2.2等差数列第二课时教案

合集下载

【高中数学必修5】2.2等差数列(第2课时)教学设计(一)

【高中数学必修5】2.2等差数列(第2课时)教学设计(一)

-12-
变式训练,深化提高
2.已知a、b、c成等差数列,求证:b+c,c+a,a+b也成等差数列. 证 :∵a、b、c成等差数列 ∴2b=a+c ∴(b+c)+(a+b)=a+2b+c =a+(a+c)+c =2(a+c) ∴b+c、c+a、a+b成等差数列.
-13-
反思小结,观点提炼
1.等差中项的定义与应用 2. 判断一个数列是否为等差数列只需看 an1an(nN*)是否为常数; 3.等差数列的性质
-4-
设计问题,创设情境
在上一节我们已经学习了等差数列,掌握了等差数列的定义、 通项公式与公差,作为一类特殊的数列,是否具有某些特殊的性质, 又如何去证明或判定一个数列是等差数列呢?
-5-
信息交流,揭示规律
1.等差中顶定义 如果在a与b中间插入一个数A,使a,A,b组成等差数列,可以看成最简单的等差数列 。这时A叫做a与b的等差中项。
解:取数列{an}中的任意相邻两项an与an-1(n>1),
求差得a n a n 1 (p q n ) [p ( n 1 ) q ]
pnq(pnpq) p
它是一个与n 无关的常数,所以{an}是等差数列。
-10-
运用规律,解决问题
例2 已知等差数列{ a n }中, a1a4a715,a2a4a6 45
-11-
变式训练,深化提高
1. 三个数成等差数列,其和为 15,其平方和为 83, 求此三个数.
解 设三个数分别为 x-d,x,x+d.
(x d ) x (x d ) 15
则 (x
d)2
x2
(x
d)2
83
解得
x d
5 2

x d
5 2

高中数学《2.2.2 等差数列(二)》教案 新人教A版必修5

高中数学《2.2.2 等差数列(二)》教案 新人教A版必修5

2.2.2 等差数列(二)教学要求:明确等差中项的概念;进一步熟练掌握等差数列的通项公式及推导公式;并能运用所学知识解决一些生活中的等差数列.教学重点:等差数列的定义、通项公式、性质的理解与应用.教学难点:灵活应用等差数列的定义及性质解决一些相关问题.教学过程:一、复习准备:1. 练习:在等差数列{}n a 中, 若 32a = 813a =-, 求公差d 及14a .2. 提问:如果三角形的三个内角的度数成等差数列,那么中间的角是多少度?二、讲授新课:1. 教学等差中项的概念:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列数列,那么A 应满足什么条件? 由定义得A-a =b -A ,即:2b a A +=;反之,若2b a A +=,则A-a =b -A. 由此可可得:,,2b a b a A ⇔+=成等差数列.例1:求下列两个数的等差中项①5+2,34a b a b +-.2. 生活中的等差数列:例2、某市居民生活用水的计费标准如下:若居民在某月用水量不超过5吨,则统一收取水费6元,否则超过部分则按1.35元/吨的标准收取水费. 如果己知某户居民该月用水量为18吨,问他此月需支付多少水费?(学生自练→学生演板→教师点评)例3、某地区1997年底沙漠面积为52910hm ⨯. 地质工作者为了解这个地区沙漠面积的变观测结果记录如下表:00 7999请(1)如果不采取任何措施,到2010年底,这个地区的沙漠面积将大约变为多少2hm ?(2)如果从2003年初开始,采取植树造林等措施,每年改造80002hm 沙漠,但沙漠面积仍按原有速度增加,那么到哪一年年底,这个地区的沙漠面积将小于22910hm ⨯?3. 小结:等差中项的概念,等差数列的公差、首项、项数及通项公式间的关系,等差数列的性质及其应用.三、巩固练习:1. 有30根水泥电线杆,要运往1000m远的地方开始安装,在1000m处放一根,以后每50m 放一根,一辆汽车每次只能运三根,如果用一辆汽车完成这项任务,这辆汽车的行程共有多少km?2. 作业:教材P46 第4、5题。

21-22版:§2.2 第2课时 等差数列的性质(步步高)

21-22版:§2.2 第2课时 等差数列的性质(步步高)

[素养提升] 等差数列中的计算大致有两条路:一是都化为基本量 (a1,d,n)然后解方程(组);二是借助等差数列性质简化计算.前者是 通用方法,但计算量大,后者不一定每个题都能用,能用上会使计 算简单些,所以建议学习者立足通法,注意观察各项序号特点,能 巧则巧,但不要刻意追求巧法.
随堂演练
SUITANGYANLIAN
课时对点练
KESHIDUIDIANLIAN
基础巩固
1.已知等差数列{an}满足a1+a3+a5=18,a3+a5+a7=30,则a2+a4+
a6等于
√ A.20 B.24
C.26
D.28
解析 ∵等差数列{an}满足a1+a3+a5=18,a3+a5+a7=30, 设公差为d,两式相减可得6d=30-18=12,∴d=2. 则a2+a4+a6=a1+a3+a5+3d=24.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.数列{an}为等差数列,且a15=8,a60=20,则a75等于
√A.24
B.28
C.32
D.36
解析 ∵d=a6600- -1a515=4152=145, ∴a75=a60+15d=20+4=24.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
√A.12
B.24
C.16
D.32
解析 令 bn=ann,由题意可知 b3=a33=23,b15=a1155=2, 则等差数列{bn}的公差 d=b1155--b33=19, 则 b9=b3+(9-3)d=43,所以 a9=9b9=12.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

高中数学人教A版必修5第二章2.2等差数列2课时课件

高中数学人教A版必修5第二章2.2等差数列2课时课件

a2=a1+d,
实际由等差数列定义有
a3=a2+d =a1+2d, a4=a3+d =a1+3d, 由上式猜测: an=a1+(n-1)d.
a2-a1=d, a3-a2=d,
a4-a3=d, ……
an-an-1=d,
联想:形如递推公式a n
- an-1
=
f
(n),
求通项公式可运用累加法
各式两边分别相加得
问题1. 刚才写出的 4 个数列, 它们有什么共同的 规律? 请你给有这种规律的数列设计一个名称.
(1) 5, 10, 15, 20, 25, 30, 35, … (2) 18, 15.5, 13, 10.5, 8, 5.5, 3, 0.5. (3) 10072, 10144, 10216, 10288, 10360. (4) 60, 58, 56, 54, 52, 50, 48, 46, 44, 42.
问题1. 等差数列的应用较为广泛, 如: 能被 7 整 除的三位正整数有多少个? 一部梯子有 15 级, 最下 一级宽 61cm, 最上一级宽 40cm, 从下到上的第 10 级宽是多少? 你能用等差数列知识解决这类问题吗?
同样, 梯子的各级宽依次构成等差数列. 设这个数列为{bn}, 则 b1=61, b15=40. 由通项公式 b15=b1+(15-1)d 得
(2) 是等差数列, 它的首项是原数列首项a1, 公差是原 数列公差的 2 倍, 即2d.
(3) 也是等差数列, 它的首项是原数列首项a7, 公差是 原数列公差的 7 倍, 即7d.
5. 已知{an}是等差数列. (1) 2a5=a3+a7 是否成立? 2a5=a1+a9 呢? 为什么? (2) 2an=an-1+an+1 (n>1) 是否成立? 据此你能得出 什么结论?

江苏省 必修5教案 2.2等差数列2

江苏省 必修5教案 2.2等差数列2
一般的:若 成等差数列那么 、 、 、…也成等差数列
四、巩固深化,反馈矫正
1.教材 练习
2.在等差数列 中,若 求
五、归纳整理,整体认识
本节课学习了以下内容:
1. 成等差数列,等差中项的有关性质意义
2.在等差数列中, ( , , , )
3.等差数列性质的应用过程
一、创设情景,揭示课题
复习等差数列的定义、通项公式;
(1)等差数列定义
(2)等差数列的通项公式: ( 或 ( 是常数))
(3)公差 的求法:① - ② ③
二、研探新知
1.等差中项的概念:
如果 , , 成等差数列,那么 叫做 与 的等差中项。其中 , , 成等差数列 .
2.一个有用的公式:
在等差数列 中, 为公差,若 且
2.2
教学
目标
1.进一步熟练掌握等差数列的通项公式及推导公式,掌握等差数列的特殊性质及应用;掌握证明等差数列的方法;
2.明确等差中项的概念和性质;会求两个数的等差中项;
3.能在具体的问题情境中,发现数列的等差关系,并能用有关知识解决相应的问题;
重点
难点
重点:等差中项的概念及等差数列性质的应用。
难点:等差中项的概念及等差数列性质的应用。
教学反思
求证:① ②
证明:①设首项为 ,则
∵ ∴
② ∵

三、质疑答辩,排难解惑,发展思维
例1(教材 例3)
例2①在等差数列 中, ,求 .
②在等差数列 中, ,求 的值。
解:①由条件: ;
②由条件:∵ ∴ ∴ .
例3若 求
解:∵ 6+6=11+1, 7+7=12+2…… ∴ , ……从而

等差数列的前n项和的最值教学文稿

等差数列的前n项和的最值教学文稿

6
213+23+33+ +n3=nn2+12
(3)裂项法:设{an}是等差数列,公差d≠0
1+1+1++ 1 =n
a1a2 a2a3 a3a4
anan + 1 a1an + 1
其中ana1n+1
1 1 =dan
1 -
an+1
求 和 S n= 1 1 3+ 3 1 5+ 5 1 7++ 2 n -1 1 2 n + 1
例3设等差数列 an 的前n项和为s n ,
已知a324,s110 求:
①数列an 的通项公式 an=-8n+48
②当n为何值时,s
s22最大
n
最大,
求等差数列前n项的最大(小)的方法
方法1:由Sn
dn2 2
(a1
d)n利用二次函 2
数的对称轴求得最值及取得最值时的n的值.
方法2:利用an的符号
①当a1>0,d<0时,数列前面有若干项为正,此 时所有正项的和为Sn的最大值,其n的值由 an≥0且an+1≤0求得.
等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法3 由S3=S11得 d=-2
∴ an=13+(n-1) ×(-2)=-2n+15

a a
n
n1
0
0
n
15 2

n
13 2
∴当n=7时,Sn取最大值49.
等差数列的前n项的最值问题

高中数学优质教案1:2.2.2等差数列(二)

高中数学优质教案1:2.2.2等差数列(二)

课§2.2.2 等差数列(二)周次第____ 周星期____ 时间___________ 月____ 日课型①新授课(√)②习题课()③复习课()④讲评课()⑤实验课()教学目标知识与技能1.进一步了解等差数列的项与序号之间的规律;2.理解等差数列的性质3.掌握等差数列的性质及其应用.过程与方法通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.情感、态度与价值观通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点。

教材分析重点等差数列的性质及证明.难点运用等差数列定义及性质解题.课时数 1 教法教学手段教学过程设计教学环节教师活动学生活动(一)知识链接(1)等差数列{a n}中,对于任意正整数n,都有a n+1-a n=________.(2)等差数列{a n}中,对于任意正整数n,都有2a n+1-a n=________.基础较差的同学回答【答案】(1)d;(2)a n+2教学过程设计教学环节教师活动学生活动(二)新知探究探究一.等差数列通项公式的推广问题1. 若已知等差数列{a n}中的第m项a m和公差d,如何表示通项a n?自主推导,自主回答.【解析】设等差数列的首项为a1,则a m=a1+(m-1)d,得a1=a m-(m-1)d,∴a n=a1+(n-1)d=a m-(m-1)d+(n-1)d=a m+(n-m)d.【获取新知】(1)广义的等差数列通项公式:a n=a m+(n-m)d;(2)由任意两项和公差:.例1.若数列{a n}为等差数列,a15=8,a60=20,求a75的值.快速口答【解析】由题意,该数列的公差∴变式 1. 等差数列{a n}中,a100=120,a90=100,则公差d等于()A.2 B.20 C.100 D.不确定快速口答【答案】A教学过程设计教学环节教师活动学生活动(二)新知探究探究二.等差数列与一次函数的关系问题2.(1)等差数列{a n}的通项公式a n=a1+(n-1)d与一次函数有什么关系?(2)若数列{a n}的通项公式是一次函数a n=pn+q,其中p、q为常数,那么这个数列一定是等差数列吗?若是,首项和公差分别是多少?小组讨论,展示成果.【解析】(1)∵数列是关于序号n的函数,为此将数列的通项公式变形为关于n的函数:.显然,当时,是关于序号n的一次函数,其图象是直线上一系列孤立的点,d为该直线的斜率,a1-d是该直线在y轴上的截距.(2)取数列{a n}中任意两项a n和a n-1(n>1),则a n-a n-1=(pn+q)-[p(n-1)+q]=p.显然,这是一个与n无关的常数,所以{a n}是等差数列.将一次函数变形为等差数列通项公式的形式为:a n =pn+q=(q+p)+(n-1)p,所以该数列的首项a1=p+q,公差d=p.【获取新知】(1)当公差d=0时,等差数列是常函数,不是一次函数;(2)当公差d≠0时,等差数列是关于n的一次函数,且其斜率即为公差d,在y轴上的截距为a1-d.基础较好的同学,作最后总结.教学过程设计教学环节教师活动学生活动(二)新知探究探究三. 等差数列的单调性问题3. 根据等差数列与一次函数的关系,你能根据等差数列的通项公式a n=a1+(n-1)d判断它的单调性吗?小组讨论,展示成果.答:当时,数列为常数列;当时,数列为递增数列;当时,数列为递减数列.例2. 已知递增数列{a n}满足,则__________快速求解,同学甲回答.【答案】【解析】由得,即,解得又{a n}是递增数列,所以,所以变式2.若是递增数列,则的取值范围____________.小组讨论,展示成果.【答案】【解析】由得.教学过程设计教学环节教师活动学生活动(二)新知探究探究四. 等差数列的性质(一)等差数列的项与序号的关系问题4. 已知数列{a n}是等差数列(1)是否成立?呢?为什么?(2)是否成立?据此你能得到什么结论?是否成立?你又能得到什么结论?小组讨论,展示成果.答:在等差数列{a n}中,若m+n=p+q,则a m+a n=a p+a q . 特别地,若m+n=2p,则a m+a n=2a p .【解题反思】(1)由a m+a n=a p+a q能推出m+n=p+q吗?(2)由m+n=p能推出a m+a n=a p 吗?小组讨论,展示成果.答:(1)当等差数列{a n}是常数列时,由a m+a n=a p+a q不能推出m+n=p+q;当等差数列{a n}不是常数列时,由a m+a n=a p+a q一定能推出m+n=p+q.(2)由m+n=p 不能推出a m+a n=a p.例3. 已知数列{a n}是等差数列,若a1-a5+a9-a13+a17=117,则a3+a15=_______.快速解答,同学乙回答思路和结论.【答案】234【解析】∵a3+a15=a1+a17=a5+a13∴a9=117 ∴a3+a15=a9+a9=234.变式3.已知等差数列{a n}中,a2+a6+a10=1,则a3+a9=______.快速求解,快速抢答.【答案】【解析】由等差数列的性质,知a2+a10=2a6,又a2+a6+a10=1. ∴3a6=1,a6=∴a3+a9=2a6=.教学过程设计教学环节教师活动学生活动(二)新知探(二)等差数列的子列的性质究(二)等差数列的子列的性质问题5. 已知一个无穷等差数列{a n}的首项为a1,公差为d.(1)取出数列的所有奇数项,组成一个新的数列,这个新数列是等差数列吗?如果是,它的首项与公差分别是多少?(2)如果取出数列中所有序号为7的倍数的项,组成一个新的数列呢?(3)你能根据得到的结论做出一个猜想吗?小组讨论,展示成果.答:(1)组成的新数列是等差数列,它的首项是a1,公差为2d;(2)组成的新数列仍然是等差数列,它的首项是a1+6d= a7,公差为7d;(3)若数列{a n}和{k n}都是等差数列,其公差分别为,则也是等差数列,且公差为.(三)等差数列的其他性质问题6.设等差数列,的公差分别为,判断是否为等差数列?如果是,给出证明,并写出首项和公差;如果不是,请说明理由.同学丙板书,其他同学在草稿纸上自主推证.答:是等差数列证明:令,则.∴是等差数列,且首项为,公差为.教学过程设计教学环节教师活动学生活动(二)新知探究【解题反思】(1)当时,你能得到什么结论?(2)当时呢?基础中等同学回答答:(1)当时,得是首项为,公差为的等差数列.(2)当时,也是等差数列,且公差为.例4. 设数列,都是等差数列,若,则_______.快速抢答【答案】35【解析】两个等差数列的和数列仍为等差数列.设两等差数列组成的和数列为{c n},则{c n}为等差数列且c1=7,c3=21,则c5=2c3-c1=2×21-7=35.(三)作业布置完成“一课一练”.(四)板书设计可擦区。

等差数列第二课时教案

等差数列第二课时教案

2.2等差数列第二课时人教A版必修五教学目标1.知识与技能在理解等差数列定义及如何判定等差数列, 学习等差数列通项公式的基础上, 掌握等差中项的定义及应用, 明确等差数列的性质, 并用其进行一些相关等差数列的计算.2.过程与方法以等差数列的通项公式为工具, 探究等差数列的性质, 同时进一步培养学生归纳, 总结的一些数学探究的方法.3.情感、态度与价值观在学习的过程中形成主动学习的情感与态度.在运用知识解决问题中体验数学的实际应用价值.教学重点(1)明确等差中项的定义及应用.(2)理解并掌握等差数列的性质.教学难点理解等差数列的性质的应用.教辅手段PPT,多媒体投影幕布教学过程一、复习引入——温故知新【内容设置与处理方式】借助课件引导学生共同回顾所学的等差数列的相关知识1. 等差数列的定义2. 等差数列的通项公式与公差二、 新知探究(一) 等差中项【内容设置与处理方式】直接给出等差中项的定义: 由三个数 组成的等差数列是最简单的等差数列, 此时 叫做 和 的等差中项.同样,在等差数列}{n a 中,就有212+++=n n n a a a 成立.等差中项可应用于判断一个数列是否为等差数列.(二) 等差数列的性质列举几个数列, 观察数列的特点, 研究公差与数列单调性的关系.问题1: 数列1: 1,3,5,7,9,11, ……数列2: 30, 25,20, 15,10,5, ……数列3: 8,8,8,8,8,8, ……引导学生观察, 得到等差数列的一个性质.性质1:若数列 是等差数列, 公差为 .若 >0,则是 递增数列;若 <0,则 是递减数列;若 =0,则 是常数列.2.问题2:在等差数列}{n a 中,探究等差数列中任意两项m n a a ,之间的关系.它们之间的关系可表示为:d m n a a m n )(-+=参考证明: 由等差数列的通项公式 得d m a a m )1(1-+=∴d m n d m a d n a a a m n )(])1([])1([11-=-+--+=-即等式成立由此也可得到公差的另一种表示:mn a a d m n --=性质2: d m n a a m n )(-+=;m n a a d m n --= 问题3: 在等差数列 中, 若 ,则 一定成立吗?特别地, ,则 成立?启发学生应用等差数列的通项公式来证明该问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2等差数列
授课类型:新授课
(第2课时)
一、教学目标
知识与技能:明确等差中项的概念;能结合图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题。

过程与方法:通过等差数列的通项及图像的结合,进一步渗透数形结合思想、函数思想。

情感态度与价值观:通过对等差数列性质的研究,使学生明确等差数列与一般数列的内在联系。

二、教学重点
等差数列的定义、通项公式、性质的理解与应用
三、教学难点
灵活应用等差数列的定义及性质解决一些相关问题
四、教学过程
1、课题导入
回顾旧知:
①等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -
1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)
②等差数列的通项公式:
d n a a n )1(1-+= (=n a d m n a m )(-+或n a =pn+q (p 、q 是常数))
③计算等差数列中公差d 的方法
① d=n a -1-n a ② d =1
1--n a a n ③ d =m n a a m n -- 2、讲授新课
问题1:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列数列,那么A 应满足什么条件?
由定义得A-a =b -A ,即:2b a A +=
反之,若2
b a A +=,则A-a =b -A 由此可可得:,,2
b a b a A ⇔+=成等差数列 问题2:在等差数列{n a }中,若1a +6a =9, 4a =7, 求3a , 9a .
解:∵ {a n }是等差数列
∴ 1a +6a =4a +3a =9⇒3a =9-4a =9-7=2
∴ d=4a -3a =7-2=5
∴ 9a =4a +(9-4)d=7+5*5=32
∴ 3a =2, 9a =32
例题讲解:
已知数列{n a }是等差数列 (1)7532a a a =+是否成立?9512a a a =+呢?为什么?
(2)112(1)n n n a a a n +-=+>是否成立?据此你能得到什么结论?
(3)2(0)n k n n k a a a n k +-=+>>是否成立?你又能得到什么结论?
结论:(性质)在等差数列中,若m+n=p+q ,则,q p n m a a a a +=+
即 m+n=p+q ⇒q p n m a a a a +=+ (m, n, p, q ∈N )
但通常 ①由q p n m a a a a +=+ 推不出m+n=p+q ,②n m n m a a a +=+
探究:等差数列与一次函数的关系
3、课堂练习
①在等差数列{}n a 中,已知105=a ,3112=a ,求首项1a 与公差d 解:12531103125125
a a d --===-- 15410122a a d =-=-=-
②在等差数列{}n a 中, 若 65=a 158=a 求14a 解:85153,4685a a d a a d -=
==-=-- 1411333a a d =+=
4、课时小结
本节课学习了以下内容: ①,,,2
a b A a A b +=⇔成等差数列 ②在等差数列中, m+n=p+q ⇒q p n m a a a a +=+ (m, n, p, q ∈N )
5、课后作业
课本P40 [习题2.2]A 组 第4题,B 组第1题。

相关文档
最新文档