAS)证明三角形全等此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【例2】如图,AB=AC,添加下列条件,能用SAS判断△ABE≌△ACD的是A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC【答案】C【解析】∵AB=AC(已知),∠A=∠A(公共角),∴只需要AE=AD,∴△ABE≌△ACD,故选C.三、用角边角、角角边(ASA、AAS)证明三角形全等1.不能说“有两角和一边分别相等的两个三角形全等”,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.2.有三个角对应相等的两个三角形不一定全等.【例3】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是A.SSS B.SASC.SAA D.ASA【答案】D【解析】∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选D.【例4】如图,已知点B、C、F、E在同一直线上,∠A=∠D,BF=EC,AB∥DE,若∠1=80°,求∠BFD 的度数.四、用斜边、直角边(HL)证明直角三角形全等1.当证明两个直角三角形全等时,若不适合应用“HL”,也可考虑用“SAS”“ASA”或“AAS”来证明.2.在用一般方法证明时,因为两个直角三角形中已具备一对直角相等的条件,故只需找另外两个条件即可,在实际证明中可根据条件灵活选用不同的方法.【例5】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【答案】D五、全等三角形的判定和性质的综合寻找解决问题的思路方法可以从求证的结论出发,结合已知条件,逐步寻求解决问题所需要的条件.同时要注意对图形本身隐含条件的挖掘,如对顶角、公共角、公共边等.【例6】如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为A.50°B.30°C.80°D.100°【答案】B【解析】∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB(SAS),∴∠D=∠B=30°.故选B.【例7】如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.【解析】∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,CAB DBA AB ABDAB CBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADB≌△BCA(ASA),∴BC=AD.。
经典全等三角形的判定练习题

全等三角形的判定1.如图,AC和BD相交于O,且BO=DO,AO=CO,以下判断正确的选项是〔〕A.只能证明△AOB≌△CODB.只能证明△AOD≌△COBC.只能证明△AOB≌△COBD.能证明△AOB≌△COD和△AOD≌△COB2.△ABC的六个元素,下面甲、乙、丙三个三角形中和△ABC全等的图形是〔〕A.甲和乙B.乙和丙C.只有乙D.只有丙3.如图,MB=ND,∠MBA=∠NDC,以下不能判定△ABM≌△CDN的条件是〔〕A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN4.某同学把一块三角形的玻璃打碎也成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是〔〕A.带①去B.带②去C.带③去D.带①和②去第3题第4题第7题5.以下条件不可以判定两个直角三角形全等的是〔〕A.两条直角边对应相等B.两个锐角对应相等C.一条直角边和它所对的锐角对应相等D.一个锐角和锐角所对的直角边对应相等6.△ABC中,AB=AC,BD、CE是AC、AB边上的高,那么BE与CD的大小关系为〔〕A.BE>CD B.BE=CD C.BE<CD D.不确定7.如图,是一个三角形测平架,AB=AC,在BC的中点D挂一个重锤,自然下垂.调整架身,使点A恰好在重锤线上,AD和BC的关系为______.8.正方形ABCD中,AC、BD交于O,∠EOF=90o,AE=3,CF=4,那么EF的长为___.9、假设△ABC的边a,b满足22a ab b-+-+=,那么第三边c的中线长m的取值范12161000围为10.“三月三,放风筝〞,如图1—24—4是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH,小明是通过全等三角形的识别得到的结论,请问小明用的识别方法是_____〔用字母表示〕.11.如图,AE=AC,AB=AD,∠EAB=∠CAD,试说明:∠B=∠D12. :如图,AB=DC ,AD=BC , O是BD中点 ,过O的直线分别与DA、BC的延长线交于E、F.求证:OE=OF13.如图,线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,说明∠A=∠C.第8题第10题14. :如图,AB=AC,AE平分∠BAC.求证:∠DBE=∠DCE.15.沿矩形ABCD的对角线BD翻折△ABD得△A/BD,A/D交BC于F,如下图,△BDF是何种三角形?请说明理由.16.如图,在四边形ABCD中,BD平分∠ABC,∠A+∠C=180o,试说明AD=CD.本文档局部内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。
全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是()A。
120°B。
125° C.127° D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是()A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OC D。
∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF。
请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形()A。
3 B。
4 C.5 D。
62、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件()D CBA A 。
∠1=∠2B 。
∠B=∠C C 。
∠D=∠ED 。
∠BAE=∠CAD 3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B 。
AD ∥BC C 。
∠A=∠C D 。
∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B 。
三角形全等判定专题训练题

三角形全等的判定专题训练题1、如图(1):AD ⊥BC ,垂足为D ,BD=CD 。
求证:△ABD ≌△ACD 。
5、如图(5):AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE 。
求证:AC ⊥CE 。
2、如图(2):AC ∥EF ,AC=EF ,AE=BD 。
求证:△ABC ≌△EDF 。
3、 如图(3):DF=CE ,AD=BC ,∠D=∠C 。
求证:△AED ≌△BFC 。
4、 如图(4):AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE 。
求证:(1)∠B=∠C ,(2)BD=CE6、如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上。
求证:(1)AF=EG ,(2)BF ∥DG 。
7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN=BC 。
求证:(1)MN 平分∠AMB ,(2)∠A=∠CBM 。
8、如图(8):A 、B 、C 、D 四点在同一直线上,(图1)DC B A F E (图2)D C BA FE (图3)D C B A E(图4)D CB A E (图5)DC B A G FE(图6)D C B AN M(图7)C BA求证:△ABE ≌△DCF 。
9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
求证:AM 是△ABC 的中线。
10、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE 。
求证:AB=AC 。
11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC 上任一点。
求证:PA=PD 。
12、如图(12)AB ∥CD ,OA=OD ,点F 、D 、O 、A 、E 在同一直线上,AE=DF 。
求证:EB ∥CF 。
13、如图(13)△ABC ≌△EDC 。
求证:BE=AD 。
全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定(SSS)1、如图 1, AB=AD , CB=CD ,∠ B=30 °,∠ BAD=46 °,则∠ ACD 的度数是 ()A.120 °B.125 °C.127°D.104 °2、如图 2,线段 AD 与 BC 交于点 O,且 AC=BD , AD=BC , ? 则下面的结论中不正确的是()A. △ ABC ≌△ BADB. ∠ CAB= ∠ DBAC.OB=OCD.∠ C= ∠D3、在△ ABC 和△ A 1B 1C1中,已知 AB=A 1B 1, BC=B 1C1,则补充条件 ____________,可得到△ ABC ≌△A 1B1C1.4、如图 3,AB=CD ,BF=DE ,E、F 是 AC 上两点,且AE=CF .欲证∠ B= ∠ D,可先运用等式的性质证明AF=________ ,再用“ SSS”证明 ______≌ _______得到结论.5、如图,已知AB=CD ,AC=BD ,求证:∠ A= ∠ D.6、如图, AC 与 BD 交于点 O, AD=CB ,E、F 是 BD 上两点,且AE=CF ,DE=BF. 请推导下列结论:⑴∠ D=∠B ;⑵ AE ∥CF.7、已知如图,A 、 E、F、 C 四点共线, BF=DE , AB=CD.⑴请你添加一个条件,使△ DEC ≌△ BFA ;⑵在⑴的基础上,求证: DE∥ BF.全等三角形的判定(SAS)1、如图1, AB ∥ CD , AB=CD, BE=DF ,则图中有多少对全等三角形()A.3B.4C.5D.62、如图2, AB=AC,AD=AE,欲证△ABD≌△ ACE ,可补充条件()A. ∠ 1= ∠23、如图 3, AD=BCA.AB ∥ CDB.∠ B= ∠ C,要得到△ ABDB.AD ∥ BCC.∠ D= ∠ ED. ∠BAE= ∠CAD 和△CDB 全等,可以添加的条件是 ( C.∠A=∠ C D. ∠ABC= ∠ CDA)4、如图 4, AB 与 CD 交于点 O, OA=OC , OD=OB ,∠ AOD=________ , ? 根据 _________可得到△ AOD≌△ COB,从而可以得到AD=_________ .5、如图 5,已知△ ABC 中, AB=AC , AD 平分∠ BAC ,请补充完整过程说明△∵ AD 平分∠ BAC ,∴∠ ________=∠ _________(角平分线的定义).在△ ABD 和△ ACD 中,∵ ____________________________ ,∴△ ABD≌△ ACD(ABD)≌△ ACD的理由.6、如图 6,已知 AB=AD , AC=AE ,∠ 1= ∠ 2,求证∠ ADE= ∠ B.7、如图,已知AB=AD ,若 AC 平分∠ BAD ,问 AC 是否平分∠ BCD ?为什么?BA CD8、如图,在△ABC 和△ DEF 中, B 、 E、 F、 C,在同一直线上,下面有 4 个条件,请你在其中选 3 个作为题设,余下的一个作为结论,写一个真命题,并加以证明.①AB=DE ;② AC=DF ;③∠ ABC= ∠ DEF ;④ BE=CF.9、如图⑴, AB ⊥ BD , DE⊥ BD ,点 C 是 BD 上一点,且BC=DE , CD=AB .⑴试判断AC 与 CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线 BD 向左平移,使△CDE 的顶点 C 与 B 重合,此时第⑴问中的位置关系还成立吗?(注意字母的变化)AC与BE全等三角形(三) AAS和 ASA【知识要点】1.角边角定理( ASA):有两角及其夹边对应相等的两个三角形全等.2 .角角边定理( AAS):有两角和其中一角的对边对应相等的两个三角形全等.【典型例题】例 1.如图, AB∥ CD, AE=CF,求证: AB=CDD FC O例 2.如图,已知: AD=AE,ACD ABE ,求证:BD=CE.AE BAD E例 3.如图,已知:CD . BAC ABD ,求证:OC=OD.B CD COA B例 4.如图已知: AB=CD,AD=BC,O是 BD中点,过 O点的直线分别交DA和 BC的延长线于E,F. 求证: AE=CF.FDCOAB例 5.如图,已知123 ,AB=AD.求证:BC=DE.EA2E1OB D 3C例6.如图,已知四边形 ABCD中, AB=DC,AD=BC,点 F 在 AD 上,点 E 在 BC上, AF=CE, EF 的对角线 BD 交于 O,请问 O点有何特征?A F DOB EC【经典练习】1. △ ABC和△A B C中,A A' , BC B C ,C C 则△ABC与△ A B C.2.如图,点 C,F 在 BE上,12, BC EF ,请补充一个条件,使△ABC≌DFE,补充的条件是.A DB 12EC F3.在△ ABC和△A B C中,下列条件能判断△ABC和△A B C全等的个数有()① A AB B , BC B C② AA , B B , AC A C③ A AB B , AC B C④ AA , B B , AB A CA . 1 个 B. 2 个 C. 3 个 D. 4 个4.如图,已知 MB=ND,MBA NDC ,下列条件不能判定是△ABM≌△CDN的是()A.M NB. AB=CD M NC. AM=CND. AM∥ CN5.如图 2 所示,∠E=∠ F=90°,∠ B=∠ C, AE=AF,给出下列结论:①∠ 1=∠2② BE=CF③△ ACN≌△ ABM④ CD=DN A C B D 其中正确的结论是_________ _________ 。
全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)
D CB A 全等三角形的判定(一)(SSS )1、如图1,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD 与BC 交于点O ,且AC=BD ,AD=BC ,•则下面的结论中不正确的是( ) A.△ABC ≌△BAD B.∠CAB=∠DBA C.OB=OC D.∠C=∠D3、在△ABC 和△A 1B 1C 1中,已知AB=A 1B 1,BC=B 1C 1,则补充条件____________,可得到△ABC ≌△A 1B 1C 1.4、如图3,AB=CD ,BF=DE ,E 、F 是AC 上两点,且AE=CF .欲证∠B=∠D ,可先运用等式的性质证明AF=________,再用“SSS ”证明______≌_______得到结论.5、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .6、如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF.请推导下列结论:⑴∠D=∠B ;⑵AE ∥CF .7、已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD.⑴请你添加一个条件,使△DEC ≌△BFA ; ⑵在⑴的基础上,求证:DE ∥BF.全等三角形的判定(SAS)1、如图1,AB ∥CD ,AB=CD ,BE=DF ,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明. ①AB=DE ;②AC=DF ;③∠ABC=∠DEF ;④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 交于O ,请问O 点有何特征?【经典练习】 1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠3.在△ABC 和△C B A ''' ) ①A A '∠=∠B B '∠=∠,BC =C A C A ''='③A A '∠=∠B B '∠=∠,AC =C A B A ''=' A . 1个B. 2个C. 3个D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是__________________。
全等三角形的判定方法50道经典题
全等三角形的判定方法50道经典题摘要:1.全等三角形的判定方法概述2.边边边(SSS)判定法3.边角边(SAS)判定法4.角边角(ASA)判定法5.角角边(AAS)判定法6.斜边,直角边(HL)判定法7.经典题型一:已知三边长度,判断全等8.经典题型二:已知两边和夹角,判断全等9.经典题型三:已知两角和夹边,判断全等10.经典题型四:已知两边和等角对边相等,判断全等11.经典题型五:已知斜边和直角边,判断全等12.经典题型六:综合运用判定法,判断全等13.解题技巧与注意事项14.巩固练习:50道经典题解答与解析正文:全等三角形的判定方法是数学中非常重要的内容,掌握判定方法有助于解决许多实际问题。
本文将详细介绍全等三角形的判定方法,并通过50道经典题进行巩固练习。
1.全等三角形的判定方法概述全等三角形判定方法有六种,分别为:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、斜边,直角边(HL)。
2.边边边(SSS)判定法当两个三角形的三条边分别对应相等时,这两个三角形全等。
例如,若给出三条线段长度ABc,BCa,ACb,我们可以通过以下步骤确定全等三角形:步骤一:确定一边AB。
步骤二:分别以AB为圆心,做半径为b,a长的圆,交于点C。
步骤三:连接AC,BC。
这样,三角形的大小和形状就都被确定出来。
3.边角边(SAS)判定法当两个三角形的两边和它们的夹角分别相等时,这两个三角形全等。
例如,已知ABc,CAB,我们可以通过以下步骤确定全等三角形:步骤一:画射线AE,并在射线AE上截取ACc。
步骤二:在射线AD上截取ABc。
步骤三:连接BC。
这样,三角形的大小和形状就都被确定出来。
4.角边角(ASA)判定法当两个三角形的两个角和它们的夹边分别相等时,这两个三角形全等。
例如,已知ABc,CAB,我们可以通过以下步骤确定全等三角形:步骤一:先确定一边ABc。
步骤二:在AB同旁画DAB,EBA,AD,BE交于点C。
全等三角形经典题型50题(含答案解析)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
因为 BC=ED,CF=DF,∠BCF=∠EDF 。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF 。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF 。
又因为 ∠ABC=∠AED 。
所以 ∠ABE=∠AEB 。
所以 AB=AE 。
在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
所以 三角形ABF和三ADBC角形AEF 全等。
所以 ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DG E ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BDAC=AE+CE ∴CE=DE ∴∠C=∠E DC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
完整版)全等三角形经典例题(含答案)
完整版)全等三角形经典例题(含答案)全等三角形证明题精选1.在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F。
证明:△ADE≌△CBF;若AC与BD相交于点O,证明:AO=CO。
2.已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D。
证明:AC∥DE;若BF=13,EC=5,求BC的长。
3.在△ABC中,BD⊥AC于点D,CE⊥AB于点E,AD=AE。
证明:BE=CD。
4.点O是线段AB和线段CD的中点。
证明:△AOD≌△BOC;AD∥BC。
5.点C是AE的中点,∠A=∠ECD,AB=CD。
证明:∠B=∠D。
6.已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC。
证明:AE=BC。
7.在△ABE和△DEF中,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF。
证明:AF=DF。
8.点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF。
证明:AB∥DE。
9.在△ABC中,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB。
证明:AE=CE。
10.点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF。
证明:DE=CF。
11.点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD。
证明:AE=FB。
12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.证明:BD=CE;∠M=∠N。
13.在△ABC中,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD。
证明:AB=AC。
14.在△ABC和△CED中,AB∥CD,AB=CE,AC=CD。
证明:∠B=∠E。
15.在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F。
证明:AB=AC;若AD=2,∠DAC=30°,求AC的长。
16.已知直角三角形ABC和直角三角形DBF,且它们相似,∠D=28°,求∠GBF的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的判定方法50道经典题
以下是全等三角形判定的50道经典题:
1. 给定两个三角形的三边长,判断它们是否全等。
2. 给定两个三角形的一个角和两个侧边,判断它们是否全等。
3. 给定两个三角形的两个角和一个侧边,判断它们是否全等。
4. 给定两个三角形的一个角和两个高,判断它们是否全等。
5. 给定两个三角形的两个角和一个高,判断它们是否全等。
6. 给定两个三角形的两个角和一个中线,判断它们是否全等。
7. 给定两个三角形的一个角和两个角平分线,判断它们是否全等。
8. 给定两个三角形的两个角和一个外接圆半径,判断它们是否全等。
9. 给定两个三角形的一个角和一个内切圆半径,判断它们是否全等。
10. 给定两个三角形的一个角和一个内心到边的距离,判断它们是否全等。
11. 给定两个三角形的两个角和一个重心到边的距离,判断它们是否全等。
12. 给定两个三角形的两个角和一个垂心到边的距离,判断它们是否全等。
13. 给定两个三角形的一个角和一个外心到边的距离,判断它们是否全等。
14. 给定两个三角形的两个角和一个外心到边的距离,判断它们是否全等。
15. 给定两个三角形的两个角和一个垂足到边的距离,判断它
们是否全等。
16. 给定两个三角形的两个角和一个内心到边的角平分线的距离,判断它们是否全等。
17. 给定两个三角形的一个角和一个外心到边的角平分线的距离,判断它们是否全等。
18. 给定两个三角形的两个角和一个内角平分线的夹角,判断
它们是否全等。
19. 给定两个三角形的一个角和两个角平分线的夹角,判断它
们是否全等。
20. 给定两个三角形的两个角和一个内心到边的角平分线的夹角,判断它们是否全等。
21. 给定两个三角形的两个角和一个内心到边的角平分线的夹角,判断它们是否全等。
22. 给定两个三角形的一个角和两个角平分线的夹角之和,判
断它们是否全等。
23. 给定两个三角形的两个角和一个内心到边的角平分线的夹
角之和,判断它们是否全等。
24. 给定两个三角形的一个角和两个中线,判断它们是否全等。
25. 给定两个三角形的两个角和一个中线,判断它们是否全等。
26. 给定两个三角形的一个角和两个边中点到角平分线的距离,判断它们是否全等。
27. 给定两个三角形的两个角和一个边中点到角平分线的距离,判断它们是否全等。
28. 给定两个三角形的一个角和两个边中点到角平分线的距离
之和,判断它们是否全等。
29. 给定两个三角形的两个角和一个边中点到角平分线的距离
之和,判断它们是否全等。
30. 给定两个三角形的两个角和一个角平分线与边的夹角之和,判断它们是否全等。
31. 给定两个三角形的两个角和一个中线与边的夹角之和,判
断它们是否全等。
32. 给定两个三角形的一个角和两个内切圆半径,判断它们是
否全等。
33. 给定两个三角形的两个角和一个内切圆半径,判断它们是
否全等。
34. 给定两个三角形的一个角和两个内切圆半径之和,判断它
们是否全等。
35. 给定两个三角形的两个角和一个内切圆半径之和,判断它
们是否全等。
36. 给定两个三角形的一个角和两个重心到边的距离,判断它
们是否全等。
37. 给定两个三角形的两个角和一个重心到边的距离,判断它
们是否全等。
38. 给定两个三角形的一个角和两个垂心到边的距离,判断它
们是否全等。
39. 给定两个三角形的两个角和一个垂心到边的距离,判断它
们是否全等。
40. 给定两个三角形的一个角和两个外心到边的距离,判断它
们是否全等。
41. 给定两个三角形的两个角和一个外心到边的距离,判断它
们是否全等。
42. 给定两个三角形的一个角和两个外心到边的距离之和,判
断它们是否全等。
43. 给定两个三角形的两个角和一个外心到边的距离之和,判
断它们是否全等。
44. 给定两个三角形的一个角和两个垂足到边的距离,判断它们是否全等。
45. 给定两个三角形的两个角和一个垂足到边的距离,判断它们是否全等。
46. 给定两个三角形的一个角和两个内心到边的角平分线的距离,判断它们是否全等。
47. 给定两个三角形的两个角和一个内心到边的角平分线的距离,判断它们是否全等。
48. 给定两个三角形的一个角和一个外心到边的角平分线的距离,判断它们是否全等。
49. 给定两个三角形的两个角和一个外心到边的角平分线的距离,判断它们是否全等。
50. 给定两个三角形的一个角和一个内心到边的角平分线的夹角之和,判断它们是否全等。