带电粒子在复合场中的运动(总结)
带电粒子在复合场中的运动(含详细解析过程)

带电粒子在复合场中的运动1、如图所示,在y > 0的空间中存在匀强电场,场强沿y 轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y = h 处的点P1时速率为v0,方向沿x 轴正方向,然后经过x 轴上x = 2h 处的P2点进入磁场,并经过y 轴上y = – 2h 处的P3点.不计粒子的重力,求 (1)电场强度的大小;(2)粒子到达P2时速度的大小和方向; (3)磁感应强度的大小. 2、如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁感应强度为B ,第一、第四象限是一个电场强度大小未知的匀强电场,其方向如图。
一个质量为m ,电荷量为+q 的带电粒子从P 孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=30°,粒子恰好从y 轴上的C孔垂直于匀强电场射入匀强电场,经过x 轴的Q 点,已知OQ=OP ,不计粒子的重力,求:(1)粒子从P 运动到C 所用的时间t ; (2)电场强度E 的大小;(3)粒子到达Q 点的动能Ek 。
3、如图所示,半径分别为a 、b 的两同心虚线圆所围空间分别存在电场和磁场,中心O 处固定一个半径很小(可忽略)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差为U ,两圆之间的空间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿+x 轴方向以很小的初速度逸出,粒子质量为m ,电量为q ,(不计粒子重力,忽略粒子初速度)求:(1)粒子到达小圆周上时的速度为多大?(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强度超过某一临界值时,粒子将不能到达大圆周,求此最小值B 。
(3)若磁感应强度取(2)中最小值,且b =(2+1)a ,要粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间。
带电粒子在复合场中运动答案

带电粒子在复合场中的运动1、解析:由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O 点4R 处飞越x 轴如图所示(图中电场与磁场均未画出)故有L =2R ,L =2×2R ,L =3×2R 即 R =L /2n ,(n=1、2、3……)…………… ①设粒子静止于y 轴正半轴上,和原点距离为h ,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE (n =l 、2、3……)2、解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有tg θ=at/v=qEl/mv 2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r ,所以r=mv/qB 又:sin θ=l/r=lqB/mv ………② 由①②两式得:B=Ecos θ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ ,分别作出离子在 T 、P 、Q 三点所受的洛仑兹力,分别延长之后相交于O 1、O 2点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.离子经电压U 加速,由动能定理得.qU =½mv 2………①由洛仑兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2由图直角三角形O 1CP 和O 2CQ 可得 R 12=d 2+(R 1一d/2)2,R 1=5d/4……④ R 22=(2d )2+(R 2一d/2)2,R 2=17d/4……⑤依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2228932d B U ≤m q ≤222532d B U.4、解析:如图所示,带电粒子从S 出发,在两筒之间的电场力作用下加速,沿径向穿出a 而进入磁场区,在洛仑兹力作用下做匀速圆周运动。
带电粒子在复合场中的运动

带电粒子在复合场中的运动一、知识梳理1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动形式当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。
当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动. 当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。
当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。
3. 题型分析:带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零做初速度为零的匀加速直线运动保持静止初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点受恒力作用,做匀变速运动洛伦兹力不做功,动能不变“电偏转”和“磁偏转"的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力 F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq,T =错误!类平抛运动v x =v 0,v y =Eqm tx =v 0t ,y =错误!t 2运动时间 t =错误!T =错误!t =错误!,具有等时性动能 不变变化4。
常见模型(1)从电场进入磁场电场中:加速直线运动⇓磁场中:匀速圆周运动电场中:类平抛运动⇓磁场中:匀速圆周运动(2)从磁场进入电场磁场中:匀速圆周运动⇓错误!电场中:匀变速直线运动磁场中:匀速圆周运动⇓错误!电场中:类平抛运动二、针对练习1.在某一空间同时存在相互正交的匀强电场和匀强磁场,匀强电场的方向竖直向上,磁场方向如图。
带电粒子在复合场中的运动(归类解析与练习)

带电粒子在复合场中的运动一 带电粒子在匀强磁场中的匀速圆周运动(1) 圆心的确定:带电粒子垂直进入磁场后,一定做圆周运动,其速度方向一定沿圆周的切线方向,因此圆心的位置必是两速度方向垂线的交点(或某一速度方向的垂线和圆周上两点连线中垂线的交点),如图所示(2) 运动半径大小的确定:一般先作入射点、出射点对应的半径,并作出相应的辅助三角形,然后利用三角函数求解半径的大小。
(3) 运动时间的确定:首先利用周期公式T=,求出运动周期T ,然后求出粒子运动的圆弧所对应的圆心角α,其运动时间t= T 。
(4) 圆心角的确定①带电粒子射出磁场的速度方向与射入磁场的速度方向的夹角φ叫做偏向角。
偏向角等于圆心角即φ=α。
②某段圆弧所对应的圆心角是这段圆弧弦切角的二倍,即α=2备注:只有当带电粒子以垂直于磁场方向射入匀强磁场中时,带电粒子才能做匀速圆周运动,两个条件缺一不可。
例题1 如图所示,一束电子(电荷量为e )以速度v 垂直边界射入磁感应强度为B ,宽为d 的匀强磁场中,穿过磁场时速度方向与电子原来入射方向的夹角为300。
求:(1)电子的质量;(2)电子穿过磁场所用的时间。
二 “磁偏转”与“电偏转”的区别“磁偏转”和“电偏转”是分别利用磁场和电场对运动电荷施加的洛伦兹力和电场力的作用,从而控制其运动备注:磁偏转中动能不变;电偏转中由于电场力做功,动能改变(常用动能定理)。
例题2 在如图所示宽度范围内,用场强为E的匀强电场可使初速度是v0的某种带正电粒子偏转θ角.在同样宽度范围内,若改用方向垂直于纸面向外的匀强磁场,使该粒子穿过该区域,并使偏转角也为θ(不计粒子的重力),问:(1)匀强磁场的磁感应强度是多大?(2)粒子穿过电场和磁场的时间之比是多大?三质谱仪1 质谱仪是测量带电粒子的质量和分析同位素的重要工具2 质谱仪的工作原理:将质量数不等、电荷数相等的不同带电粒子,经同一电场加速后再经速度选择器进入同一磁场偏转,由于粒子质量不同导致轨道半径不同而达到分离不等质量粒子的目的。
高三物理带电粒子在复合场中的运动知识点总结-带电粒子在电场中的运动知识点

高三物理带电粒子在复合场中的运动知识点总结|带电粒子在电场中的运动知识点一、带点粒子在复合场中的运动本质是力学问题1、带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。
2、分析带电粒子在复合场中的受力时,要注意各力的特点。
如带电粒子无论运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。
而带电粒子在磁场中只有运动(且速度不与磁场平行)时才会受到洛仑兹力,力的大小随速度大小而变,方向始终与速度垂直,故洛仑兹力对运动电荷不做功.二、带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场)1、带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力.2、带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。
当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动; 当带电微粒的速度垂直于磁场时,一定做匀速运动。
3、与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。
必要时加以讨论。
三、带电粒子在重力场、匀强电场、匀强磁场的复合场中的运动的基本模型有:1、匀速直线运动。
自由的带点粒子在复合场中作的直线运动通常都是匀速直线运动,除非粒子沿磁场方向飞入不受洛仑兹力作用。
因为重力、电场力均为恒力,若两者的合力不能与洛仑兹力平衡,则带点粒子速度的大小和方向将会改变,不能维持直线运动了。
2、匀速圆周运动。
自由的带电粒子在复合场中作匀速圆周运动时,必定满足电场力和重力平衡,则当粒子速度方向与磁场方向垂直时,洛仑兹力提供向心力,使带电粒子作匀速圆周运动。
3、较复杂的曲线运动。
在复合场中,若带电粒子所受合外力不断变化且与粒子速度不在一直线上时,带电粒子作非匀变速曲线运动。
带电粒子在复合场

电视显像管主要由电子枪、偏转线圈和荧光屏等部分组成,通过电子枪 发射电子束,经过偏转线圈的控制,轰击荧光屏上的荧光物质,产生图
像。
电视显像管具有亮度高、色彩鲜艳、视角宽广等优点,但也存在体积较 大、重量较重等缺点,随着液晶显示器的普及,电视显像管的应用逐渐 减少。
带电粒子在电场中的加速与减速
加速
速度变化规律
当带电粒子在电场中受到的电场力方 向与运动方向相同或成锐角时,将做 加速运动。
带电粒子在电场中的速度变化规律与 牛顿第二定律相似,即加速度与合外 力成正比,与质量成反比。
减速
当带电粒子在电场中受到的电场力方 向与运动方向相反或成钝角时,将做 减速运动。
04 带电粒子在复合场中的特 殊运动
回旋加速器
回旋加速器是一种利用磁场和电场控制 带电粒子运动轨迹的装置,常用于高能
物理实验和核物理研究。
回旋加速器通过不断加速带电粒子,使 其能量逐渐增加,最终用于轰击静止靶 或反应堆中子源,以研究原子核的结构
和性质。
回旋加速器主要由真空室、磁极、高频 加速腔和控制系统等部分组成,通过精 确控制磁场和电场,使带电粒子按照预 定轨迹运动,实现粒子的加速和聚焦。
散焦
当带电粒子在磁场中运动时,由于洛伦兹力的作用,粒子会散开在较大区域内, 形成较宽的分布。
03 电场对带电粒子的影响
电场力
电场力定义
带电粒子在电场中受到的力,大小与电荷量成正比,与电场强度 成正比,方向与电场方向相同或相反。
电场力作用
电场力是带电粒子在电场中运动的主要作用力,可以改变带电粒子 的运动状态和方向。
05 带电粒子在复合场中的应 用
带电粒子在复合场中的运动

设粒子在电场中运动的路程为 s2, 根据动能定理得 Eq·s22=12mv2,得 s2=mEvq2, 则总路程 s=πR+mEvq2, 代入数据得 s=(0.5π+1)m。
[答案] (1)0.2 T (2)(0.5π+1)m
(3)较复杂的曲线运动: 当带电粒子所受合外力的大小和方向均变化,且与初 速度方向不在同一条直线上,粒子做 非匀变速曲线运动, 这时粒子运动轨迹既不是圆弧,也不是抛物线。 (4)分阶段运动: 带电粒子可能依次通过几个情况不同的复合场区域, 其运动情况随区域发生变化,其运动过程由几种不同的运 动阶段组成。
(1)小球运动到 O 点时的速度大小; (2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离。 [解析] (1)小球从 A 运动到 O 点的过程中,根据动能 定理: 12mv2=mgl-qEl 则小球在 O 点时的速度为 v= 2lg-qmE=2 m/s。
(2)小球运动到 O 点绳子断裂前瞬间,对小球应用牛 顿第二定律:
场 荷受力的方向与该点电场 电势能,且W电=-ΔEp
强度的方向相反)
磁 (1)大小:F=qvB 场 (2)方向:垂直于v和B决
定的平面
洛伦兹力不做功
2.电偏转和磁偏转的比较
受力特征 运动性质
电偏转 F电=qE(恒力) 匀变速曲线运动
运动轨迹
磁偏转 F洛=qvB(变力) 匀速圆周运动
电偏转
类平抛运动
图2
(1)小球运动的速率v; (2)电场E2的大小与方向; (3)磁场B2的大小与方向。
解析:(1)小球在 x 轴下方受力如图所示: 其中重力竖直向下,G=mg=3×10-2 N 电场力水平向右,F=qE1=4×10-2 N G 与 F 的合力 F 合= G2+F2=5×10-2N 设合力与水平方向的夹角为 α, 则 tan α=GF,即 tan α=34,α=37° 由 f=qvB1,f=F 合 得 v=qBf 1=2×5×101-03-×2 5 m/s=5 m/s。
8.3带电粒子在复合场中的运动

2.如图所示,在长方形abcd区域内有正交的电磁场,ab=bc/2=L, 一带电粒子从ad的中点垂直于电场和磁场方向射入,恰沿直线从bc边 的中点P射出,若撤去磁场,则粒子从c点射出;若撤去电场,则粒子 将(重力不计)( )
A.从b点射出 B.从b、P间某点射出 C.从a点射出 D.从a、b间某点射出
(1)M、N两点间的电势差UMN; (2)粒子在磁场中运动的轨道半径r; (3)粒子从M点运动到P点的总时间t. [思路点拨] 根据粒子在不同区域内的运动特点和受力特点画出轨 迹,分别利用类平抛和圆周运动的分析方法列方程求解.
[自主解答] (1)设粒子过 N 点时的速度大小为 v,有vv0=cos θ v=2v0 粒子从 M 点运动到 N 点的过程,有 quMN=12mv2-12mv20, UMN=3m2qv20. (2)粒子在磁场中以 O′为圆心做匀速运动, 半径为 O′N,有 qvB=mrv2,r=2qmBv0.
律求解. ③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律 求解. ④对于临界问题,注意挖掘隐含条件.
2.复合场中粒子重力是否考虑的三种情况 (1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况 下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体, 如带电小球、液滴、金属块等一般应当考虑其重力.
(3)由几何关系得 ON=rsin θ
设粒子在电场中运动的时间为 t1,有 ON=v0t1
t1=
3m qB
粒子在磁场中做匀速圆周运动的周期 T=2qπBm
设粒子在磁场中运动的时间为 t2,有 t2=π2-πθT,故 t2=23πqmB
t=t1+t2,t=3
3+2πm 3qB .
[答案]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在复合场中的运动
一、带电粒子在复合场中的运动
1、复合场的分类
(1)叠加场:电场、磁场、重力场共存,或其中某两场共存。
(2)组合场:电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现。
2、带电粒子在复合场中的运动分类
(1)静止或匀速直线运动
当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动。
(2)匀速圆周运动
当带电粒子所受的重力与电场力大小相等、方向相反时(即:Eq=mg ),带电粒子在洛伦兹力的作
用下,在垂直于匀强磁场的平面内做匀速圆周运动(即:Bqv =2v m r )。
(3)非匀变速曲线运动
当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线。
(4)分阶段运动
带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成。
二、带电粒子在复合场中运动的实例分析
1、速度选择器
(1) 带电粒子能够沿直线匀速通过速度选择器的条件是qE =q v B ,即v =E B
(2)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速
度的粒子选择出来。
只选择速度,与粒子的正负和带电量无关。
2、质谱仪
(1)构造:如图所示,由粒子源、加速电场、速度选择器、偏转磁场
和照相底片等构成。
(2)原理:
①粒子由静止在加速电场中被加速:qU =12
mv 2。
②粒子在速度选择器中,进行速度筛选。
凡是速度满足v =E B ,才O
能顺利进入偏转磁场。
③粒子进入偏转磁场,受洛伦兹力偏转,做匀速圆周运动。
根据牛顿第二定律得关系式qvB =m v 2r 得出:mv r Bq = 由图可知:2mv op =2r =
Bq L = 得出:q 2m v BL
= 3、回旋加速器
(1)构造:如图所示,D 1、D 2是半圆金属盒,D 形盒的缝隙处接交流
电源。
D 形盒处于匀强磁场中。
(2)原理:粒子从D 1型盒中心附近射出。
经过D 形盒缝隙间的电场
加速,获得一定的速度后,进入D 2型盒区域,发生偏转
(半圆)后,再次进入电场,电场反向,粒子再次被加速
后,再次进入D 1型盒区域,发生偏转(半圆)。
此过程交
替进行,粒子最终从D 型盒边界射出。
由q v B =m v 2R 得:mv r Bq
= 当粒子圆周运动的半径为D 型盒半径R 时,速度最大V max
=BqR m
则:E kmax =q 2B 2R 2
2m
, 特点:①交流电的周期和粒子做匀速圆周运动的周期相等。
②粒子获得的最大动能由磁感应强度B 和D 形盒半径R 决定,与加速电压无关。
4、磁流体发电机
(1)等离子体:等离子体是由部分电子被剥夺后的原子及原子团被
电离后产生的正负离子组成的离子化气体状物质。
(2 )根据左手定则,如图中的B 板是发电机正极。
(3) 原理:等离子体中的正、负离子,在洛伦兹力的作用下横向偏转,A 、B 间出现电势差,形成电场。
当正、负离子所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定。
磁流体发电机两极板间的距离为d ,等离子体速度为v ,磁场的磁感应强度为B ,
则由qE =q v B 得:E=Bv
进而得出:两极板间能达到的稳定的电势差U =B v d
5、电磁流量计
工作原理:如图所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体
中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电
场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:
q v B =qE =q U d ,所以v =U Bd ,因此液体流量Q =S v =πd 24·U Bd =πdU
4B 。