中职数学基础模块下册《平面向量的概念》公开课
中职数学 下册 课件-第七章 平面向量

7.1平面向量的概念及线性运算 7.1.1向量的概念 7.1.2平面向量的加法 7.1.3平面向量的减法 7.1.4平面向量的数乘运算
7.2平面向量的坐标表示 7.2.1平面向量的坐标 7.2.2向量线性运算的坐标表示 7.2.3共线向量的坐标表示
7.3平面向量的内积 7.2.1平面向量的内积 7.2.2内积的坐标表示
a
b
B
a
b
A a+b
C
一般地,设向量a与向量b不共线,在平面上任取一点A
依次作 AB a,BC b,则向量AC 叫做向量a与向量b的和,
距离、位移、身高、力、质量、时间、速度、面积、温度.
数量
向量
距离、身高、 质量、时间、 面积、温度
位移、力、 速度
【新知识】向量的表示
用有向线段表示(规定了起点、方向、长度的 线段)
a 始点
终点
始点
终点
A
B
a 用字母表示 AB, 或
始点
终点
1【.向(模新量)表知的示大识:小】(模向| A)量B: | 的向或有量| a关A|B概或念a 的大小
向量是不能比较大小的,但
向量的模是可以进行大小比较的.
a
| a || b | √
b
a b
×
2.两个基本向量:
零向量: 模 为零的 向量(方向不确定). 表示: 0, | 0 | 0
单位向量: 模为1个单位长度的向量.
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km, 另一架飞机从A处朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向线段表示两架 飞机的位移.
7.1平面向量的概念及线性运算 7.1.1向量的概念 7.1.2平面向量的加法 7.1.3平面向量的减法 7.1.4平面向量的数乘运算
高教版中职数学(基础模块)下册7.1《平面向量的概念及线性运算》ppt课件3

解:AC AB AD a b,DB AB AD a b,
MA 1 AC 1 a b 1 a 1 b,
2
2
22
MB 1 AC 1 a 1 b,
2
22
MD MB 1 DB 1 a 1 b.
2
22
一般地,a b叫做a,b的一个线性组合, 如果l a b,则称l可以用a,b线性表示。
1.向量加法三角形法则:
b a
Байду номын сангаасo.
特点:首尾顺次连,起点 指终点
b
a
O.
B
a+b
a+b
A
B
A
C
2.向量加法平行四边形法则: 特点:起点相同,对角为和
15
复习2:向量的减法
如图,已知向量a和向量b,作向量a-b.
b
a
a
b
o.
B
向量减法三角形法则:
a-b A
特点:平移同起点,方向指被减 16
探究新知: 已知非零向量 a ,作出a a a ,你能发现什么?
b B
BA = a − b .
观察图可以得到:起点相同的
两个向量 a ,b 其差 a- b仍然是一
个向量,其起点是减向量 b 的终点, 终点是被减向量 a 的终点.
思考:当a,b共线时,如何画出a-b? 试一试::练习册第22页第3题;第24页第3题。
复习1:向量的加法
如图,已知向量a和向量b,作向量a+b.
2019/7/31
最新中小学教学课件
25
thank
you!
2019/7/31
中职教育-数学(基础模块)下册课件:第七章 平面向量.ppt

,E→.F
→
FG
(3)相等向量为
→
AB
C→D ,D→E
→
GH
.
(4)互为负向量的向量为
→
BC
D→E ,B→C
→
GH
.
7.2 平面向量的线性运算
7.2.1 平面向量的加法
如右图所示,一人从A点出发,走到B点,又从B点
走到C点,则他的最终位移
→
AC
可以看作是位移
→
AB
与
B→C 的和.
如右图所示,已知向量a与b,
解 位移是向量,它包括大小和方向 两个要素.本题中,虽然这两个向量的 模相等,但它们的方向不同,所以,两 辆汽车的位移不相同.如图所示为用有 向线段表示两辆汽车的位移.
方向相同或相反的两个非零向量称为平行向量.向量a与b平行记作 a ∥b . 如图所示,向量 a ,b ,c平行,任意作一条与向量a所在直线平行的直线l,
如右
图所示,
设有两个
非零向量
a
,b
,
作
→
OA
a
,O→B
b
,则
AOB θ(0°剟θ 180°) 称为向量 a ,b 的夹角.
显然,当 θ 0°时,a 与 b 同向;当 θ 180°时,a 与 b 反向;当 θ 90° 时,a 与 b 垂直,记作 a b .
我们将 a b cosθ 称为向量 a ,b 的内积(或数量积),记作 a gb ,
7.1
• 平面向量的概念
7.2
• 平面向量的线性运算
7.3
• 平面向量的坐标表示
7.4
• 平面向量的内积
7.1 平面向量的概念
标量是指只有大小、没有方向的量,如长度、质量、温度、面积等; 向量是指既有大小、又有方向的量,如速度、位移、力等.
中职教育数学《向量的概念》课件

解:OA CB DO
OB DC EO
OC AB ED FO
练习∶上题中 11
(1)与向量 OA长度相等的向量有多少个?
(2)是否存在与向量
OA
长度相等,
方向相反的向量?
FE
(3)与向量OA 共线的向量有哪些?
单击动画演示 CB DO FE
课堂 小结
向量
向量的定义 向量的表示
字母表示 几何表示
B
a
AB
三、与向量有关的基本概念
1、向量的大小(长度)叫向量的模: 向量 AB 的模
表示: | AB | 模可以比较大小
2、零向量与单位向量
零向量: 长度为零的向量(方向任意).
表示:0或 0, | 0 | 0 a a
3、单位向量: 长度为1个单位长度的向量.
P26例1
3、向量之间的关系
(1)平行向量:方向相同或相反的非零向量.
注意:数量与向量的区别:
1.数量只有大小,是一个代数量,可 以比较大小.
2.向量有方向、大小,双重属性,而 方向是不能比较大小的,因此向量 不能比较大小. 向量不能比较大小.
问题:温度是不是向量? 重量呢?身高?海拔?速度?
向量的表示
a
1.几何法:用有向线段表示
A
2.字母法:用小写字母表示
3.用表示向量的有向线段的起点 和终点字母表示
等.
表示平面上的六个平行四边形,问图中
哪些向量分别与向量 AB、AD、AE 相等?
那些向量与它们互为相反向量?
A
B
D
C
E
F
H
G
例1.判断下列命题真假或给出问题的答案:
(1)平行向量的方向一定相同. × (2)不相等的向量一定不平行. ×
中职数学基础模块下册《平面向量的概念》课件

向量的投影可以看作是向量在某个方 向上的分量,通过计算向量的数量积 可以得到向量的投影。
速度和加速度的计算
在运动学中,速度和加速度可以表示 为位置向量的时间导数,通过计算向 量的数量积可以得到速度和加速度的 大小。
THANKS
感谢观看
数量积的几何意义
01
数量积表示向量a与向量b的长度 和它们之间的夹角的余弦值的乘 积。
02
当两向量同向时,数量积为两向 量长度之积;当两向量反向时, 数量积为两向量长度之差的绝对 值。
数量积的应用举例
力的合成与分解
向量的投影
在物理中,力可以视为向量,力的合 成与分解可以通过计算向量的数量积 来实现。
详细描述
向量模是表示向量长度的概念, 记作|a|。向量模具有非负性、齐 次性、三角形不等式等性质。
向量模的计算方法
总结词
掌握向量模的计算方法是实际应用中必不可少的技能。
详细描述
向量模的计算公式为|a| = 根号(x^2 + y^2),其中x和y分别是向量在x轴和y轴上的分量。此外,还有 向量模的运算性质,如|a+b|≤|a|+|b||a-b|≤|a|+|b||a-b|≥||a|-|b||等,这些性质在实际问题中具有广泛 的应用。
平面向量数乘的定义与性质
总结词
数乘是标量与向量的乘积,结果仍为 向量,满足分配律。
详细描述
数乘是实数与向量的乘积,其实质是 标量与向量的乘积。数乘的结果仍为 向量,且满足分配律,即 m(a+b)=ma+mb。
平面向量加法与数乘的几何意义
总结词
平面向量加法的几何意义是将两个向量首尾相接, 按平行四边形法则或三角形法则确定的合成向量; 数乘的几何意义是改变向量的模长和方向。
高教版中等职业学校职业高中平面向量的概念定义教案课件

【课题】7.1 .1 平面向量的概念【教学目标】知识目标:(1)了解向量、向量的相等、共线向量等概念;(2)掌握向量、向量的相等、共线向量等概念.能力目标:通过这些内容的学习,培养学生的运算技能与熟悉思维能力.【教学重点】向量的线性运算.【教学难点】已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件.【教学设计】从“不同方向的力作用于小车,产生运动的效果不同”的实际问题引入概念.向量不同于数量,数量是只有大小的量,而向量既有大小、又有方向.教材中用有向线段来直观的表示向量,有向线段的长度叫做向量的模,有向线段的方向表示向量的方向.数量可以比较大小,而向量不能比较大小,记号“a>b”没有意义,而“︱a︱>︱b︱”才是有意义的.教材通过生活实例,借助于位移来引入向量的加法运算.向量的加法有三角形法则与平行四边形法则.向量的减法是在负向量的基础上,通过向量的加法来定义的.即a-b=a+(-b),它可以通过几何作图的方法得到,即a-b可表示为从向量b的终点指向向量a的终点的向量.作向量减法时,必须将两个向量平移至同一起点.实数λ乘以非零向量a,是数乘运算,其结果记作λa,它是一个向量,其方向与向量a 相同,其模为a的λ倍.由此得到λ∥.对向量共线的充要条件,要特别注意“非a b a b⇔=λ≠”等条件.零向量a、b”与“0【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】图手写时应在字母上面加箭头,记作AB.模为零的向量叫做向量的方向相同;向量CD与PQ所在的直线平行,两个向量,方向相反,模相等.的模相等并且方向相同时,DC的负向量;)找出与向量AB平行的向量.析.两个向量相等,它们必须是方向相同,模相等;两个向量-,CDBA=DCBA//AB,DC//AB,CD//ABA F。
中职数学基础模块下册《平面向量的概念》公开课课件

01
02
03
平行四边形的性质
通过平面向量的线性组合 ,可以证明平行四边形的 对边相等、对角线互相平 分等性质。
三角形的重心
利用平面向量,可以求出 三角形的重心坐标,进而 求出其他几何量。
空间几何
平面向量可以扩展到三维 空间,用于描述空间几何 图形的位置和方向。
平面向量在物理中的应用
力的合成与分解
在物理中,力是矢量,可以用平 面向量来表示和运算。通过力的 合成与分解,可以求解物体的运
向量的正交分解
将一个向量分解为两个相互垂直的向量的线性组合。
向量的坐标表示
将一个向量用一组有序实数对(x,y)表示,这组实数对称为该向量的坐标。
05
平面向量的解题技巧与方法
运用向量性质简化问题
01
向量具有方向性
利用向量的方向性,可以解决一些与向量方向相关的问题,如向量旋转
、向量投影等。
02
向量模的非负性
中职数学基础模块下册《平 面向量的概念》公开课课件
汇报人: 202X-12-22
目 录
• 平面向量的基本概念 • 平面向量的运算 • 平面向量的应用 • 平面向量的性质与定理 • 平面向量的解题技巧与方法 • 平面向量与其他数学知识的联系与区别
01
平面向量的基本概念
平面向量的定义与表示
向量的定义
数乘向量
数乘向量的定义
数乘向量是指将一个实数与一个向量相乘,得到一个新的向量。其实质是将向量 的每个分量都乘以该实数。
数乘向量的运算规则
数乘向量的运算规则是线性运算的分配律,即对于任意实数k和任意向量a,有 ka=k(a1,a2,...,an)=(k*a1,k*a2,...,k*an)。
高教版中职数学(基础模块)下册7.1《平面向量的概念及线性运算》ppt课件1

【例2】:如图,设O是正六边形的中心,分别写 出图中与向量 、 相等的向量, OA 、 OC 负向 OB OC B A 量。
C
O
F
D
E
解:
B
A
OA CB DO
OB DC EO
O
C F
OC AB ED FO
D E
OC BA DE OF
下面几个命题:
(1)若a = b, b = c,则a = c。
两个向量a、 b,其差a − b仍然是一
个向量,其起点是减向量b的终点,
B b O a
A
终点是被减向量a的终点.
a
b
b
O
a (b)
a
b
a b
向量减法法则
a
a
ab
b b
B
A
O
a
ba
A
b
B
作法:在平面内任取一 点O, 作OA a, OB b, 则BA a b.
• 要点:1.平移到同一起点;2.指向被减向量.
向量加法法则总结与拓展
• 向量加法的三角形法则: – 1.将向量平移使得它们首尾相连 – 2.和向量即是第一个向量的首指向第二个向量的尾 • 向量加法的平行四边形法则: – 1.将向量平移到同一起点 – 2.和向量即以它们作为邻边平行四边形的共起点的 对角线 • 三角形法则推广为多边形法则:
多个向量相加, 如:AB BC CD DE EF AF ,
任一组平行向量都可移到同一条直线上,平行向量也叫
共线向量 规定:零向量与任一向量平行
记作:
0 // a
3. 向量的负向量:长度相等且方向相反的向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
第七章 平面 向量
7.1 平面向量的概念
.
小组探究
猫与老鼠哪个重?
一只猫的重量是1.5千克,一只老鼠的重量是
0.猫2公能斤,捉谁更住重老? 鼠 • 老鼠由吗A向?东北方向以每秒6米的速度逃窜,
而猫由A向正南方向每秒10米的速度追. • 问猫能否抓到老鼠?
速度是既有大小又有方向的量
B
a 用字母表示 AB , 或
始点
终点
.
三. 向量的有关概念
1.向量的大小(模):
表示:
| AB |
向或量| aA|B
或 a 的大小(模)
向量是不能比较大小的,但
向量的模是可以进行大小比较的.
a
|a||b| √
b
ab
×
.
2.两个基本向量:
零向量: 模 为零的 向量(方向不确定). 表示: 0 , | 0|0
单位向量: 模为1个单位长度的向量.
.
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km,另一架飞机从A处 朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向 线段表示两架飞机的位移.两架飞机位移的有向线段表示分别为图中 的有向线段 a 与 b. 下列各图中哪个表示正确?
其中是向量a与b平行的有_①__③__④.
.
课堂小结:
1、向量定义:既有大小又有方向的量。
AB
A
B
2.向量的长度:向量的大小就是向量的长度
(或称为模)。记作
|
AB
|
3.零向量:长度为0的向量叫做零向量,记 作 0 (手写体)。
.
8.相等向量:长度相等且方向相同的向量叫
做相等向量。
注意:1°零向量与零向量相等。
例2:如图,设O是正六边形ABCDEF的中心,分别
写出图中与向量OA 、OB 、OC
量 与OA相等的向量有 B
相等的向
A
DO,CB.
与OB相等的向量有C
O
F
EO,DC.
与OC相等的向量有 D
E
FA,ED. .
练习2:如图
问题:(1) OA 与 FE
相等吗?
B
A
(2) OB 与 AF
相等吗?
O
(3) 与 OA 长度相等 C
(1)找出与向量 D A 相等的向量; (2)找出向量 D C 的负向量;
D
C
O
(3)找出与向量 A B 平行的向量.
要结合平行四边形 的性质进行分析.两个 向量相等,它们必须是 方向相同,模相等;两 个向量互为负向量,它 们必须是方向相反,模 相等;两个平行向量的 方向相同或相反.
A
B
图7-5
.
巩固知识 典型例题
(3)与零向量相等的向量是什么向量? 零向量 (4)存在与任何向量都平行的向量吗? 零向量 (5)若两个向量在同一直线上,则这两个向量一定是 什么向量? 平行向量(共线向量)
(6)两个非零向量相等的条件是什么? 模相等且方向相同
(7)共线向量一定在同一直线上. ×
.
巩固知识 典型例题
例2 在平行四边形ABCD中(图7-5),O为对角线交点.
.
如图所示,用100N的力,按照不同的方向拉一辆车,效果一样吗?
.
只有大小,没有方向的量叫做数量(标量) 例如质量、时间、温度、面积、密度等. 既有大小,又有方向的量叫做向量(矢量),
如力、速度、位移等.
.
请说出下列一些量那些是数量那些是向量?
距离、位移、身高、力、质量、时间、速度、面积、温度.
数量
向量
距离、身高、 质量、时间、 面积、温度
位移、力、 速度
.
F
力
F
三要素:大小,方向. ,作用点
S
位移:质点做机械运动,从初位置 到末位置的有向线段叫做位移。
.
速度:物
体运动的
位移与所 用的时间
V
的比值
.
二.向量的表示
用有向线段表示(规定了起点、方向、长度的 线段)
a 始点
终点
始点
终点
A
例2 在平行四边形ABCD中(图7-4),O为对角线交点.
(1)找出与向量 D A 相等的向量; (2)找出向量 D C 的负向量;
D
C
O
(3)找出与向量 A B 平行的向量. 解 由平行四边形的性质,得
A
B
图7-4
(1) CBDA; (2) B A D C , C D D C ; (3)B A / /A B , D C / /A B , C D / /A B .
2°任意两个相等的非零向量,都可以
用一条有向线段来表示,并且与有向线段的起点
无关。
a
ab
b
.
.
动脑思考 探索新知
在数学与物理学中,有两种量.只有大小,没有方向的量 做数量(标量) ,例如质量、时间、温度、面积、密度等. 既有大小,又有方向的量叫做向量(矢量), 如力、速度、位移等.
.
2.下列说法正确的是 ( A )
A) 方向相同或相反的向量是平行向量. B) 零向量是0 . C)长度相等的向量叫做相等向量. D) 共线向量是在一条直线上的向量.
3.已知a、b是任意两个向量,下列条件: ①a=b; ②|a|=|b|; ③a与b的方向相反; ④a=0或b=0; ⑤ a与b都是单位向量.
.
练习1:判断下列各命题是否正确? (1)a = b ,则a = b;
(2)若两个向量相等,则它们的起点相同,终点相同; (3)若AB = CD, 则四边形ABCD是平行四边形; (4)若a = b,b=c,则a =c;
(5)若a//c,b//c,则a//b
(1)错 (4)对
(2)错 (5)错
.
(3)错
与非零向量的模相等,且方向相反的向 量叫做向量的负向量,记作 -a.
a
a
.
巩固知识 典型例题
说出下图中各向量的模,并指出其中的单位向量 (小方格边长为1).NBຫໍສະໝຸດ EMK A
H
L
Z
CD
FK
Q
P
G
图7−4
.
例1.判断下列命题真假或给出问题的答案:
(1)平行向量的方向一定相同. × (2)不相等的向量一定不平行. ×
东
A b
a
b A
a
A
B√
南
b
b
A
A
100km.
a
a
C
D
.
3.向量的关系:
a
平行向量: 表示为:
方向相同或相反的非零向量. a//b//c
b
零向量与任一向量平行. L
c
共线向量: 任一组平行向量都可平移到同一直线上.
即平行向量也叫做共线向量.
.
相等向量
长度相等且方向相同的向量.表示为:
ab
a
负向量(相反向量) b
F
的向量有几个? 12 (4) 与 OA 共线的
向量有哪几个?
D
E
有 CB,FE,DO.
.
如下图,与AB有几个?与AB长度相等的 有几个?
B
相等的有 7个
长度相等
A
的有9个
.
练习3: 1、下列命题正确的是 ( D )
(A)共线向量都相等 (B)单位向量都相等 (C)平行向量不一定是共线向量 (D)零向量与任一向量平行