二元体系汽液平衡数据测定

合集下载

二元气液相平衡数据的测定

二元气液相平衡数据的测定

二元气液相平衡数据的测定摘要:气液相平衡关系是精馏、吸收等单元操作的基础数据,随着化工生产的不断发展,现有气液相平衡数据远不能满足需求,许多物质的平衡数据,很难由理论直接计算得到,必须由实验测定。

平衡数据实验测定方法以循环法应用最为广泛。

本实验采用ellis 平衡釜,釜外具有真空夹套保温,可观察釜内的实验现象,在少量样品的情况下,能够迅速地测得平衡数据。

关键词:二元气液相平衡,循环法,苯,乙醇abstract: gas liquid equilibrium relationship is distillation, absorption unit operation of basic data, with the continuous development of chemical production, the existing gas liquid equilibrium data far cannot satisfy the demand, many material balance data, it is difficult to directly obtained by theory, must by experimental determination. balance data experimental determination method to cycle method used the most widely. this experiment using ellis balance kettle, still outside with vacuum jacketed insulation, can be observed in the kettle experimental phenomenon, in a small amount of sample cases, can quickly measure balance data.keywords: two sap liquid balance, circulation method, stupid, ethanol中图分类号: n941.8文献标识码:a 文章编号:1前言循环法测定气液相平衡的原理:如图1,图中a为盛有二元溶液的蒸馏器,b为逸出蒸汽经完全冷凝后的收集器。

南京工业大学化学工程与工艺专业实验》思考题答案

南京工业大学化学工程与工艺专业实验》思考题答案

实验1二元体系汽液平衡数据测定1,实验测量误差及引起误差的原因答:(1)汽液两相平衡时,回流滴下来的流体速率平稳,大约每秒1~2滴,且在一段时间内温度维持不变。

2,影响汽液平衡数据测定的精确度的因素有哪些答:(2)影响准确度的因素有温度和压强,装置气密性,温度计灵敏度,折射仪读数准确性等。

实验3 二氧化碳临界现象观测及PVT关系的测定1,质面比常数K值对实验结果有何影响为什么答:任意温度任意压力下,质面比常数k均不变。

所以不会对实验结果又影响。

2,为什么测量25℃下等温线时,严格讲,出现第1个小液滴时的压力和最后一个小汽泡将消失时的压力应相等答:在出现第一个小液滴和最后一个汽泡消失过程中CO2处于汽液平衡状态。

根据相律得F=C-P+1=1-2+1=0,自由度为0,故过程中压力应为相等。

实验4 气相色谱法测定无限稀释溶液的活度系数1,无限稀释活度系数的定义是什么测定这个参数有什么作用答:定义:P29 公式(4-1),作用:通过测定两个组分的比保留体积和无限稀释下的活度系数,计算其相对挥发度.2,气相色谱基本原理是什么色谱仪有哪几个基本部分组成各起什么作用答:原理:因固定液对于样品中各组分溶解能力的差异而使其分离。

组成及作用:(1)载气系统气相色谱仪中的气路是一个载气连续运行的密闭管路系统。

整个载气系统要求载气纯净、密闭性好、流速稳定及流速测量准确。

(2)进样系统进样就是把气体或液体样品速而定量地加到色谱柱上端。

(3)分离系统分离系统的核心是色谱柱,它的作用是将多组分样品分离为单个组分。

色谱柱分为填充柱和毛细管柱两类。

(4)检测系统检测器的作用是把被色谱柱分离的样品组分根据其特性和含量转化成电信号,经放大后,由记录仪记录成色谱图。

(5)信号记录或微机数据处理系统近年来气相色谱仪主要采用色谱数据处理机。

色谱数据处理机可打印记录色谱图,并能在同一张记录纸上打印出处理后的结果,如保留时间、被测组分质量分数等。

二元系统汽液平衡数据测定实验讲义

二元系统汽液平衡数据测定实验讲义

二元系统汽液平衡数据的测定在化学工业中,蒸馏、吸收过程的工艺和设备设计都需要准确的汽液平衡数据,此数据对提供最佳化的操作条件,减少能源消耗和降低成本等,都具有重要的意义。

尽管有许多体系的平衡数据可以从资料中找到,但这往往是在特定温度和压力下的数据。

随着科学的迅速发展,以及新产品,新工艺的开发,许多物系的平衡数据还未经前人测定过,这都需要通过实验测定以满足工程计算的需要。

此外,在溶液理论研究中提出了各种各样描述溶液内部分子间相互作用的模型,准确的平衡数据还是对这些模型的可靠性进行检验的重要依据。

1 实验目的(1)了解和掌握用双循环汽液平衡器测定二元汽液平衡数据的方法;(2)了解缔合系统汽–液平衡数据的关联方法,从实验测得的T–P–X–Y数据计算各组分的活度系数;Array(3)学会二元汽液平衡相图的绘制。

2 实验原理汽液平衡数据实验测定是在一定温度压力下,在已建立汽液相平衡的体系中,分别取出汽相和液相样品,测定其浓度。

本实验采用的是广泛使用的循环法,平衡装置利用改进的Rose 釜。

所测定的体系为乙酸(1)—水(2),样品分析采用气相色谱分析法。

以循环法测定汽液平衡数据的平衡器类型很多,但基本原理一致,如图2–1所示,当体系达到平衡时,a、b容器中的组成不随时间而变化,这时从a和b两容器中取样分析,可得到一组汽液平衡实验数据。

3 实验装置与试剂实验装置见图3-1,其主体为改进的Rose 平衡釜-一汽液双循环式平衡釜。

改进的Rose 平衡釜汽液分离部分配有热电偶(配数显仪)测量平衡温度,沸腾器的蛇型玻璃管内插有300W电热丝,加热混合液,其加热量由可调变压器控制。

分析仪器:气相色谱实验试剂: 乙酸(分析纯), 去离子水图3-1 改进的Rose 釜结构图1-排液口2-沸腾器3-内加热器4-液相取样口5-汽室6-汽液提升管7-汽液分离器8-温度计套管9-汽相冷凝管 10-汽相取样口 11-混合器4 预习与思考(1)为什么即使在常低压下,醋酸蒸汽也不能当作理想气体看待?(2)本实验中气液两相达到平衡的判据是什么?(3)如何计算醋酸-水二元系的活度系数?5 实验步骤及方法:(1) 加料:从加料口加入配制好的醋酸–水二元溶液,接通平衡釜内冷凝水。

气液平衡数据的测定

气液平衡数据的测定

浙江大学化学实验报告课程名称:化学专业实验Ⅰ实验名称:气液平衡数据的测定指导教师:专业班级:姓名:学号:同组学生:实验日期:实验地点:1.实验目的通过测定常压下乙醇—水二元系统汽液平衡数据的实验,使同学们了解、掌握汽液平衡数据测定的方法和技能,熟悉有关仪器的使用方法,将课本上学到的热力学理论知识与实际运用有机地联系在一起。

从而既加深对理论知识的理解和掌握,又提高了动手的能力。

2.汽液平衡测定的种类由于汽液平衡体系的复杂性及汽液平衡测定技术的不断发展,汽液平衡测定也形成了特点各异的不同种类。

按压力分,有常减压汽液平衡和高压汽液平衡。

高压汽液平衡测定的技术相对比较复杂,难度较大。

常减压汽液平衡测定则相对较易。

按形态分,有静态法和动态法。

静态法技术相对要简单一些,而动态法测定的技术要复杂一些但测定较快较准。

在动态法里又有单循环法和双循环法。

双循环法就是让汽相和液相都循环,而单循环只让其中一相(一般是汽相)循环。

在一般情况下,常减压汽液平衡都采用双循环,而在高压汽液平衡中,只让汽相强制循环。

循环的好处是易于平衡、易于取样分析。

根据对温度及压力的控制情况,有等温法与等压法之分。

一般,静态法采用等温测定,动态法的高压汽液平衡测定多采用等温法。

总之,汽液平衡系统特点各异,而测定的方法亦丰富多彩。

本实验采用的是常压下(等压)双循环法测定乙醇—水的汽液平衡数据。

3.实验原理以循环法测定汽液平衡数据的平衡釜有多种型式,但基本原理是一样的。

如图1所示,当体系达到平衡时,A 和B 两容器中组成不随时间而变化,这时从A 和B 两容器中取样分析,可以得到一组汽液平衡实验数据。

根据相平衡原理,当汽液两相 达到相平衡时,汽液两相温度压力 相等,同时任一组分在各相中的逸 度相等,即: Li v i f f = (1) 这里 P y f i v i v i Φ= 0i i i L i f x r f =图13 循环法测定汽液平衡的原理对低压汽液平衡,其气相可以 视为理想气体混合物,即1=Φvi ,忽略压力对液体逸度的影响,即00i i P f =,从而得出低压下汽液平衡关系式:i i i i P x r Py = (2)式中 P —体系压力(总压)0i P --纯组分i 在平衡 温度下的饱和蒸汽压(可用Antoine 公式计算) i i y x ,--组分i 在液相、汽相中的摩尔分数。

二元系统气液平衡数据测定

二元系统气液平衡数据测定

化工专业实验报告实验名称:二元系统气液平衡数据测定学院:化学工程学院专业:化学工程与工艺班级:化工班姓名:学号同组者姓名:指导教师:日期:一、实验目的1、了解和掌握用双循环气液平衡器测定二元系统气液平衡数据的方法。

2、了解缔合系统气—液平衡数据的关联方法,从实验测得的T-p-x-y 数据计算各组分的活度系数。

3、通过实验了解平衡釜的构造,掌握气液平衡数据的测定方法和技能。

4、掌握二元系统气液平衡相图的绘制。

二、实验原理以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同。

如图1等,即逸度相等,其热力学基本关系为:Vi L i f f ˆˆ=is i i i V i x f py γφ=ˆ(1)常压下,气相可视为理想气体,1ˆ=v i φ;再忽略压力对液体逸度的影响,0i i p f =从而得出低压下气液平衡关系式为:py i =γi s i p ix (2)式中,p ——体系压力(总压);s i p ——纯组分i 在平衡温度下的饱和蒸汽压,可用Antoine 公式计算;x i 、y i ——分别为组分i 在液相和气相中的摩尔分率;γi ——组分i 的活度系数由实验测得等压下气液平衡数据,则可用si i i i p x py =γ(3)计算出不同组成下的活度系数。

本实验中活度系数和组成关系采用Wilson 方程关联。

Wilson 方程为:ln γ1=-ln(x 1+Λ12x 2)+x 2(212112x x Λ+Λ-121221x x Λ+Λ)(4)ln γ1=-ln(x 2+Λ21x 1)+x 1(121221x x Λ+Λ-212112x x Λ+Λ)(5)Wilson 方程二元配偶函数Λ12=0和Λ21=1采用高斯—牛顿法,由二元气液平衡数据回归得到。

目标函数选为气相组成误差的平方和,即F =2221211((jmj j y y y y ))计实计实-+-∑=(6)三、实验装置与流程示意图1、平衡釜一台(平衡釜的选择原则:易于建立平衡、样品用量少、平衡温度测定准确、气相中不夹带液滴、液相不返混及不易爆沸等。

二元系统气液平衡数据测定

二元系统气液平衡数据测定

序号:40化工原理实验报告实验名称:二元系统气液平衡数据测定学院:化学工程学院专业:化学工程与工艺班级:化工095班姓名:何小龙学号 0940201051 同组者姓名:杨飞黄云张阳指导教师:周国权日期: 2012年3月29日一、实验目的1.了解和掌握用双循环汽液平衡器测定二元系统汽液平衡数据的方法。

2.了解缔合系统汽液平衡数据的关联方法,从实验测得的T-p-x-y数据计算个组分的活度系数。

3.通过实验了解平衡釜的构造,掌握汽液平衡数据的测定方法和技能。

4.掌握二元系统平衡相图的绘制。

二、实验原理平衡法测定汽液平衡原理图当系统达到平衡时,两个容器的组成不随时间的变化,这时候从A和B中取样分析,即可得到一组平衡数据。

达到平衡时,两相除了温度压力相等外,每一组分的化学位也相等,即逸度相等,其基本热力学关系为:f i L=fiVΦi pyi=γifi0xi常温下,气体可视为理想气体,再忽略压力对液体逸度的影响,f i=p i0从而得出低压下汽液平衡关系为:pyi =γipi0xip---体系压力(总压);p i0---纯组分i在平衡温度下的饱和蒸汽压;x i,y i---分别为组分i在液相和气相中的摩尔分率;γi---组分i的活度系数由实验测得等压下的平衡数据,可用:γi = pyi/p i0x i由此计算不同组成下的活度系数本实验中活度系数和组成关系采用Wilson方程关联,Wilson方程为lnγ1=-ln(x1+λ12x2)+ x2[(λ12/x1+λ12x2) –(λ21/x2+λ21x1)]lnγ2=-ln(x2+λ21x1)+ x1[(λ21/x2+λ21x1) –(λ12/x1+λ12x2)]Wilson方程二元配偶参数λ12和λ21采用非线形最小二乘法,由二元汽液平衡数据回归而得。

目标函数选为气相组成误差的平方和,即:F=Σj=1m(y1实-y1计)2j+( y2实-y2计)2j三、实验装置与试剂1.平衡釜一台(平衡釜选择原则,易建立平衡,样品用量少,平衡温度测定准确气相中不夹带液滴,液相不返混及不爆沸等,本实验采用汽液双循环小平衡釜)2.阿贝折射仪一台3.温度计4.1ml及5ml的注射器若干四、实验步骤及注意事项1.开启阿贝折射仪,分别配置无水甲醇:异丙醇比例为0:1,1:4,2:3,1:1,3:2,1:4,1:0的标准试剂,分别测其折射率,将所测得的数据经处理后绘制无水甲醇与异丙醇的标准曲线。

二元系统气液平衡数据测定实验报告

二元系统气液平衡数据测定实验报告

二元系统气液平衡数据测定实验报告实验目的:1. 了解气相和液相的特性和平衡状态;2. 熟悉使用实验仪器进行二元系统气液平衡数据测定;3. 掌握气液平衡实验的数据处理方法。

实验原理:在液体表面,由于分子间吸引力,分子会向周围运动,导致分子数密度有所下降,也就是说,在表面上形成一个薄膜,这就是液体的表面张力的来源。

当液体表面上的分子与气体中的分子碰撞时,会发生反弹导致向外沿着表面方向推力,这就是液体表面的气液界面张力,它是描述气液界面特性的物理量。

气液界面上的分子密度不均匀,会导致气相和液相之间的交换。

在一种给定的温度下,当气相和液相之间的交换达到一定的平衡状态时,称为气液平衡。

在这种状态下,气相和液相的分子数密度不再发生明显的变化。

通过气液平衡实验,可以测定气液界面张力和液体和气体之间的平衡常数,从而获得二元系统气液平衡的数据。

实验仪器:1. 二元系统气液平衡实验仪器;2. 水、乙醇等液体样品;3. 高钼酸钠、酚酞等试剂。

实验步骤:1. 清洗实验仪器:将实验仪器中的气路及液路中的管道和阀门进行清洗,保证实验测量时的通气畅通和样品无杂质。

2. 调整实验仪器:将待测液体注入样品瓶中,打开气路和液路中的阀门,进行预热和抽气,直至达到平衡状态。

3. 测量实验数据:通过测定不同温度下的液体和气体的平衡常数,获得二元系统气液平衡的数据。

4. 处理数据:将实验数据进行整理分析,得出二元系统气液平衡的相关参数。

实验结果:通过实验测量,得出了二元系统气液平衡的相关数据,具体如下:1. 温度:25℃液体样品:水气体样品:空气气液界面张力:72.2 mN/m液体与气体间的平衡常数:0.872. 温度:30℃液体样品:乙醇气体样品:空气气液界面张力:28.6 mN/m液体与气体间的平衡常数:0.65实验结论:通过本次实验的测量和分析,得出了二元系统气液平衡的相关参数。

在不同的温度下,不同的液体和气体之间会发生不同程度的平衡,液体之间和气体之间的分子密度也不同。

化学工程与工艺实验预习题答案

化学工程与工艺实验预习题答案

化学工程与工艺实验预习题答案实验1二元体系汽液平衡数据测定1,实验测量误差及引起误差的原因?答:(1)汽液两相平衡时,回流滴下来的流体速率平稳,大约每秒1~2滴,且在一段时间内温度维持不变。

2,影响汽液平衡数据测定的精确度的因素有哪些?答:(2)影响准确度的因素有温度和压强,装置气密性,温度计灵敏度,折射仪读数准确性等。

实验3二氧化碳临界现象观测及PVT关系的测定1,质面比常数K值对实验结果有何影响?为什么?答:任意温度任意压力下,质面比常数k均不变。

所以不会对实验结果又影响。

2,为什么测量25C下等温线时,严格讲,出现第1个小液滴时的压力和最后一个小汽泡将消失时的压力应相等?答:在出现第一个小液滴和最后一个汽泡消失过程中C02处于汽液平衡状态。

根据相律得F=C-P+1=1-2+1=0,自由度为0,故过程中压力应为相等。

实验4气相色谱法测定无限稀释溶液的活度系数1,无限稀释活度系数的定义是什么?测定这个参数有什么作用?答:定义:P29公式(4-1),作用:通过测定两个组分的比保留体积和无限稀释下的活度系数,计算其相对挥发度•2,气相色谱基本原理是什么?色谱仪有哪几个基本部分组成?各起什么作用?答:原理:因固定液对于样品中各组分溶解能力的差异而使其分离。

组成及作用:(1)载气系统气相色谱仪中的气路是一个载气连续运行的密闭管路系统。

整个载气系统要求载气纯净、密闭性好、流速稳定及流速测量准确。

(2)进样系统进样就是把气体或液体样品速而定量地加到色谱柱上端。

(3)分离系统分离系统的核心是色谱柱,它的作用是将多组分样品分离为单个组分。

色谱柱分为填充柱和毛细管柱两类。

(4)检测系统检测器的作用是把被色谱柱分离的样品组分根据其特性和含量转化成电信号,经放大后,由记录仪记录成色谱图。

(5)信号记录或微机数据处理系统近年来气相色谱仪主要采用色谱数据处理机。

色谱数据处理机可打印记录色谱图,并能在同一张记录纸上打印出处理后的结果,如保留时间、被测组分质量分数等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验10 二元体系汽液平衡数据测定一. 实验目的1.掌握二元体系汽液相平衡数据的测定方法,Rose平衡釜的使用方法,测定大气压力下乙醇(1)-- 环己烷(2)体系PTXY数据。

2.确定液相组分的活度系数与组成关系式中的参数,推算体系恒沸点,计算出不同液相组成下二个组分的活度系数,并进行热力学一致性检验。

3.掌握恒温浴的使用方法和用阿贝折光仪分析组成的方法.二.实验原理汽液平衡数据实验测定是在一定温度压力下,在已建立汽液相平衡的体系中,分别取出汽相和液相样品,测定其浓度。

本实验采用的是最广泛使用的循环法,平衡装置利用Rose 釜。

所测定的体系为乙醇(1)—环己烷(2)。

样品分析采用折光法。

汽液平衡数据包括T-P-X i-Y i。

对部分理想体系达到汽液平衡时,有以下关系式:Y i P=γi X i P i S将实验测得的T-P-X i-Y i数据代入上式,计算出实测的X i与γi数据,利用X i与γi关系式(van Laar Eq.或 Wilson Eq.等)关联确定方程中参数。

根据所得的参数可计算不同浓度下的汽液平衡数据、推算共沸点及进行热力学一致性检验。

三. 实验装置和试剂实验装置主体为Rose平衡釜-一汽液双循环式平衡釜(见图 -1)。

图-1 Rose釜结构图1-排液口2-沸腾器3-内加热器4-液相取样口5-汽室6-汽液提升管7-汽液分离器8-温度计套管9-汽相冷凝管 10-汽相取样口 11-混合器Rose平衡釜汽液分离部分配有50—100℃精密温度计或热电偶(配XMT—3000数显仪)测量平衡温度,沸腾器的蛇型玻璃管内插有300W电热丝,加热混合液,其加热量由可调变压器控制。

分析装置为恒温水浴—阿贝折光仪系统,配有CS-501型超级恒温浴和四位数字折光仪.实验试剂: 无水乙醇(分析纯), 环己烷(分析纯).四.实验步骤和分析方法1.制作乙醇(1)-- 环己烷(2)溶液折光系数与组成关系工作曲线(可由教师预先准备):(1)配制不同浓度的乙醇(1)—环己烷(2)溶液(摩尔浓度X1为0.1,0.2,0.3,……0.9);(2)测量不同浓度的乙醇(1)—环己烷(2)溶液在30℃下的折光系数,得到一系列X1—n D数据;(3)将X1—n D数据关联回归,得到如下方程:X1 = - 0.74744 + [0.0014705 + 0.10261(1.4213 - n D)]0.5/ 0.0513052.开恒温浴--折光仪系统,调节水温到30 0.1℃。

(折光仪的原理及使用方法见附录3)3.接通平衡釜冷凝器冷却水,关闭平衡釜下部考克。

向釜中加入乙醇—环己烷溶液(加到釜的刻度线,液相口能取到样品)。

4.接通电源,调节加热电压,注意釜内状态。

当釜内液体沸腾,并稳定以后,调节加热电压使冷凝管末端流下的冷凝液为80滴/分左右。

5.当沸腾温度稳定,冷凝液流量稳定(80滴/分左右),并保持30分钟以后,认为汽液平衡已经建立。

此时沸腾温度为汽液平衡温度。

由于测定时平衡釜直接通大气,平衡压力为实验时的大气压。

用福廷式水银压力计,读取大气压(见附录4)。

6.同时从汽相口和液相口取汽液二相样品,取样前应先放掉少量残留在取样考克中的试剂,取样后要盖紧瓶盖,防止样品挥发。

7.测量样品的折光系数,每个样品测量二次,每次读数二次,四个数据的偏差小于0.0002,按四数据的平均值,根据1得到的关系式,计算汽相或液相样品的组成。

8.改变釜中溶液组成(添加纯乙醇或环己烷),重复步骤4—8,进行第二组数据测定。

五.实验数据记录1.平衡釜操作记录实验日期室温大气压实验加热平衡釜温度(℃)环境温度露茎高度冷凝液滴速序号投料量时间电压(V) 热电偶水银温度计(℃)(℃) (滴/分) 现象混合液1 ml补加2 ml2. 折光系数测定及平衡数据计算结果测量温度 30.0℃实验序号液相样品折光系数n D汽相样品折光系数n D 平衡组成1 2 3 4 平均 1 2 3 4 平均液相汽相12六.实验数据处理1.平衡温度和平衡压力的校正(参见附录1)2.由所测的折光系数计算平衡液相和汽相的组成,并与附录2文献数据比较,计算平衡温度实验值与文献值的偏差和汽相组成实验值与文献值的偏差。

3.计算活度系数γ1γ2运用部分理想体系汽液平衡关系式: Y i P=γi X i P i S可得到,γ1 = Y1 P / (X1 P1S) 和γ2 = Y2 P / (X2 P2S)。

式中P1S和P2S由Antoine Eq.计算,其形式:lg P1S= 8.1120 – 1592.864/(t + 226.184)lg P2S = 6.85146 – 1206.470/(t + 223.136)P1S和P2S – mmHg, t--℃4.由得到的活度系数γ1和γ2,计算van Laar Eq.或Wilson Eq.方程中参数。

(参考文献1) 5.用van Laar Eq.或Wilson Eq.方程,计算一系列的X1—γ1,γ2数据,计算lnγ1—X1 、lnγ2—X1 和ln(γ1/γ2)--X1数据,绘出ln(γ1/γ2)--X1曲线,用Gbbis—Duhem Eq.对所得数据进行热力学一致性检验。

van Laar Eq.形式如下:ln(γ1) = A12/(1 + A12 X1/(A 21 X2))2ln(γ2) = A 21/(1 + A21X2/(A 1 2X1))2(选做)6.计算0.1013MPa压力下的恒沸数据,或35℃下恒沸数据,并与文献值比较。

(选做)7.计算示例实验数据实验日期室温 25℃大气压 758.2 mmHg实验加热平衡釜温度(℃)环境温度露茎高度冷凝液滴速序号投料量时间电压(V) 热电偶水银温度计(℃)(℃) (滴/分) 现象混合液1 180 ml 8:20 60 25 25 0 开始加热8:45 60 40 26 0 沸腾 8:55 58 59.2 59.10 30 0.8 40 有回流9:03 58 65.0 64.92 31 6.6 78 回流9:15 58 65.0 64.94 31 6.6 81 回流稳定 9:50 56 65.1 64.95 31 6.6 79 回流稳定 9:52 取样折光系数测定及平衡数据计算结果测量温度 30.0℃实验液相样品折光系数n D汽相样品折光系数n D 平衡组成序号 1 2 3 4 平均 1 2 3 4 平均液相汽相1 1.3835 1.3835 1.3836 1.3835 1.3835 1.3972 1.3971 1.3972 1.39731.3972 0.6781 0.4797(1)温度及压力的校正露茎校正:按附录1,Δt露茎 = k•n•(t - t环)= 0.00016• 6.6 •(64.95-31.0=0.036℃t 真实 = t + Δt露茎 = 64.95 + 0.04 = 64.99℃压力校正:将测量的平衡压力758.2 mmHg下的平衡温度折算到平衡压力为760mmHg的平衡温度,按附录1的式子:温度校正值ΔT = ((t 真实 + 273.15)/10)·((760 –P0)/760)= 0.08℃T(760mmHg平衡温度)= 64.99 + 0.08 = 65.07 ℃(2)由附录2查得,X1 = 0.6781 时,文献数据Y1 = 0.4750,T = 65.25℃,实验值与文献值偏差 |ΔY 1|= 0.4797–0.4750 = 0.0047,|ΔT| = 65.25-65.07 =0.19℃(3)计算实验条件下的活度系数γ1,γ2γ1= (0.4797/0.6781)(760/439.37)= 1.2237γ2= (0.5203/0.3219)(760/462.57)= 2.6556(4)计算van Laar Eq.方程中参数A 1 2 = lnγ1(1+X2lnγ2/(X1lnγ1)= 2.19412A 2 1 = lnγ2(1+X1lnγ1/(X2lnγ2)= 2.01215(5)用van Laar Eq.,计算X—γ数据,列表:X1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 lnγ1 1.9624 1.7455 1.3548 1.0192 0.7357 0.5021 0.3159 0.1747 0.0763 0.0188 0.0047 lnγ2 0.0059 0.0235 0.0923 0.2041 0.3565 0.5475 0.7749 1.0369 1.3316 1.6572 1.8311 ln(γ1/γ2)1.9565 1.7220 1.2625 0.8150 0.3792 -.0454 -.4590 -.8620–1.2553-1.6384–1.8265 经计算得到,D〈 J ,符合热力学一致性。

(6)估算P = 760 mmHg 下恒沸点温度和恒沸组成可列出以下联立方程组:ln(P/P1S) = A12/(1 + A12 X1/(A 21 X2))2ln(P/P2S) = A 21/(1 + A21X2/(A 1 2X1))2lgP1S = 8.1120 – 1592.864/(t + 226.184 )lgP2S = 6.85146 – 1206.470/(t + 223.136 )X1 + X2 = 1代入相关数据,经试差计算得,恒沸点温度 t = 65.0℃,恒沸组成X1 = 0.477,与附录2文献数据基本符合。

七.实验结果和讨论1.实验结果给出P = 760mmHg 下温度T、乙醇液相组成X1和相应的汽相组成Y1数据,与附录2文献数据比较,分析数据精确度。

2.讨论(1)实验测量误差及引起误差的原因。

(2)对实验装置及其操作提出改进建议。

(3)对热力学一致性检验和恒沸数据推算结果进行评议。

3.思考题(1)实验中你是怎样确定汽液二相达到平衡的?(2)影响汽液平衡数据测定的精确度的因素有哪些?(3)试举出汽液平衡数据应用的例子。

八.注意事项1.平衡釜开始加热时电压不宜过大,以防物料冲出。

2.平衡时间应足够。

汽液相取样瓶,取样前要检查是否干燥,装样后要保持密封,因乙醇和环己烷都较易挥发。

3.测量折光系数时,应注意使液体铺满毛玻璃板,并防止挥发。

取样分析前应注意检查滴管、取样瓶和折光仪毛玻璃板是否干燥。

九.参考文献1.朱自强,徐汛. 化工热力学,北京:化学工业出版社,第2版,19912.Hala P ,et al.Vapour—Liquid Equilibrium,Oxford:Pergamon Press Ltd.,1967 3.Smith J M,Van Ness H C,Abott M M. Introduction to Chemical Engineering Thermodynamics, Sixth Edition ,北京:化学工业出版社,2002附录(另列)。

相关文档
最新文档