地下工程岩体的稳定性阐明
岩石力学 第六章 地下空间开挖围岩稳定性分析

行支护达到人工稳定; 支护和破裂岩体本应是相互影响、共同作用的,但 现在还做不到完全用共同作用理论为指导来解决支 护设计问题; 古典地压学说:1907年,普氏学说——俄罗斯学者; 1942年,太沙基学说——美国学者; 在60年代,共同作用理论提出以后的30多年,弹塑 性力学的研究方法在岩石力学研究中一直占据主导 的地位,古典地压学说则被冷落一旁;
r , r p0
解析表达式
R02 1 2 p0 r r
净水压力下围岩应力分布
2019/1/20
《岩石力学》
7
讨论
开巷(孔)后,应力重新分布,也即次生应力场;
, 均为主应力,径向与切向平面为主平面; r
应力大小与弹性常数 周边
2019/1/20
c cot
《岩石力学》
24
塑性区半径
( p0 c cot )(1 sin ) R p R0 P c cot 1
1sin 2 sin
讨论
R p与 R0 成正比,与 p0 成正变,与 c 、
塑性区应力与原岩应力
900 , 2700 处, p0 (3 1) ; 0 0 p0 (3 ) ; 在巷道的侧边,即 0 , 180 处,
在巷道的顶、底板,即
2019/1/20
《岩石力学》
14
应力集中系数与 , 的关系
2019/1/20
《岩石力学》
15
巷道周边位移
o
开挖后(周边)
u (1 ) p 0 R0 E
《岩石力学》
11
2019/1/20
深埋水工隧洞地应力特征及围岩稳定性分析

深埋水工隧洞地应力特征及围岩稳定性分析深埋水工隧洞地应力特征及围岩稳定性分析随着经济的发展和城市化进程的推进,地下空间的利用越来越广泛。
深埋水工隧洞作为地下空间的一种重要形式,广泛应用于交通、水利、能源等领域。
然而,在进行深埋水工隧洞的设计和施工过程中,地下岩体受到的地应力变化和围岩的稳定性问题是不可忽视的。
本文将对深埋水工隧洞地应力特征及围岩稳定性进行分析和探讨。
首先,我们需要了解地下岩体的地应力特征。
地应力是指地下岩体受到地球重力和地壳运动作用下所受到的应力状态。
地下岩体受到的地应力主要有三种形式:地质应力、构造应力和工程应力。
地质应力是由地球重力造成的,主要取决于重力加速度和地下岩体的密度。
构造应力是由地壳运动造成的,主要取决于构造应力场的性质和构造应力的方向。
工程应力是由人类活动引起的,主要有施工工艺、荷载和地下水压力等因素影响。
针对深埋水工隧洞的地下岩体,其地应力特征主要由地质应力和工程应力共同决定。
地质应力主要受到岩层的厚度、密度和地球重力的影响。
在深埋水工隧洞的设计和施工过程中,需要根据具体的地质条件和工程要求,合理调整隧洞的埋深、断面形状和支护结构,以减小地应力的影响。
同时,工程应力也需要进行合理的评估和控制,以确保岩体稳定和施工安全。
在实际工程中,通常采用传统的光弹性变形测量法、松弛法和水平竖直应力停放法等手段进行地应力的测量和分析。
其次,围岩的稳定性是深埋水工隧洞设计和施工过程中需要重点关注的问题之一。
围岩的稳定性主要指的是隧洞周围岩体在受到地应力和其他外力作用下的整体性和稳定性。
围岩的稳定性直接影响着隧洞的使用寿命和安全性。
因此,在进行深埋水工隧洞的设计和施工过程中,需要进行围岩的稳定性分析和评估。
围岩的稳定性分析主要从两个方面进行:一是围岩的破坏特征分析,二是围岩的稳定性评估。
围岩的破坏特征分析主要研究围岩的开裂和破碎现象,以及岩体的变形和位移。
通过分析围岩的破坏特征,可以确定围岩的强度和稳定性,为隧洞的设计和施工提供参考依据。
岩体结构及其稳定性分析

划分岩体结构的目的:定性评价 岩体稳定性。
岩体结构类型及其特征表 7-7
完整状态
地下水
结构类型
1 块状结构
结 构 面 间 完整性系数 距(cm)
50~100 0.35~0.75
作用特征
甚微
2 镶嵌结构 <50 <0.35
含、导水不ຫໍສະໝຸດ 明显3 碎裂结构 <50 <0.35
显著,软、泥
化,渗流
4 层状结构 30~50 薄 0.30~0.60 薄 软 、 泥 化 显 层<30 层<0.40 著
②片岩软弱夹层——薄层云母 片岩、绿泥石片岩等,片理发育、 岩性软弱、矿物易风化。
对边坡、地下工程稳定造成影响。
⑷构造结构面——构造作用形成, 规模大,对岩体稳定性影响很大。
包括: 1 节理 2 断层 产状受构造应力场控制。 3 层间错动面——与岩层一致,
破碎,含泥质。 ⑸次生结构面——岩体受卸荷、风 化、地下水等次生作用形成。次生结 构面易造成边坡岩体破坏。 次生结构面包括:
③原生夹层。 其中①、②两种软弱夹层通常含 泥质物质,松散。形成良好的地下水 通道,夹层的水稳定性差,易软化、 泥化,强度和稳定性差。
⑵火成结构面——在岩浆活动中 形成,包括:
①侵入接触面——与围岩胶结 不良,有变质物质。
②冷凝裂隙——张性裂隙面,粗 糙。
⑶变质结构面——变质作用形成。 包括:
1 片理——沿片理面片状矿物 富集,岩体强度↓
1 赤平极射投影的实质。 2 物体的几何要素(点、线、
面)的投影。 3 结构面走向、倾斜、倾角的
投影表示。 4 赤平极射投影的作图方法。 5 判断岩体结构的稳定性。 ⑶评价岩体稳定性。
4 泥化夹层——地下水作用,使 原软弱夹层(粘土岩、泥灰岩、 页岩等)泥化,产状与岩层一 致。
8-1 地下洞室围岩稳定性分析

洞顶位移底鼓在岩石地下工程中,受开应力状态发生改二、地下洞室开挖所产生的岩体力学问题向新的平衡应力状态调整,应力状态的调整过程,称(redistribution of stress)。
洞顶位移底鼓由于洞径方向的变形远大于洞轴方向的变形,当洞室半径远小于洞长时,洞轴方向的变形可以忽略不计,因此地下洞室问题可视为平面应变问题深埋于弹性岩体中的水平圆形洞室,其围岩重分布应力按柯西课题求解(1)柯西课题概化模型无限大弹性薄板,其边界上受到沿方向的外力作用,薄板中有一半径为的小圆孔。
x p R 弹性薄板柯西课题分析示意图pp 1.深埋圆形水平洞室围岩重分布应力以圆的圆心为原点取极坐标,由弹性理论,若不考虑体积力,可求得薄板中任一点的应力及其方向。
(,)M r θ弹性薄板柯西课题分析示意图p p若应力函数为φ22211r r r r φφσθ∂∂=+∂∂径向应力:22rθφσ∂=∂环向应力:2211r r r r θφφτθθ∂∂=−∂∂∂剪切应力:(2)柯西课题解弹性薄板柯西课题分析示意图p p边界条件:()cos 222r r b p pσθ==+()sin 22r r b pθτθ==−0b R >>()()0r r r b r b θτσ====0b R =0b R >>vσxθMvσ0R r弹性薄板pp柯西课题力学模型中极坐标轴与力的作用方向相同。
因此,需进行极角变换。
2420002423411cos22v r R R R r r r σσθ⎡⎤⎛⎞⎛⎞=−−+−⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦240024311cos22v R R r r θσσθ⎡⎤⎛⎞⎛⎞=+++⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦420042321sin22v r R R rr θστθ⎛⎞=−+⎜⎟⎝⎠2)由柯西课题解得到作用下圆形洞室围岩重分布应力v σ22θθπ→−2θσσ=④随着距离增大,增大,减小,并且都逐渐趋近于天然应力。
浅谈地下工程围岩稳定性与围岩控制

文章编号:1009-6825(2009)30-0111-02浅谈地下工程围岩稳定性与围岩控制收稿日期:2009-06-14作者简介:段学超(1974-),男,工程师,山西省交通建设工程监理总公司,山西太原 030006段学超摘 要:对影响地下工程围岩稳定性的自然因素进行了详细分析,讨论了围岩稳定性与围岩控制的方法与思路,介绍了围岩稳定性的监测方法和手段,论述了锚杆工作载荷与围岩稳定性的相互关系,用锚杆无损监测的方法来全程监测围岩稳定性对研究围岩稳定及工程施工具有很大的指导意义。
关键词:围岩稳定性,锚杆,围岩控制,锚杆无损监测中图分类号:T U 457文献标识码:A地下工程围岩的稳定性对工程的正常运营是至关重要的。
地下工程围岩的稳定性主要与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关[1],并且还与开挖方式及支护的形式和时间等因素有关。
本文将对围岩稳定性监测的手段进行讨论,详细的论述利用锚杆工作载荷与围岩稳定性的关系来全程动态检测围岩稳定性的方法。
1 地下工程围岩稳定性因素1.1 岩石性质及岩体的结构围岩的岩石性质和岩体结构是影响围岩稳定性的基本因素。
从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类黏土质岩石、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆性围岩主要指各类坚硬体,由于岩石本身的强度远高于结构面的强度,这类围岩的强度取决于岩体结构。
从岩体的结构角度,可将岩体结构划分为整体块状结构、层状结构、碎裂结构、散体结构。
松散结构及破碎结构岩体的稳定性最差;薄层状结构岩体次之;厚层状块体最好。
对于脆性的厚层状和块状岩体,其强度主要受软弱结构面的分布特点和较弱夹层的物质成分所控制,结构面对围岩的影响不仅取决于结构面的本身特征,还与结构面的组合关系及这种组合与临空面的交切关系密切相关。
岩体的工程性质及稳定性评价

岩体与岩石(庐山二叠泉的岩体)
节理就是裂隙,断裂是一 个大的概念,基本类型包 括了节理(裂隙)、断层, 还有劈理。
节理:是岩石中的裂隙,是没有明显位移的裂隙。也是地壳上 部岩石发育最广的一种构造
节理是很常见的一种构造地质现象,就是我们在岩石露头上所见 的裂缝,或称岩石的裂缝。这是由于岩石受力而出现的裂隙.还 有一种说法:几乎在所以岩石中都可以看到有规律的,纵横交错 的裂隙,他的专门术语就叫节理.节理即断裂岩块沿着破裂面没 有发生或没有明显发生位移的断裂构造. 裂隙应该包括的东西更多,在地学上有构造裂隙,而节理裂隙
Ⅴ级 又称微结构面。常包含在岩块内,主要影响岩 块的物理力学性质,控制岩块的力学性质。
三、 产状
走向、倾向、倾角 结构面与最大主应力
间的关系控制着岩体 的破坏机理与强度。
据单结构面理论,岩体中存在一组结构面时,岩体的极限强 度与结构面倾角间的关系为:
1
3
2(C j 3tg j ) (1 tg j ctg ) sin 2
断裂:地质学马丁尼兹说:“当地壳移动,板块相互撞击时会断裂, 导致其他地区的压力逐渐增加,最终引发地震。”断裂是大的, 深的断层.
(一)结构面
1、结构面的类型
(1)原生结构面 (2)构造结构面 (3)次生结构面
岩体与岩石
近100年来坝体因对岩体软弱面稳定性认
识不足而失事者达45%以上。
法国60m高的坝体, 1959年因左坝肩片麻岩 中的绢云母页岩软弱层滑动而失稳。
只是构造裂隙的一种. 断层是地壳岩层因受力达到一定强度而发生破裂,并沿破裂面
有明显相对移动的构造称断层。 断层是构造运动中广泛发育的构
造形态。它大小不一、规模不等,小的不足一米,大到数百、上 千千米。但都破坏了岩层的连续性和完整性。还有一种解释:断 层是地质学概念,是指因地壳的变动,引起地层发生断裂并沿断 裂面发生水平、垂直或倾斜方向的相对位移现象。
工程地质讲稿-第9章:地下洞室围岩稳定性

地下水作用
地下水压力、渗透性等对围岩 稳定性产生影响,特别是在软
弱岩体中更为显著。
围岩稳定性评价方法
工程地质分析法
通过对地质勘察资料进行综合 分析,评估围岩的稳定性和可
能发生的不良地质现象。
数值分析法
利用数值计算方法模拟围岩应 力分布、变形和破坏过程,为 工程设计和施工提供依据。
谢谢观看
重要性
围岩稳定性是地下洞室工程设计 和施工中的关键问题,直接关系 到工程的安全性、经济性和可行 性。
围岩稳定性影响因素
01
02
03
04
地质条件
包括岩体的物理性质、岩层结 构、节理裂隙发育程度和地下
水状况等。
洞室设计
洞室的跨度、形状、埋深、支 护方式等设计因素岩的扰动程度和 支护结构的及时性有直接影响
控制地下水压力
设置排水系统
在洞室周边设置排水系统,以降 低地下水压力和防止涌水。
采取止水措施
在洞室周边采取止水措施,如注 浆、粘土填塞等,以防止地下水
渗入。
合理选择施工方法
根据地下水压力情况,选择合适 的施工方法,如逆作法、分部开 挖法等,以减少对围岩稳定性的
影响。
监测与预警系统
设置监测点
在洞室周边设置监测点,对围岩位移、变形、应 力等情况进行实时监测。
工程地质讲稿-第9章地下洞室围岩 稳定性
目录
• 地下洞室围岩稳定性概述 • 地下洞室围岩应力分析 • 地下洞室围岩破坏模式与机理 • 提高地下洞室围岩稳定性措施 • 地下洞室围岩稳定性工程实例
01
地下洞室围岩稳定性概 述
定义与重要性
定义
地下洞室围岩稳定性是指围岩在 一定时间内保持其自身结构完整 性和稳定性的能力。
井下工程岩体稳定性评价与灾害预防

井下工程岩体稳定性评价与灾害预防在井下工程中,岩体的稳定性评价和灾害预防是至关重要的领域。
岩体稳定性评价的目的是确定井下工程中岩体的强度、围岩的破坏机制以及岩体的稳定性,以便采取相应的措施来预防灾害的发生。
本文将探讨井下工程岩体稳定性评价的方法和灾害预防的措施。
首先,对于岩体稳定性评价来说,最常用的方法之一是岩石力学参数测试。
通过对岩石样本进行试验,可以得到岩石的抗压强度、抗拉强度、剪切强度等力学参数。
这些参数的测试可以根据不同的岩石类型和井下工程的具体情况来选择,以确保评价结果的准确性。
同时,还可以利用非破坏性测试技术,如地质雷达和声波测试,来获取更多的岩石力学参数。
这些测试结果将成为评价岩体稳定性的重要依据。
其次,岩体结构与构造特征的分析也是岩体稳定性评价的重要内容。
通过对岩体的结构与构造特征的研究,可以得知岩体中的裂隙、节理、断层等情况。
这些特征对于岩体的稳定性具有重要的影响,因为它们可能是岩体破坏的易发区域。
因此,在评价岩体稳定性时,需要考虑这些特征对岩体强度和稳定性的影响,以便采取相应的支护和加固措施。
除了岩体稳定性评价,灾害预防也是井下工程的核心任务之一。
灾害种类繁多,例如岩石坍塌、地面塌陷、水涌等。
井下工程中的灾害预防主要包括两个方面,即主动预防和被动防护。
主动预防是指在井下工程施工过程中,通过控制破岩方法和工作面进度等方式,尽量减少岩体破坏的发生。
被动防护是指通过设置支护结构和排水设施等措施,以减轻岩体破坏的影响。
主动预防的措施主要包括选用合适的破岩方法和施工方案。
在井下工程中,破岩方法的选择直接影响到岩体的稳定性。
不同的岩石类型和岩体特征需要采用不同的破岩方法,如爆破、机械掘进等。
此外,施工方案的制定也需要考虑到井下工程的具体情况,如块体大小、施工进度等。
通过科学合理地选用破岩方法和施工方案,可以最大程度地减少岩体破坏的发生。
被动防护的措施包括设置支护结构和排水设施。
对于岩体稳定性较差的地区,需要设置支护结构来增强防护能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地下工程岩体的稳定性分析地下工程,系指在地面以下及山体内部的各类建筑物。
地下工程具有隔热、恒温、密闭、防震、隐蔽及不占地面土地面积等许多优点。
因此,在国民经济各个部门的工程建设中被广泛采用。
如城市及交通建设中的地下铁道、地下仓库、地下商场、铁路隧道、公路隧道、过江隧道等,水电及矿山建设中的地下厂房、引水隧洞、地下水库、地下矿井巷道等,以及军工建设中的地下飞机场、地下试验室(站)、地下掩蔽部及各类军事设备器材仓库等。
显然随着经济建设的高速发展及地下工程所具有的优越性,地下工程的应用将会越来越广泛,规模也将越来越大。
地下工程按成因分为人工洞室和天然洞室两大类。
人工洞室指由人工开挖支护形成的地下工程。
天然洞室一般指由地质作用形成的地下空间,如可溶岩的溶洞等。
地下工程完全被周围的岩土体介质所包围。
因此,这些介质的性质直接影响着地下工程的稳定与安全。
地下工程岩体系指地下工程周围的岩土介质,以往也称为地下洞室围岩。
其稳定性的工程地质研究是工程地质研究的重要课题之一。
主要包括地下工程岩体稳定性的影响因素分析,地下工程洞线及进、出口边坡位置的正确选择地下工程岩体稳定性的合理评价,对不稳定地段的支护及施工方法的研究,施工过程中根据地质情况预测各种可能出现的工程地质问题等。
,一、洞室位置的选择·地下洞室按其用途分有压洞室和无压洞室,按工程岩体性质分岩体洞室和土体洞室。
(一)无压的岩体洞室位置选择无压的岩体洞室位置应满足以下条件:(1)洞址宜选在山体完整雄厚、地质构造简单、地下水影响小、岩性均一的坚硬岩层且岩层厚度为厚层、中厚层的地段;要避开透水的宽大破碎带、断裂交汇带、岩溶发育带、强风化带及有害气体和高地温等地段。
洞址选在稳定性好的围岩中,是保证地下工程施工安全和正常运行的关键。
(2)洞口要选择在松散覆盖层薄、坡度较陡的反向坡,且有完整厚层岩层作顶板的地段;要避开冲沟或溪流源头,以及滑坡、崩塌、泥石流等不良地质现象发育或洪水可能淹没的地段。
洞外还应该有相应规模的弃渣场地。
大量工程实践表明,地下工程进出口位置选择十分重要,稍有不慎,将造成无法进洞或洞口岩体失稳等不良后果。
.(3)洞轴线要选择与区域构造线、岩层及主要节理走向垂直或大角度相交的方向;要避免洞线从冲沟、山洼等地表水和地下水汇集的地段通过;在高地应力地区,洞轴线宜与水平方向的最大主应力平行。
例如我国金川矿巷道布置时,该区最大水平主应力方向为N35。
E左右,‘mx=20—30MPa,而位于地下400m深处的西风井巷道走向为N30。
W左右,与最大水平主应力方向近正交。
结果建成后,此巷道产生明显变形和破坏,断面累计变形达200cm以上,断面减小致使巷道不能正常使用。
后来将500m深处的巷道改为与最大水平主应力方向近平行(N23。
E),则巷道围岩的稳定性得到显著改善,即使穿越松散结构的断层破碎带,也末发生明显的破坏。
水工隧洞多为有压隧洞,其工作条件比无压隧洞更为复杂。
在洞址选择时,除考虑上述要求外,尚需对围岩的弹性抗力、高压隧洞围岩的承载力、洞室上覆岩体及间壁岩体厚度等进行专门研究,才能保证有压隧洞在内水压力作用下的正常运用。
(二)土体洞室位置的选择土体洞室,包括明挖回填洞和暗挖衬砌洞室,在工业与民用建筑及道路建设中应用较普遍,其洞室位置选择应满足:(1)洞址应选择在滑坡、冲刷等不良地质现象不发育的地段。
(2)洞口宜选在地下水位以上并高于洪水位的地段。
(3)洞轴线要选择在土性单一的粘性土体中,避免穿越含水的粉土层、砂层和砾石层以反软土、膨胀土等不稳定土。
显而易见,洞室选择除取决于工程要求外,主要受地形地貌、岩土性质、地质构造、地下水、地应力及物理地质现象等因素控制。
在工程建设中一定要综合各方面因素,选择最佳位置。
这是地下工程建设中最基本、最重要的一项工作,否则将后患无穷。
二、地下工程岩体稳定性的影响因素地下工程岩体稳定性的影响因素主要有岩土性质、岩体结构与地质构造、地下水、地应力及地形等。
此外,还要考虑地下工程的规模等因素。
(一)岩土性质岩土性质是控制地下洞室围岩稳定、隧洞掘进方式和支护类型及其工作量等的重要因素,也是影响工期和工程造价的一个重要因素。
理想的岩体洞室围岩是岩体完整、厚度较大、岩性单一、成层稳定的沉积岩,或规模很大的侵入岩(花岗岩、闪长岩等),或区域变质的片麻岩,岩体内软弱夹层及岩脉不发育。
岩石的饱和单轴抗压强度在70MPa以上。
一般坚硬完整岩体,由于岩体完整,洞壁围岩稳定性好,施工也较顺利,支护也简单快速。
而破碎岩体或松散岩层,由于围岩自身稳定性差,施工过程容易产生变形破坏,因而施工速度较慢,文护工程量及其难度也较大,严重时还会产生较大规模的塌方,影响施工安全,延误工期。
(二)地质构造和岩体结构地质构造和岩体结构是影响地下工程岩体稳定的控制性因素。
首先表现在建洞山体必须区域构造稳定,第四纪以来元明显的构造活动,历史上无强烈地震。
其次是在洞址洞线选择时一定要避开大规模的地质构造,并考虑构造线及主地应力方向而合理布置。
断裂构造由于其有一定宽度,因此洞轴线穿越破碎岩体时一般都产生一定规模塌方。
严重时产生地下泥石流或碎屑流,或者产生洞室涌水,威胁施工安全。
岩体结构对地下工程岩体稳定性影响主要表现在岩体结构类型与结构面的性状等方面。
同一类型岩体结构对不同规模地下工程其自稳能力不同c比如在某一层状结构岩体中掘一2m直径的探洞和建一几十米跨度的地下厂房,顶板岩体的自稳能力显然不一样,前者可能安全、稳定,后者稳定性可能很差。
另外,结构面的相互组合,切割成的结构体很可能向洞心方向产生位移,轻者掉块,重者塌方,更严重者可能造成冒顶。
因此,在地下工程岩体稳定分析中一定要注意各种结构面的分布及其组合,尤其是一些大规模断层破碎带。
(三)地下水因素地下水对洞室围岩稳定性的影响是很不利的。
其影响主要表现在使岩石软化、泥化、溶解、膨胀等,使其完整性和强度降低。
另外当地下水位较高时,地下水以静水压力形式作用于衬砌上,形成一个较高的外水压力,对洞室稳定不利。
地下水对地下工程最大的危害莫过于洞室涌水。
地下岩溶、导水构造等,往往是地下水富集的场所,一旦在洞室中出露,往往形成一定规模的涌水、涌砂或者形成碎屑流涌入,轻者影响施工,严重者造成人身伤亡事故j因此,地下工程宜选在不穿越地下水涌水及富水区,地下水影响较小的非含水岩层中。
(四)地应力岩体中的初始应力状态对洞室围岩的稳定性影响很大。
地下洞室开挖后,岩体中的地应力状态要重新调整,调整后的地应力称为重分布应力或二次应力。
应力的重新分布往往造成洞周应力集中。
当集中后的应力值超过岩体的强度极限或屈服极限时,洞周岩石首先破坏或出现大的塑性变形,并向深部扩展形成一定范围松动圈。
在松动圈形成过程中,原来洞室周边应力集中向松动国外的岩体内部转移,形成新的应力升高区,称为承载圈(团6—18)。
重分布应力一般与初始应力状态及洞室断面的形状等有关。
在静水压力状态下的圆形洞室,开挖后应力重分布的主要特征是径向应力(6r)向洞壁方向逐渐减小至洞壁处为0,切向应力(66)在洞壁处增大为原本初始应力的两倍。
重分布应力的范围一般为洞室半径r的5—6倍(图6—19)。
另外,地应力因素的影响还表现在洞线选择时一定要注意与最大水平主应力方向平行。
特别在高地应力地区修建地下工程,一定要认真研究地应力的分布及对工程建筑的影响。
如规划中的南水北调西线引水隧洞等高地应力区的地下工程建设中,地应力对围岩稳定性的影响就成为一个重要的研究课题。
,此外,影响地下工程岩土稳定性还有地、地下工程的施工技术和施工方法等。
地形上要求洞室区山体雄厚,地形完整,山体工程施工技术和施工方法是影响岩体稳定的一个重要方面。
末受沟谷切割,没有滑坡、崩塌等地质现象破坏地形:大量工程实践表明,地下良好的施工技术和科学的施工方法将有效地保护围岩稳定,不良的施工技术和不合理的施工方法将严重破坏岩体的稳定性,降低岩体的基本质量。
因此,应根据实际地质条件,合理确定施工方案,尽量保护围岩不被扰动。
三、地下工程岩体稳定分析方法地下工程岩体稳定分析评价,应采用工程地质分析与理论计算相结合的综合评价方法。
(一)工程地质分析法工程地质分析法也称为工程地质类比法。
主要在工程地质勘察的基础上,把拟建工程与工程地质条件、工程特点及施工方法类似的已建工程相比较,对其稳定性进行评价。
为了便于对比,一般在大量实际资料的基础上,对地下工程岩体进行分级评价(参阅第五章岩体工程分级)。
(二)力学计算方法力学计算方法是根据不同的岩体结构、不同的力学属性,简化成不同的力学模型,应用相应的力学方法,研究围岩的变形破坏过程,对围岩稳定性进行定量计算的评价方法。
它可以弥补以往工程地质分析法只侧重定性而缺乏定量评价的不足。
应用中,应将两者结合使用,以起到相互验证的作用。
力学计算法可分为解析计算法和数值计算法(有限单元法),其重点是计算围岩压力等。
围岩压力是指围岩由于松动、变形而作用在支护(衬砌)上的压力,是确定衬砌设计荷载大小的依据。
围岩压力也称山岩压力或地压。
围岩压力有松动压力、变形压力和膨胀压力之分。
松动压力是指由于开挖造成围岩松动而可能塌落的岩体,以重力形式直接作用在支护上的压力。
松动压力有不良地质条件造成的,如岩体破碎程度、软弱结构面与临空面的组合关系等,也有施工方面的因素造成的,如爆破、支护时间和回填密实程度等。
变形压力指围岩变形受到支护限制后,围岩对支护形成的压力。
其大小决定于岩体的初始地应力、岩体的力学性质、洞室形状、支护结构的刚度和支护时间等。
膨胀压力指围岩吸水后,岩体中的矿物产生膨胀崩解引起围岩体积膨胀变形作用在支护上的压力。
膨胀压力也是一种变形压力,但它与变形压力的性质有所不同,它严格地受地下水的控制,其定量难度更大,目前尚无完善的计算方法。
严格地区分松动压力与变形压力是不容易的,在实际进行围岩压力计算时一般不予区分。
围岩压力计算有经验计算法与理论计算法两种。
经验计算法如铁道部经验公式及黄土洞围压估算公式等。
理论公式计算法如传统的普氏理论、Terzaghi松散体理论、Fenner公式、常士骡公式等。
以上经验公式及理论公式请参阅文献[81。
本节主要介绍国家标准《岩土工程勘察规范》(G135002l—94)关于围岩压力计算的几种方法。
K。
是水工隧洞支护设计的一个基本参数。
及。
通常与围岩的岩石性质、地质构造、内水压力大小及加荷方式等有关。
确定X。
的方法一般有现场试验方法、计算方法和经验数据法等。
对大型地下工程通常采用现场试验方法;对中小型工程,则可采用计算法和经验数据方法求得。
四、改善地下工程岩体稳定性条件的措施大量工程实例表明,各种不良的工程地质条件是导致地下工程岩体失稳的主要原因。