多核处理器的优点和缺点

合集下载

多核处理器的优点和缺点

多核处理器的优点和缺点

多核处理器的优点和缺点三、多核处理器的优点和缺点从应用需求上去看,越来越多的用户在使用过程中都会涉及到多任务应用环境,日常应用中用到的非常典型的有两种应用模式。

一种应用模式是一个程序采用了线程级并行编程,那么这个程序在运行时可以把并行的线程同时交付给两个核心分别处理,因而程序运行速度得到极大提高。

这类程序有的是为多路工作站或服务器设计的专业程序,例如专业图像处理程序、非线视频编缉程序、动画制作程序或科学计算程序等。

对于这类程序,两个物理核心和两颗处理器基本上是等价的,所以,这些程序往往可以不作任何改动就直接运行在双核电脑上。

还有一些更常见的日常应用程序,例如Office、IE等,同样也是采用线程级并行编程,可以在运行时同时调用多个线程协同工作,所以在双核处理器上的运行速度也会得到较大提升。

例如,打开IE 浏览器上网。

看似简单的一个操作,实际上浏览器进程会调用代码解析、Flash播放、多媒体播放、Java、脚本解析等一系列线程,这些线程可以并行地被双核处理器处理,因而运行速度大大加快(实际上IE浏览器的运行还涉及到许多进程级的交互通信,这里不再详述)。

由此可见,对于已经采用并行编程的软件,不管是专业软件,还是日常应用软件,在多核处理器上的运行速度都会大大提高。

日常应用中的另一种模式是同时运行多个程序。

许多程序没有采用并行编程,例如一些文件压缩软件、部分游戏软件等等。

对于这些单线程的程序,单独运行在多核处理器上与单独运行在同样参数的单核处理器上没有明显的差别。

但是,由于日常使用的最最基本的程序——操作系统——是支持并行处理的,所以,当在多核处理器上同时运行多个单线程程序的时候,操作系统会把多个程序的指令分别发送给多个核心,从而使得同时完成多个程序的速度大大加快。

另外,虽然单一的单线程程序无法体现出多核处理器的优势,但是多核处理器依然为程序设计者提供了一个很好的平台,使得他们可以通过对原有的单线程序进行并行设计优化,以实现更好的程序运行效果。

掌握并行编程充分利用多核处理器

掌握并行编程充分利用多核处理器

掌握并行编程充分利用多核处理器随着科技的不断发展和进步,计算机的处理能力也在不断提高。

单核处理器已经不能满足人们对计算性能的需求,多核处理器成为现在计算机的主流选择。

然而,要充分利用多核处理器的强大计算能力,我们就需要掌握并行编程。

一、多核处理器的优势多核处理器具有以下优势:1. 提高计算性能:多核处理器可以同时处理多个任务,充分利用处理器的计算能力,大大提高计算速度。

2. 加快程序运行速度:将一个程序拆分成多个子任务,分配给不同的核心进行并行计算,可以在相同的时间内完成更多的工作。

3. 处理复杂任务:在处理大规模数据、图形渲染、模拟等复杂任务时,多核处理器可以将任务分解成多个子任务,分配给各个核心同时进行,从而提高整体的处理能力。

二、并行编程概念并行编程是指将程序中可以并行执行的任务拆分成多个子任务,在多个处理单元上同时执行,以达到加速运算的目的。

并行编程包括以下关键概念:1. 线程:是程序的最小执行单位,每个线程独立运行,拥有自己的寄存器和堆栈。

2. 进程:是执行中的程序的一个实例。

一个程序可以同时有多个进程在运行。

3. 并发:是指两个或多个任务可以在重叠的时间段内执行,无需等待。

4. 同步:是指控制多个线程的执行顺序和时机,保证线程之间的数据一致性。

三、并行编程工具为了更好地利用多核处理器的优势,我们可以使用以下并行编程工具:1. OpenMP:是一种并行编程接口,可以在C、C++和Fortran等编程语言中使用。

通过添加一些指令和注释,可以将串行代码转化为并行代码。

2. MPI:是一种消息传输接口,用于在多核处理器上进行分布式并行计算。

3. CUDA:是一种并行计算平台和编程模型,用于利用NVIDIA图形处理器的并行计算能力。

四、掌握并行编程的方法要熟练掌握并行编程,充分利用多核处理器,可以从以下几个方面入手:1. 学习并行编程语言:如OpenMP、MPI和CUDA等,并理解其原理和使用方法。

电脑CPU的选择多核心还是高主频

电脑CPU的选择多核心还是高主频

电脑CPU的选择多核心还是高主频电脑CPU的选择: 多核心还是高主频随着科技的进步,电脑CPU的性能也在不断提升,而在选择电脑CPU时,消费者常常会面临一个重要的决策:是选择多核心的CPU还是高主频的CPU。

本文将探讨这两种CPU的优势和劣势,并为读者提供一些选购建议。

I. 多核心CPU的优势多核心CPU是指在一个芯片上集成了多个CPU核心,每个核心都可以独立地执行任务。

多核心CPU的优势主要体现在以下几个方面:1. 并行处理能力强: 多核心CPU可以同时处理多个任务,每个核心专注于一个任务,从而提高整体处理能力。

这对于需要同时运行多个应用程序的用户来说尤为重要。

比如,在玩游戏的同时进行视频渲染和音频编辑,多核心CPU可以保证每个任务都能得到充分的处理资源。

2. 多线程性能优越: 多核心CPU可以支持更多的线程,这意味着在多线程应用程序中,每个线程都可以被分配到独立的核心上运行,避免了线程争用导致的性能下降。

这对于需要频繁进行多线程操作的用户来说尤为重要,比如软件开发人员、数据科学家等。

3. 低功耗节能: 多核心CPU在处理相同工作量时,由于任务可以分布到多个核心上,每个核心的负载相对较低,从而能够更有效地利用处理资源,降低功耗和发热量。

这对于追求高性能同时又希望保持较低噪音和发热的用户来说尤为重要。

II. 高主频CPU的优势高主频CPU是指在同等核心数量的情况下,每个核心的运行速度更快。

高主频CPU的优势主要体现在以下几个方面:1. 单线程性能出众: 高主频CPU在单线程应用程序中能够提供更好的性能,因为这些应用程序通常无法充分利用多核心的优势。

对于需要进行单线程操作的用户来说,比如在进行电脑游戏时,高主频CPU可以提供更流畅的游戏体验。

2. 快速响应能力: 高主频CPU能够更快地响应用户的操作指令,使得整个系统更加敏捷。

这对于需要频繁进行操作的用户来说尤为重要,比如进行图像编辑、数据分析或者实时音频处理等。

CPU核数是不是越多越好

CPU核数是不是越多越好

CPU核数是不是越多越好CPU的核数是否越多越好,不同的回答让大家眼花缭乱,现在让小编告诉你正确的答案吧。

CPU核数是不是越多越好:CPU并不是核心越多越好的.多核心,只是代表他们多线程工作的时候有优势. 就如四核1G的CPU,执行两个任务,等于有四个人只能派2个人,都只能以1G的最高速度来工作.另外两个人等于没事做闲置着. 如果是双核2G的CPU,执行两个任务,那两个人都派上用场,而且他们都能以2G的最高速度来完成工作,相比刚才的四核,速度是比他们快1倍的. 我们日常使用计算机的时候,很多时都只使一个核心,另一个基本上闲置,只有使用游戏,或者使用多个软件,才用到另一个CPU需要工作.单纯的算CPU的话,同系列比较自然是核心数越多越牛B,但要是同系列的。

AMD和Intel不能相互比较核心数的。

而Intel的一代酷睿4核的功能和最新的三代i5双核是差不多的,所以比较的话,还是看同系列的。

用户最常见的一个认识误区就是以为核心越多越好,因此卖场时不时有奸商会建议买新赛扬、i3的用户换FX-4100四核,尤其是遇到预算紧张的用户时,奸商会用“报价太低给不到”、“缺货了”、“推荐个性价比更好的配置”、“原生四核还比双核便宜”、“我们这里卖得最好的了”、“我自己也是用这个的”诸如此类的话迷惑小白。

软件支持问题,FX-4100玩游戏不如i3实际上,FX-4100虽然核心比i3更多,但是FX-4100在很多游戏和应用中并不能超越i3,首先是因为其采用的推土机架构执行效率不如i3高,单核性能拼不赢,其次是因为很多游戏软件都没有为四核或更多核心的CPU优化,因此四核/六核/八核在游戏中无用武之地。

因此,光凭核心数量多而选择FX-4100并不是合理的。

真正实惠四核:X4 641如果用户真的觉得有必要选择AMD的4核处理器,那么更合理的选择应该是新速龙II X4 641,虽然性能方面部分项目可能落后于FX-4100,更不能与i3-2120等CPU抗衡,但是胜在够实惠,当前X4 641报价才430元,秒杀同级的新赛扬 G840,值得选择。

操作系统中的多核设备操作系统

操作系统中的多核设备操作系统

操作系统中的多核设备操作系统随着科技的不断发展,计算机硬件的核心数目也在不断增加。

多核设备已经成为计算机的主流,而操作系统中的多核设备操作系统则扮演着重要的角色。

本文将对操作系统中的多核设备操作系统进行探讨。

一、多核设备的概念和特点多核设备,顾名思义,就是在一颗芯片或者一个处理器内集成了多个处理核心。

相比之前的单核设备,多核设备具有以下几个特点:1. 并行处理能力强:多核设备能够同时处理多个任务,增加了计算机的处理能力和效率。

2. 节省能源:由于多核设备能够更好地分配任务和资源,从而降低功耗和能源消耗。

3. 提高稳定性:多核设备可以实现任务的弹性和冗余,当一个核心发生故障时,其他核心可以继续执行任务,提高了系统的稳定性。

二、多核设备操作系统的功能多核设备操作系统是为了更好地管理和调度多个处理核心而设计的。

它具有以下几个主要功能:1. 核心分配和调度:多核设备操作系统能够合理地分配和调度任务给各个处理核心,确保每个核心都能得到合理利用,实现任务的高效执行。

2. 资源管理:多核设备操作系统负责管理处理核心的内存、缓存以及其他各项硬件资源,确保资源的合理分配和使用。

3. 任务同步和通信:多核设备操作系统能够实现任务之间的同步和通信,确保多个任务能够协调工作,避免出现冲突和竞争条件。

4. 异常处理和故障恢复:多核设备操作系统能够检测和处理核心故障,及时进行故障恢复,保证系统的稳定性和可靠性。

三、多核设备操作系统的实现多核设备操作系统的实现主要依赖于以下几个关键技术:1. 并发编程:由于多核设备操作系统需要管理多个任务的并发执行,因此并发编程成为实现该操作系统的关键技术之一。

并发编程可以通过多线程、多进程或者协程等方式来实现。

2. 调度算法:多核设备操作系统的调度算法决定了任务如何分配给各个处理核心。

常见的调度算法包括最短作业优先、轮转调度、优先级调度等。

3. 锁机制:多核设备操作系统需要使用锁机制来保证不同核心之间对共享资源的访问互斥和同步。

电脑处理器与多核技术

电脑处理器与多核技术

电脑处理器与多核技术在当今高速发展的科技时代,电脑处理器与多核技术成为人们瞩目的焦点。

无论是工作、学习还是娱乐,电脑的高性能处理器都能为我们带来更顺畅的体验。

让我们一起来探索电脑处理器与多核技术的奥秘吧!一、电脑处理器的意义电脑处理器是电子计算机的核心组件,可执行各种运算和控制任务。

它的重要性不言而喻,就如同人体的大脑一样,是电脑工作的核心所在。

二、多核技术的优势多核技术是近年来电脑处理器领域的重要创新之一。

它通过在一个处理器内集成多个核心,使得电脑能够同时进行多项任务,大大提高了电脑的效率与并发能力。

1. 提升工作效率在工作场景中,我们通常需要同时处理多个任务,如编写文档、浏览网页以及处理电子邮件等。

拥有多个核心的电脑处理器能够将这些任务分配给不同的核心进行处理,从而加快任务完成的速度,提高工作效率。

2. 增强游戏体验对于游戏爱好者来说,电脑处理器的性能在游戏体验中扮演着至关重要的角色。

多核技术可以将游戏中的不同任务分配给不同核心,使得画面更流畅、反应更迅速,让玩家沉浸在游戏的世界中。

3. 处理大数据随着信息时代的到来,海量的数据成为了我们日常生活中不可或缺的一部分。

多核技术的应用让电脑处理器能够更有效地处理大数据,提高数据分析与处理的速度,为人们提供更强大的计算能力。

三、电脑处理器市场概况当前,电脑处理器市场竞争激烈。

主要的制造商如英特尔、AMD 等,都在不断推出新的处理器产品,以满足不同用户的需求。

1. 英特尔(Intel)英特尔是全球最大的半导体芯片制造商之一,其处理器产品备受认可。

例如,英特尔酷睿系列处理器以其出色的性能和稳定性而备受好评,深受游戏和创意专业人士的青睐。

2. AMDAMD作为英特尔的主要竞争对手,也在电脑处理器市场上发挥着重要作用。

近年来,AMD推出的锐龙系列处理器备受关注,其高性能和多核架构使得用户能够享受到出色的计算体验。

四、未来发展趋势在技术不断进步的驱动下,电脑处理器与多核技术也在不断演进与发展。

CPU核心数是不是越多越好

CPU核心数是不是越多越好

CPU 核心数是不是越多越好
CPU 核心数是不是越多越好
CPU 核心数多有两个好处:一是可以在多任务同时运行时降低CPU 的占用率,提升负载能力,减少卡顿的发生;二是可以对支持多线程的程序进行大幅度的提速,比单纯的提高频率要强得多。

但是这并不是说CPU 核心就越多越好,因为大量的核心数会增大CPU 的面积和功耗,还会影响CPU 的频率,提高价格,而且多核CPU 如果面对的应用环境并不支持多核那就是有劲没处使,造成白白浪费。

最近几年,由于CPU 制造工艺提升越来越难,架构也趋于稳定,想通过以往的频率来提升性能越来越难了,于是不管是PC 芯片厂商还是手机芯片厂商都在想方设法推出更多核心的CPU 以提升性能,起初效果确实不怎幺样,经常都是1 核有难,7 核围观的情况,但是经过几年后,软件行业对多核处理器的优化越来越好,4 核乃至8 核的CPU 也有用武之地了。

目前来说,6-8 核以上的CPU 在日常使用中已经完全够用了,更多核心的CPU 仅仅在服务器领域和3D 渲染、视频处理等行业有较大的作用(确实能事半功倍),如果作为一般消费者和游戏玩家来说,单核效能更加重要,8 核以上的CPU 现阶段是没有必要的,只能是白白浪费金钱,况且多出来的核心并不一定能提升性能,反而还因为较低的频率影响了单核性能,这是很。

多核处理器的优势与挑战

多核处理器的优势与挑战

多核处理器的优势与挑战多核处理器是一种计算设备,它集成了多个核心处理单元在一个芯片上。

这种处理器在现代计算机系统中越来越常见。

本文将探讨多核处理器的优势和挑战。

优势:1. 并行处理能力:多核处理器能够同时执行多个任务,提高计算性能和效率。

它可以将大型计算任务分解为小任务,并同时处理它们,从而加快了计算速度。

2. 提高系统响应速度:多核处理器可以分配不同的任务给不同的核心,使得系统可以同时执行多个应用程序或任务。

这样可以提高系统的响应速度和用户体验。

3. 能耗管理:多核处理器能够根据负载情况自动调整功率和频率,以实现更好的能耗管理。

这有助于减少能耗和热量产生,提高设备的效能。

4. 扩展性:多核处理器具有较强的扩展性,可以根据需求增加核心数量。

这种灵活性使得多核处理器适用于各种计算需求,包括高性能计算和图形渲染等。

挑战:1. 并行编程难度:为了充分利用多核处理器的优势,需要进行并行编程。

然而,并行编程存在较高的复杂性和研究曲线。

开发人员需要掌握并行编程技术和工具,以充分利用多核处理器的性能。

2. 数据共享与同步:多核处理器中的不同核心共享内存资源,这可能导致数据共享和同步问题。

同时访问共享数据可能导致竞争条件和数据不一致,需要采取专门的同步机制来解决这些问题。

3. 散热和功耗管理:多核处理器产生的热量和功耗较高。

为了保持稳定运行,需要采取有效的散热和功耗管理措施,以防止过热和系统崩溃。

4. 软件兼容性:一些软件可能不适用于多核处理器架构,需要进行适配或更新。

软件开发者需要充分考虑多核处理器的特性,并进行相应的优化和调整。

总结:多核处理器在现代计算领域具有重要意义。

它的优势包括并行处理能力、系统响应速度提升、能耗管理和扩展性。

然而,要充分发挥多核处理器的优势,需要解决并行编程难度、数据共享与同步、散热和功耗管理以及软件兼容性等挑战。

未来,随着计算需求和技术发展,多核处理器将继续发挥其重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、多核处理器的优点和缺点从应用需求上去看,越来越多的用户在使用过程中都会涉及到多任务应用环境,日常应用中用到的非常典型的有两种应用模式。

一种应用模式是一个程序采用了线程级并行编程,那么这个程序在运行时可以把并行的线程同时交付给两个核心分别处理,因而程序运行速度得到极大提高。

这类程序有的是为多路工作站或服务器设计的专业程序,例如专业图像处理程序、非线视频编缉程序、动画制作程序或科学计算程序等。

对于这类程序,两个物理核心和两颗处理器基本上是等价的,所以,这些程序往往可以不作任何改动就直接运行在双核电脑上。

还有一些更常见的日常应用程序,例如Office、IE等,同样也是采用线程级并行编程,可以在运行时同时调用多个线程协同工作,所以在双核处理器上的运行速度也会得到较大提升。

例如,打开IE 浏览器上网。

看似简单的一个操作,实际上浏览器进程会调用代码解析、Flash播放、多媒体播放、Java、脚本解析等一系列线程,这些线程可以并行地被双核处理器处理,因而运行速度大大加快(实际上IE浏览器的运行还涉及到许多进程级的交互通信,这里不再详述)。

由此可见,对于已经采用并行编程的软件,不管是专业软件,还是日常应用软件,在多核处理器上的运行速度都会大大提高。

日常应用中的另一种模式是同时运行多个程序。

许多程序没有采用并行编程,例如一些文件压缩软件、部分游戏软件等等。

对于这些单线程的程序,单独运行在多核处理器上与单独运行在同样参数的单核处理器上没有明显的差别。

但是,由于日常使用的最最基本的程序——操作系统——是支持并行处理的,所以,当在多核处理器上同时运行多个单线程程序的时候,操作系统会把多个程序的指令分别发送给多个核心,从而使得同时完成多个程序的速度大大加快。

另外,虽然单一的单线程程序无法体现出多核处理器的优势,但是多核处理器依然为程序设计者提供了一个很好的平台,使得他们可以通过对原有的单线程序进行并行设计优化,以实现更好的程序运行效果。

上面介绍了多核心处理器在软件上面的应用,但游戏其实也是软件的一种,作为一种特殊的软件,对PC发展作出了较大的贡献。

一些多线程游戏已经能够发挥出多核处理器的优势,对于单线程游戏,相信游戏厂商也将会改变编程策略,例如,一些游戏厂商正在对原来的一些单线程游戏进行优化,采用并行编程使得游戏运行得更快。

有的游戏可以使用一个线程实现人物动画,而使用另一个线程来载入地图信息。

或者使用一个线程来实现图像渲染中的矩阵运算,而使用另一个来实现更高的人工智能运算。

如今,大量的支持多核心的游戏涌现出来,从而使得多核处理器的优势能得到进一步的发挥。

但布赖恩特直言不讳地指出,要想让多核完全发挥效力,需要硬件业和软件业更多革命性的更新。

其中,可编程性是多核处理器面临的最大问题。

一旦核心多过八个,就需要执行程序能够并行处理。

尽管在并行计算上,人类已经探索了超过40年,但编写、调试、优化并行处理程序的能力还非常弱。

易观国际分析师李也认为,“出于技术的挑战,双核甚至多核处理器被强加给了产业,而产业却并没有事先做好准备”。

或许正是出于对这种失衡的担心,中国国家智能计算机中心主任孙凝辉告诉《财经》记者,“十年以后,多核这条道路可能就到头了”。

在他看来,一味增加并行的处理单元是行不通的。

并行计算机的发展历史表明,并行粒度超过100以后,程序就很难写,能做到128个以上的应用程序很少。

CPU到了100个核以上后,现在并行计算机系统遇到的问题,在CPU一样会存在。

“如果解决不了主流应用并行化的问题,主流CPU发展到100个核就到头了。

现在还不知道什么样的革命性的进展能解决这些问题。

”孙补充说。

实际上,市场研究公司In-Stat分析师吉姆克雷格(Jim McGregor)就承认,虽然英特尔已向外界展示了80核处理器原型,但尴尬的是,目前还没有能够利用这一处理器的操作系统。

中科院软件所并行计算实验室副主任张云泉也持类似的观点。

他对《财经》记者表示,这个问题实际一直就存在,但原来在超级计算机上才会遇到,所以,讨论也多局限在学术界。

而现在,所有用户都要面对这样的问题。

目前,多核心技术在应用上的优势有两个方面:为用户带来更强大的计算性能;更重要的,则是可满足用户同时进行多任务处理和多任务计算环境的要求。

两大巨头都给消费者描绘出了使用多核处理器在执行多项任务时的美妙前景:同时可以检查邮件、刻录CD、修改照片、剪辑视频,并且同时可以运行杀毒软件。

或者利用同一台电脑,父亲在查看财务报表,女儿在打游戏,母亲在给远方的朋友打网络电话。

但并不是所有家庭只有一台电脑,也不是所有用户都要用电脑一下子做那么多事,更何况目前的大部分应用程序还并不能自动分割成多任务,分别交给多个核心去执行。

所以,对于大多数用户来说,多核所带来的实际益处,很可能并不明显。

而多核所带来的挑战,或者说麻烦,却是实实在在的。

美国卡内基梅隆大学计算机系教授朗道布赖恩特(Randal E Bryant)在接受《财经》记者采访时就坦称,“这给软件业制造了巨大的问题”。

四、多核处理器的应用情况并行计算技术是云计算的核心技术,也是最具挑战性的技术之一。

多核处理器的出现增加了并行的层次性能使得并行程序的开发比以往更难。

而当前业内并无有效的并行计算解决方案,无论是编程模型、开发语言还是开发工具,距离开发者的期望都有很大的差距。

自动的并行化解决方案在过去的30年间已经被证明基本是死胡同,但传统的手工式的并行程序开发方式又难以为普通的程序员所掌握。

Intel、微软、SUN、Cray等业内巨头正投入大量人力物力进行相关的研究,但真正成熟的产品在短期内很难出现。

可扩展性是云计算时代并行计算的主要考量点之一,应用性能必须能随着用户的请求、系统规模的增大有效的扩展。

当前目前大部分并行应用在超过一千个的处理器(核)上都难以获得有效的加速性能,未来的许多并行应用必须能有效扩展到成千上万个处理器上。

这对开发者是巨大的挑战。

从Power、UltraSPARC T1、安腾到双核Opteron、至强Xeon,各个领域都显示出,多核处理器计算平台势必成为服务器的主流或者说是强势计算平台,但这只是上游硬件厂商的乐观预计。

并不是所有的操作系统和应用软件都做好了迎接多核平台的准备,尤其是在数十年来均为单一线程开发应用的x86服务器领域。

微软软件架构师HerbSutter曾指出:软件开发者对多核处理器时代的来临准备不足。

他说,软件开发社区认识到处理器厂商被迫采用多核设计以应对处理器速度提升带来的发热问题,但却没有清楚地了解这样的设计为软件开发带来多少额外的工作。

在过去一段长时间里,x86系统上软件的性能随着来自Intel和AMD处理器速度越来越快而不断提高,开发者只需对现有软件程序作轻微改动就能坐观其性能在随着硬件性能的上升而不断提升。

不过,多核设计概念的出现迫使软件世界不得不直面并行性(将单个任务拆分成多个小块以便分别处理之后再重新组合的能力)问题。

当然,为服务器设计软件的开发者已经解决了一些此类难题,因为多核处理器和多路系统在服务器市场已经存在多年(在传统的Unix领域),一些运行在RISC 架构多核多路系统上的应用程序已经被设计成多线程以利用系统的并行处理能力。

但是,在x86领域,应用程序开发者多年来一直停留在单线程世界,生产所谓的“顺序软件”。

现在的情况是软件开发者必须找出新的开发软件的方法,面向对象编程的兴起增加了汇编语言的复杂性,并行编程也需要新的抽象层次。

另一方面,处理器设计厂商在设计产品时也应该将软件开发者考虑在内,“处理器的首要着眼点应该是可编程性,而不是速度。

”Sutter说。

多核处理器要想发挥出威力,关键在于并行化软件支持,多核设计带动并行化计算的推进,而给软件带来的影响更是革命性的。

Intel很早就通过超线程技术实现了逻辑上的双处理器系统,可以并行计算,但这不过是对处理器闲置资源的一种充分利用而已,并且这种充分利用只有在特定的条件下,尤其是针对流水线比较长且两种运算并不相互交叉的时候,才会有较高的效率,如编码解码、长期重复某种矩阵运算以及一些没有经过仔细编写的软件等。

即使IBM的Power5架构,也需要跟最新的操作系统进行融合,加上运行在其上的软件,才有可能利用并发多线程。

虚拟化技术在一定程度上能够处理一些因为多核带来的问题,可以让应用软件和操作系统在透明的环境下对处理器资源进行分配和管理。

目前在对称多处理器方面,操作系统对资源的分配和管理并没有本质的改变,多以对称的方式进行平均分配。

也就是说,在操作系统层面,当一个任务到来时,剥离成为两个并行的线程,因为线程之间需要交流以及操作系统监管,它导致的效率损失要比硬件层面大得多。

并且,多数软件并没有充分考虑到双核乃至多核的运行情况,导致线程的平均分配时间以及线程之间的沟通时间都会大大增加,尤其是当线程需要反复访问内存的时候。

目前,多数操作系统还没有完全实现自由的资源分配,如IBM是通过AIX 5.3L来支持Power5上的虚拟化功能,才实现了资源的动态调配和划分的。

从长远来看,需要使用虚拟化技术才可能实现操作系统对任务的具体划分,这很可能改变一些通用的编程模式。

五、多核处理器新近的发展近年来计算机技术取得了巨大的进步。

但是在未来的十年,主流计算机技术中新的工作量、使用模式的出现及变化对未来的计算机平台提出的要求与过去取得的进展也差不多,这些巨大的要求包括:更高的性能、更低的功率密度、更好的功能可扩展性。

作为计算机技术门下的一员,多核处理器技术同样面临相同的挑战。

未来的处理器将是的社会和技术发展趋势的响应和直接产物,这些趋势包括:渗透性连接和主动性计算、数据的增长和高性能计算、因特网作为计算机和管道、全球化。

这些趋势对未来的处理器有几个清晰的指向,处理器的架构需要进化,才能在下一个十年支持性能的增长和市场的需求。

至少要满足以下几个关键需求:通用性能、功耗管理、特殊性能和适应性、可靠性安全性及易管理性、生态系统支持和稳定性、大众市场经济。

为了满足这些需求,Intel多核处理器将不仅。

相关文档
最新文档