高等工程数学之数理统计初步与Matlab实例共47页文档
高校统计学专业数理统计建模算法Matlab实现代码详解

高校统计学专业数理统计建模算法Matlab实现代码详解统计学专业是现代社会中非常重要的学科之一,因为它帮助我们理解和解释各种数据,从而为决策提供依据。
在统计学领域中,数理统计建模是一种重要的方法,它利用数学模型来描述和预测数据的行为。
而Matlab作为一种强大的科学计算软件,可以有效地实现数理统计建模算法。
本文将详细介绍高校统计学专业数理统计建模算法在Matlab中的实现代码。
首先,我们将介绍几种常见的数理统计建模算法,并展示它们在Matlab中的具体代码实现。
随后,我们将详细解释这些代码的原理和使用方法,以便读者能够更好地理解和运用这些算法。
1. 线性回归线性回归是数理统计建模中最基本的算法之一。
它通过拟合一个线性模型来预测连续变量的值。
在Matlab中,可以使用“fitlm”函数实现线性回归。
以下是代码示例:```matlabdata = readtable('data.csv'); % 读取数据集model = fitlm(data, 'Y ~ X1 + X2'); % 构建线性回归模型summary(model); % 打印模型摘要信息```2. 逻辑回归逻辑回归是一种常用的分类算法,它用于预测二元变量的概率。
在Matlab中,可以使用“fitglm”函数实现逻辑回归。
以下是代码示例:```matlabdata = readtable('data.csv'); % 读取数据集model = fitglm(data, 'Y ~ X1 + X2', 'Distribution', 'binomial'); % 构建逻辑回归模型summary(model); % 打印模型摘要信息```3. 决策树决策树是一种常用的分类和回归算法,它通过构建一个树状模型来预测变量的取值。
在Matlab中,可以使用“fitctree”函数实现决策树。
Matlab在数理统计中的运用

Matlab在数理统计中的运用摘要:概率论与数理统计是现代数学的重要分支,近年来随着计算机的普及,概率论在经济,管理,金融,保险,生物,医学等方面都发挥着越来越大的作用。
使得概率统计成为今天各类各专业大学生最重要的数学必修课之一。
然而,传统的概率统计教学过于偏重理论的阐述、公式的推导、繁琐的初等运算;同时,缺乏与计算机的结合,给学生的学习带来很多困难。
本文介绍概率统计中的主要问题在Matlab中的实现,让我们从繁琐的计算中解放出来,把更多的时间和精力用于基本概念和基本理论的思考和方法的创新,从而提高教师的教学效率和学生的学习效率。
关键词:区间估计,matlab,概率统计一、常用概率密度的计算Matlab中计算某种概率分布在指定点的概率密度的函数,都以代表特定概率分布的字母开头,以pdf (probability density function)结尾,例如:unid pdf(X, N):计算1到N上的离散均匀分布在X每一点处的概率密度;poisspdf(X, Lambda):计算参数为Lambda的泊松分布在X每一点处的概率密度;exppdf(X, mu):计算参数为mu的指数分布在X每一点处的概率密度;normpdf(X, mu, sigma):计算参数为mu, sigma的正态分布在X每一点处的概率密度。
其他如连续均匀分布、二项分布、超几何分布等也都有相应的计算概率密度的函数。
除计算概率密度的函数外,Matlab中还有计算累积概率密度、逆概率分布函数及产生服从某分布的随机数的函数,分别以cdf,inv和rnd结尾。
下面我们来用一个具体的例子说明一下:例1:计算正态分布N(0,1)的随机变量X在点0.6578的密度函数值。
解:>> pdf('norm',0.6578,0,1)ans =0.3213例2:自由度为8的卡方分布,在点2.18处的密度函数值。
解:>> pdf('chi2',2.18,8)ans = 0.0363二、随机变量数字特征的计算(一)数学期望与方差对离散型随机变量,可利用Matlab矩阵运算计算出其数学期望和方差;而对于连续型随机变量,则可以利用Matlab符号运行计算。
概率论和数理统计的Matlab 实现

expcdf 函数 功能:计算累加指数分布函数。 语法:P = expcdf(X,MU) 描述:expcdf(X,MU) 计算参数为 MU 的数据 X 的累加指数分布函数。指数 MU 必须为
正。 累加指数分布函数的计算公式为:
概率论和数理统计的 Matlab 实现
1概 述
自然界和社会上会发生各种各样的现象,其中有的现象在一定条件下是一定要发生的, 有的则表现出一定的随机性,但总体上又有一定的规律可循。一般称前者为确定性事件, 后者为不确定性事件(或称随机事件)。概率论和数理统计就是研究和揭示不确定事件统计 规律性的一门数学学科。
f (x |l) =
lx x!
e-l
I (0,1,K )
(x)
y=
f (x | b) =
x b2
çæ - x 2 ÷ö
eçè 2b2 ÷ø
y
=
f
(x
| v)
=
Gçæ è
v
+ 2
1
÷ö ø
Gçæ è
v 2
÷ö ø
1
1
vp
ççèæ1 +
v +1
x2 v
÷÷øö
2
y=
f (x | N) =
1 N
I (1,..., N ) ( x)
y
=f(x|r,p)
=
ççèæ
r
+
x x
+
1÷÷øö
p
x
q
x
I
(
0,1,...)
(
x)
其中, q = 1 - p
MATLAB-第10讲数据统计分析共49页文档

15.11.2019
11
一、点估计的求法
(一)矩估计法
假 设 总 体 分 布 中 共 含 有 k个 参 数 , 它 们 往 往 是 一 些 原 点 矩 或 一 些 原 点 矩 的 函 数 , 例 如 , 数 学 期 望 是 一 阶 原 点 矩 , 方 差 是 二 阶 原 点 矩 与 一 阶 原 点 矩 平 方 之 差 等 .因 此 , 要 想 估 计
3 、 作 频 率 直 方 图 : 在 直 角 坐 标 系 的 横 轴 上 , 标 出 x 1 ',x 2 ', ,x n ' 各 点 , 分 别 以
( x i ',x i ' 1 ]为 底 边 , 作 高 为 f x ii ' 的 矩 形 , x i ' x i ' 1 x i ',i 1 ,2 , ,n 1 ,即 得
2ps
标准正态分布:N(0,1)
密度函数
j(x)
1
x2
e2
2p
分布函数
F(x)
1
x
y2
e 2 dy
2p
0.4
0.35
0.3
0.25
0.2
0.15
,
0.1
0.05
0
-4
-2
0
2
4
6
15.11.2019
7
( ) 2 、 2 分 布 2 n
若 随 机 变 量 X 1 , X 2 , … X n 相 互 独 立 , 都 服 从 标 准 正 态 分 布 N ( 0 , 1 ) , 则 随 机 变 量
第四章Matlab在高等数学中的应用

一维数据插值
Y1=interp1(X,Y,X1,method):函数根据X,Y的值, 计算函数在X1处的值。X,Y是两个等长的已知向 量(测量数据对),X1是一个向量或标量,描述欲 插值的点,Y1是一个与X1等长的插值结果。 Method是插值方法,允许的取值为: ‘linear’:线性插值; ‘nearest’:最近点插值; ‘cubic’:三次多项式插值; ‘spline’:三次样条插值。
例题
x = [−45,64,12,32,47]; y = max( x); y = 64; [ y, k ] = min( x); y = −45; k = 1;
求矩阵的最大最小元素
max(A):返回一个行向量,向量的第i个元素 是矩阵A第i列上的最大元素(返回矩阵A每 一列上的最大元素)。 [Y,U]=max(A):返回两个行向量,Y记录A的 每列的最大元素,U记录每列最大元素的序 号。 max(A,[],dim):dim取1或2,dim取1时,与 max(A)完全相同,dim取2时,返回一个列 向量,第i个元素是矩阵A第i行上的最大元 素(返回矩阵A每一行的最大元素)。
两个矩阵或向量对应元素比较
U=max(A,B):A,B是两个同型的向量或矩阵, 返回值U是与A,B同型的向量或矩阵,U的 每个元素是A,B对应元素较大者。 U=max(A,n):n是一个标量,结果U是与A同 型的向量或矩阵,U的每个元素等于A对应 元素和n中的较大者。
23 − 64 52 − 21 A= , B = 10 − 17 − 31 47 52 − 21 U = max( A, B),U = 10 47 30 30 U = max( A,30),U = 30 47
m m −1
MATLAB数理统计分析

1. 3 MATLAB的开发环境
1.3.1 MATLAB桌面平台
桌面平台是各桌面组件的展示平台,默认设置情况下 的桌面平台包括4个窗口,即命令窗口(Command Window)、命令历史窗口(Command History)、当前目录 窗口(Current Directory)和工作空间窗口(Workspace)。此 外,MATLAB还有编译窗口、图形窗口和帮助窗口等其他 种类的窗口。
subplot(3,1,1) capaplot(data,[-inf,xalpha1]);axis([-3,3,0,0.45]) subplot(3,1,2) capaplot(data,[xalpha2,inf]);axis([-3,3,0,0.45]) subplot(3,1,3) capaplot(data,[-inf,xalpha3]);axis([-3,3,0,0.45]) hold on capaplot(data,[xalpha4,inf]);axis([-3,3,0,0.45]) hold off
hold off text(-0.5,yy(6)+0.005,'\fontsize{14}95.44%') text(-0.5,yy(5)+0.005,'\fontsize{14}68.26%') text(-0.5,yy(7)+0.005,'\fontsize{14}99.74%') text(-3.2,-0.03,'\fontsize{10}μ-3σ') text(-2.2,-0.03,'\fontsize{10}μ-2σ') text(-1.2,-0.03,'\fontsize{10}μ-σ') text(-0.05,-0.03,'\fontsize{10}μ') text(0.8,-0.03,'\fontsize{10}μ+σ') text(1.8,-0.03,'\fontsize{10}μ+2σ') text(2.8,-0.03,'\fontsize{10}μ+3σ')
概率论与数理统计MATLAB上机实验报告

《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。
了解用matlab解决概率相关问题的方法。
2、增强动手能力,通过完成实验内容增强自己动手能力。
二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。
概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。
答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。
用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。
由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。
因此当n足够大时,可以认为泊松分布与二项分布一致。
4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
数理统计方法的Matlab实现(6.5版)

数理统计的Matlab实现
[H,SIG,CI]=ttest2 (x, y, ,tail) 对两个正态总 体的均值作检验 若tail=0, 表示 H 1 : 1 2 若tail=1, 表示 H 1 : 1 2 若tail=-1,表示 H 1 : 1 2 结论:H=0,表示接受原假设 H 0 : 1 2 H=1,表示拒绝原假设 H 0 : 1 2 SIG为犯错误的概率,CI为均值差的置信区间。
因素A 因素B B1 B2 B3
A1 95 93 85 86 72 76 A2 A3 A4
97 96 87 89 90 91 89 90 84 87 92 90 75 73 85 86 88 89
AB2=[95 93 97 96 87 89 90 91;85 86 89 90 84 87 92 90;72 76 75 73 85 86 88 89 ] anova2(AB2',2)
数理统计的Matlab实现
例2自动包装机包装出的产品服从正态分 布 N (0.5 , 0.0152 ) ,从中抽取出9个样品,它们的 重量是 0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512 问包装机的工作是否正常? ( =0.05) x=[0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512]; [H,SIG]=ztest(x, 0.5, 0.015, 0.05,0)
数理统计的Matlab实现
其中 y:y的 n 1 数据向量 x:x的数据 n m 矩阵 b: b0 , b1 ,, bm 的估计值 bint:b的置信区间 r:残差 rint :r的置信区间 stats:第一个值是回归方程的置信度,第二值是F统 计量的值,第三值小说明所建的回归方程有意义。